Experimentos de físca1

741 visualizações

Publicada em

Experimentos de Física

Publicada em: Educação
1 comentário
0 gostaram
Estatísticas
Notas
  • O Material é de suma e perfeita indicação para ensinar para os colegas e divertir ao mesmo tempo. Obrigado
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
741
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
35
Comentários
1
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Experimentos de físca1

  1. 1. EXPERIMENTOS DE FÍSICA UTILIZANDO MATERIAIS DE BAIXO CUSTO E FÁCIL ACESSO. AUTORES: ALEXANDRE G. PINHEIRO, FCO ADALCÉLIO B. PIMENTA, MARCELA DA SILVA FELÍCIO, ANTONIO MICHAEL DE O. DA SILVA, FRANCIMAGNO DE FREITAS NU- NES, MARIA LUANA S. ALMEIDA ALESSANDRA ALEXANDRINO AQUINO, JOSÉ ALDI DE LIMA FILHO, RAIMUNDO IVAN DE OLIVEIRA JUNIOR, FRANCISCO GILVANE SAM- PAIO DE OLIVEIRA, FCO. VLADIMIR VITORIANO DA SILVA,FCO. EDSON RODRIGUES DA SILVA, ANTÔNIA MARIA JOSÉ PINHEIRO, CARLOS ALEFF DE CASTRO LUCE- NA,FCO EVANDRO DOS SANTOS, FCO KLEVINHO F DOS SANTOS, RAÍ FIGUEREDO JUCÁ, FRANCISCO EDUARDO DA SILVA DO CARMO, ERANDI DE LIMA CRUZ. PIBID FÍSICA FECLESC UECE CAPES PROGRAD
  2. 2. Capítulo 1 Prefácio Este livro tem o objetivo de apresentar para as escolas, do Ceará e do Brasil, experimentos de física de baixo custo. Se utilizando de pouca habilidade e de nenhum risco a saúde na confecção dos mesmos, pois não serão utilizados, ácidos fortes, materiais tóxicos, lâminas cortantes, etc... Isto no produto final. E para a confecção, em alguns casos, usaremos tesouras, alicates, agulhas, etc... Ou seja itens já usados do nosso cotidiano. Este trabalho é resultado do trabalho dos bolsistas autores supracitados, decorrente de bolsa do PIBID de Física da FECLESC da Universidade Estadual do Ceará. São bolsistas que além de terem contato com estudantes de escolas carentes de ensino médio e fundamental. Também sentiram “na pele” a falta de materiais e aulas de laboratório de física, em nosso Estado do Ceará. Esta realidade vem mudando de forma gradativa, pois o governo, independente de seus gestores, tem propiciado licitações e aquisições de materiais profissionais, para estas aulas. Claro que nada é perfeito. E o bom professor sempre deve estimular o aluno a criar experimentos baseados nos existentes, como forma de aprimorar sua formação. Pois no aprender, criar é melhor que comprar. Esperamos que este mini-manual possa ajudar as escolas, carentes e/ou abastadas de recursos, pois a intenção é estimular a criatividade e complementar as aulas vistas em sala. Cada bolsista participa com pelo menos um capítulo, em que monta e testa, antes de publicar seu experimento. Este livro irá aumentar e contará com mais autores. Desta forma contribui-se pela melhor educação de nosso país. Deus seja louvado ! Os Autores.
  3. 3. INTRODUÇÃO: Com tal montagem você conseguirá facilmente um jato de água de até 35 cm de altura, de modo continuo, por mais de 20 minutos, usando apenas como energia inicial, o trabalho de colocar uma garrafa cheia de água numa plataforma elevada. A fonte de Heron (e suas variantes) é o que apresentaremos nesse trabalho. DESCRIÇÃO DO EXPERIMENTO: Essa é uma fonte que parece desafiar a lei da conservação da energia.
 Consta de um recipiente aberto (A) e dois fechados (B e C) ligados por três tubos 1, 2 e 3, como mostra a figura. A água cai de A para C pelo tubo 1 e empurra o ar pelo tubo 2 para o recipiente B. A água em B, pressionada pelo ar que vem de C, sobe pelo tubo 3 e jorra com um jato pela ponta do tubo. Quando o recipiente B se esvazia, a fonte pára de funcionar. ANÁLISE: A explicação para o funcionamento dessa fonte fica clara quando observada ao vivo. Os aumentos de pressão causados pela água que cai no recipiente C e pelo ar que sobe pelo tubo 2, empurram a água pelo tubo 3, fazendo-a jorrar pela ponta fina desse tubo.. Seção 1 AUTOR: CARLOS ALEFF DE CASTRO LUCENA Material: 1. Dois frascos de 1 ou 2 litros uma bacia media. Garrafas plásticas de refrigerante podem servir, embora tenham uma boca estreita.
 Rolhas de borracha, cortiça ou qualquer material adequado com dois furos estreitos, 2. Tubos plásticos rígidos. Um suporte como mostra a figura. FONTE DE HERON 2
  4. 4. Montagem Use a imagem mostrada no inicio como base, Primeiro monte o suporte, depois faça os furos nas rolhas que ficaram nas garrafas e no fundo da bacia, coloque as rolhas e os tubos de modo que fiquem bem colados e não fuja o ar, não use tubos muito grossos. Obs: (No frasco que ficará entre a bacia e o outro frasco não pode usar cola ou outro material para vedar a rolha, pois ele será aberto quando se precisar fazer o experimento outras vezes). Quando a montagem estiver completa encha o frasco que está logo à baixo da bacia e o feixe bem, o resto do funcionamento da fonte será feito por conta da pressão entre os recipientes, se não houve nenhum vazamento a fonte pode funcionar por ate 20 minutos com um jato que pode chegar a 35 cm de altura. Veja como a sua fonte deve ficar montada: 3
  5. 5. INTRODUÇÃO: Conhecida como princípio da inércia,a Primeira lei de Newton afirma que a força resultante (o vetor soma de todas as forças que agem em um objeto) é nula, logo a velocidade do objeto é constante. Consequentemente:Um objeto que está em repouso ficará em repouso a não ser que uma força resultante atue sobre ele. Um objeto que está em movimento não mudará a sua velocidade a não ser que uma força resultante atue sobre ele. OBJETIVO: O experimento teve como objetivo mostrar, através da prática, como funciona e como é aplicada a primeira lei de Newton, lei da Inércia, com um experimento de improviso. DESCRIÇÃO DO EXPERIMENTO: A montagem e a execução do experimento são bastante simples: coloque uma capa de papelão para CD na boca do copo. Sobre essa capa coloque uma moeda, bem no meio da boca do copo. Dê uma pancada, lançando um dedo, no cartão, na direção horizontal. Observe que o cartão sai, massa moeda cai dentro do copo. Porque a moeda cai no copo? Seção 2 AUTOR: ERANDI DE LIMA CRUZ Material: 1. Um copo de vidro; 2. Uma moeda; 3. Uma capa de papelão para CD. A MOEDA QUE CAI NO COPO 4
  6. 6. CONCLUSÕES: De acordo com o princípio da lei da inércia, um corpo tende a se manter em seu estado de equilíbrio. Assim, quando bate no cartão bruscamente a velocidade do mesmo aumenta consideravelmente, mas a moeda tende a se manter em seu estado de equilíbrio, ou seja, em repouso. Com isso caindo dentro do copo. 5
  7. 7. INTRODUÇÃO: O Princípio da Conservação da Quantidade de Movimento Linear diz que "todo sistema sempre conserva constante a sua quantidade de movimento linear", esta podendo ser inicialmente nula ou não. Neste experimento, o sistema considerado é todo o conjunto da base que sustenta o "canhão" mais os lápis de rolagem, para o qual a quantidade de movimento linear inicial é nula. OBJETIVO: O experimento consiste em construir um sistema muito similar a um canhão real. Uma borrachinha de dinheiro é disposta sobre a base de madeira como se fosse uma atiradeira que está prestes a impulsionar o projétil (veja a figura abaixo). A linha de costura e o palito de fósforo servem para disparar o "tiro" com a menor interferência possível. Depois de armado o sistema, dispara-se o "tiro" simplesmente queimando a linha que mantém a borrachinha esticada. O que se observa é que enquanto o projétil é lançado num sentido, o resto do sistema se move em outro sentido, ou seja, recua. Seção 3 AUTOR: ERANDI DE LIMA CRUZ Material: 1. Uma borrachinha de dinheiro; 2. Linha de costura; 3. Base de madeira e vários lápis redondos; 4. Fósforos. CANHÃO DE BORRACHINHA 6
  8. 8. MONTAGEM: Prepare a madeira, de forma que ela fique a mais lisa possível, retirando todas as farpas e possíveis defeitos. Numa das bordas de menor largura fixe dois parafusos nos cantos da placa, e no centro da borda oposta, o outro parafuso. Passe cada uma das pontas da borrachinha pelos parafusos da extremidade que contém dois parafusos. Amarre no centro do elástico um pedaço de linha. Puxando a borrachinha pela linha, estique-a na direção do parafuso que está no centro da outra extremidade, e enrole a linha nele, para que fique preso e esticado. Não encoste a borrachinha no parafuso deixe uma folga de mais ou menos um centímetro. Coloque algo que sirva de projétil dentro do vértice em V formado pela borrachinha esticada. Coloque os lápis sobre a mesa, um paralelo ao outro formando uma espécie de caminho por onde o canhão deverá se deslocar após o tiro. Coloque o conjunto já montado sobre a esteira de lápis, e com o fósforo queime a linha, sem que o palito ou você encoste no experimento. OBSERVAÇÕES: O peso do canhão é importante para se observar um bom recuo. Portanto, escolha bem a madeira que vai servir de base para o canhão. CONCLUSÃO: A ideia é a de explorar a compensação de quantidades de movimentos bastante visível que ocorre neste experimento. O projétil, mais leve, se desloca com velocidade maior; o resto do sistema, mais pesado, se deslocaem outro sentido com velocidade menor. 7
  9. 9. OBJETIVO: A experiência tem como objetivo representar o movimento retilíneo uniforme (MRU). MATERIAL UTILIZADO: O material utilizado na experiência teve que ser improvisado pois não consegui o próprio para realização dessa atividade, tais materiais são: um pequeno cano de borracha 20cm de comprimento e 1cm de diâmetro, um pedaço de madeira 10x30cm, uma seringa, óleo (pode ser de cozinha), álcool, durex, régua,pincel, uma folha de papel ofício, água e um relógio digital. DESCRIÇÃO DA EXPERIÊNCIA: A montagem da experiência é bem simples, primeiro enrolamos o pedaço de madeira com a folha de papel oficio depois pegamos o cano e acoplamos ao pedaço de madeira com o durex, em seguida fazemos marcações de 5 em 5cm (você pode fazer diferente), na folha. A realização do experimento consiste em colocar óleo dentro do cano que está acoplado na madeira, depois misturamos água e álcool em uma vasilha e sugamos um pouco com a seringa, logo após Seção 4 AUTOR: RAIMUNDO IVAN DE OLIVEIRA JUNIOR Material: 1. Mangueira transparente, trena de costura; 2. Seringa, álcool, água, fita adesiva; 3. Óleo, cronômetro; 4. Base de madeira. MRU 8
  10. 10. injetamos o material da seringa dentro do cano de forma a fazer uma bolinha, esta vai começar a descer quando ela passa pelas marcações começamos a marcar o tempo. Anote o tempo que ela leva para passar de uma marcação até a outra, eles vão ser aproximadamente iguais, demonstrando assim o movimento retilíneo uniforme. 9
  11. 11. INTRODUÇÃO O termoscópio é o precursor do termômetro. O objetivo principal de um termoscópio é poder avaliar as variações de temperatura, sem, no entanto, quantificá-las, como ocorre num termômetro. Uma das grandes personalidades a idealizar um termoscópio foi Galileu Galilei. DESCRIÇÃO Basicamente isso é um modelo do termoscópio de Galileu. O original era feito com um bulbo de vidro provido de um longo tubo também de vidro. ANÁLISE Com ele você pode demonstrar que a coluna sobe quando a temperatura aumenta e desce quando a temperatura diminui. Havendo a possibilidade, inclusive, de se construir uma escala. Seção 5 AUTOR: ANTONIO MICHAEEL DE O. DA SILVA Material: 1. Um copo de água com corante, alicate; 2. Uma lâmpada queimada sem o bulbo; 3. Uma rolha de borracha perfurada que se encaixe á abertura; 4. Vários pedaços de arame fino e flexível de 5 cm de comprimento; 5. Um prego fino de 3 cm, cola de silicone; 6. Lamparina a álcool; 7. Duas chapas de madeiras de 15 cm x 20 cm e 5mm de espessura; 8. Um pedaço de 30 cm mangueira plástica flexível e incolor que se encaixe á abertura da rolha. Termoscópio 10
  12. 12. Montagem 1-Para prender a, mangueira á chapa de madeira será preciso utilizar arame. coloque a mangueira em curva sobre a chapa de madeira ,como mostra a ilustração, e marque com a caneta alguns pontos em que o arame deverá amarrá-la á chapa. 2-Acenda a lamparina e, segurando o prego com o pregador, aqueça sua ponta. Quando ela estiver em brasa, fure a chapa de madeira nos pontos marcados. 3-Encha a mangueirinha com a água colorida. Fecha a lâmpada com a rolha perfurada e encaixe a mangueirinha na rolha. Não pode haver aberturas que permitam a passagem do ar: vede-as com a cola de silicone. A outra extremidade da mangueira deve ficar aberta. 4-Passe os fios de arame pelos furos e prenda a mangueira e a lâmpada á tabua, como mostra a figura. 5-Seu aparelho está pronto. Peça que alguém envolva a lâmpada com a mão, segurando-a por algum tempo, até que se observe alguma alteração. 6-Se quiser, arranje outra chapa de madeira e fixe a primeira em posição vertical. Use cola de madeira para colar as duas tábuas. 11
  13. 13. MONTAGEM Corte a garrafa transversalmente a fim de formar um anel, logo após recorte o círculo formado no meio, obtendo assim um semicírculo (caso o semicírculo fique muito fechado, tente abri-lo um pouco ou recorte parte deste a fim de deixa-lo menor e mais aberto). Recorte um pedaço do papel de salgadinho e cole-o na parte côncava do semicírculo tomando cuidado para deixar a parte Seção 6 AUTOR: JOSÉ ALDI DE LIMA FILHO Material: 1. Garrafa pet de 2L de refrigerante (também pode ser utilizado outro objeto/embalagem que forneça um anel com diâmetro semelhante); 2. Embalagem de salgadinho com o interior prateado (também pode ser utilizada embalagem de pó de café); 3. 2 lasers simples (também pode ser utilizada uma lanterna porém será necessário o uso de um ESPELHO CÔNCAVO 12
  14. 14. refletora (lado prateado) voltada para a concavidade do corte com a finalidade de formar um espelho côncavo. Com o auxílio de uma mesa apoie o espelho e mire os dois lasers na parte refletora deste deixando-os em paralelo de forma que seus raios toquem a superfície da mesa durante a trajetória, permitindo assim visualizar melhor o experimento. Note que os raios são refletidos em direção a um único ponto onde estes se tocam e que é conhecido como foco do espelho. EXPLICAÇÃO CIENTÍFICA Quando um raio de luz incide em um espelho plano, é refletido com o mesmo ângulo que incidiu em relação ao vetor normal do espelho. Entretanto se este espelho tiver sua superfície refletora encurvada em direção a si própria, nós obteremos um espelho côncavo. Se raios paralelos ao eixo principal incidirem em um espelho côncavo, eles serão refletidos passando pelo foco deste espelho. Onde o foco ou distancia focal é metade do raio de curvatura do espelho. 13
  15. 15. COMO FAZER 1. Faça um varal com o barbante. 2. Corte dois pedaços de barbante e amarre um pedaço em cada laranja. 3. Pendure as laranjas no varal de barbante, deixando-as na mesma altura. 4. Balance uma das laranjas. O QUE ACONTECE Quando a laranja que está balançando começar a parar, a outra laranja começará a balançar. POR QUE ACONTECE? Por causa da energia cinética (energia das coisas em movimento). A energia cinética da laranja que está balançando passa pelo barbante até a outra laranja. Essa outra laranja começa a balançar também, até que a energia cinética volta pelo barbante para a primeira laranja. E assim a energia cinética fica passando pelo barbante de uma laranja para outra, e as duas ficam balançando alternadamente. Seção 7 AUTOR: FCO. VLADIMIR VITORIANO DA SILVA Material LARANJAS DANÇARINAS: 1. Duas laranjas; 2. Barbante. Material OVO MALUCO: 3. Ovo cru. LARANJAS DANÇARINAS E OVO MALUCO 14
  16. 16. OVO MALUCO MATERIAL: um ovo cru. COMO FAZER: 1- Gire o ovo. 2- Pare o ovo rapidamente e solte. O QUE ACONTECE: O ovo continua girando. POR QUE ACONTECE? O ovo continua girando por causa da inércia. Ela faz com que as coisas continuem a fazer o que estão fazendo. O que está se movendo continua a se mover e o que está parado continua parado. Assim, quando você pára o ovo que está girando, a clara e a gema dentro dele continuam em movimento. 15
  17. 17. OBJETIVO Neste experimento vamos mostrar que é possível criar um ímã muito parecido a um imã natural com o uso da eletricidade. CONTEXTO Quando uma corrente elétrica atravessa um fio condutor, cria em torno dele um campo magnético. Este efeito foi verificado pela primeira vez por Hans Christian Orsted em abril de 1820. Ele observou que a agulha de uma bússola defletia de sua posição de equilíbrio quando havia próximo a ela um fio condutor pelo qual passava uma corrente elétrica. Um solenóide constitui-se de um fio condutor enrolado de tal modo que forme uma seqüência de espiras em forma de tubo. Se por ele passar uma corrente elétrica, gera-se um campo magnético no sentido perpendicular à uma seção reta do solenóide. Este arranjo em forma de tubo faz com que apareçam no solenóide polaridades norte e sul definidas. O resultado final é que o solenóide possui polos norte e sul, tal como um ímã natural. Os materiais ferromagnéticos são constituídos de um número muito grande de pequenos ímãs naturais, conhecidos como dipolos magnéticos elementares. Este número é da mesma ordem do número de moléculas ou átomos que constituem o Seção 8 AUTOR: FRANCISCO GILVANE S. DE OLIVEIRA Material LARANJAS DANÇARINAS: 1. Fio condutor. Aproximadamente 30 cm de fio elétrico comum. Pode ser encontrado em casa de materiais elétricos ou eletrônicos ou então retirado de enrolamentos elétricos de aparelhos elétricos ou eletrônicos fora de uso; 2. Duas pilhas comuns 1,5 volts; 3. Pedacinhos de lata de refrigerante metálica; 4. Um prego grande. Eletroímã 16
  18. 18. material. Sem a influência de um campo magnético externo, estes dipolos estão todos desalinhados, de forma que a soma total de seus campos magnéticos é nula. Se inserirmos um prego, que é feito de um material ferromagnético, dentro de um solenóide, o campo magnético deste irá alinhar os dipolos do prego. Os campos magnéticos dos dipolos se somam e temos então um novo campo magnético devido ao prego. No total, teremos a soma dos campos do solenóide mais o do prego. O conjunto de um solenóide com um núcleo de material ferromagnético é chamado de eletroímã. IDÉIA DO EXPERIMENTO Neste experimento enrolamos um pedaço de fio condutor em um prego e o ligamos a uma pilha fazendo com que passe corrente pelo fio. Nesta configuração geométrica do fio condutor, a corrente elétrica gera um campo magnético no sentido perpendicular a uma seção reta do prego fazendo com que apareçam polaridades norte e sul definidos. Ficando a ponta do prego com uma polaridade e a cabeça do prego com outra, como se fosse um ímã natural. Para verificar se o nosso eletroímã estar funcionando pegaremos pequenos pedacinhos de metal pode ser lata de refrigerante de aço recortadas em pedaços pequenos. Com esses pedacinhos de metal vamos identificar que tanto a ponta do prego como a cabeça consegue atrair metais. Para se verificar a polaridade deste campo magnético, basta que se façam testes de repulsão e atração. Pode-se então verificar que cada lado do eletroímã tem uma polaridade distinta, ou seja, um lado será o norte e o outro lado o sul. Podemos ver que é possível criarmos um ímã com as mesmas características de um ímã natural, fazendo uso da eletricidade. 17
  19. 19. MONTAGEM Faça 4 furos na garrafa, 2 em cada lateral, em seguida, coloque os alfinetes furando os botões, depois ponha-os nos canos da lapiseira, simulando assim uma espécie de eixo para o nosso carro. Agora vamos criar o que seria o “motor”, pegue a bexiga, coloque no cano da caneta e prenda a boca da bexiga com a liga de borracha, em seguida, prenda o cano da caneta com a bexiga na parte de cima da garrafa, de modo que, uma das extremidades do cano, ultrapasse a garrafa. Encha a bexiga de ar, prenda o ar na bexiga com a tampinha do cano (caso ainda for posicionar o carrinho), solte o ar e veja o carrinho andar. EXPLICAÇÃO CIENTÍFICA Essa experiência é semelhante à do balão, que junto a um canudo percorre um cordão. Os dois experimentos utilizam-se do mesmo princípio: A 3° Lei de Newton – Ação e Reação. O ar que sai da bexiga pratica a ação, a reação é criada com o movimento do protótipo de carro na direção oposta. Observações: Quando preparar o eixo, e colocar na garrafa veja se o mesmo consegue se movimentar com facilidade pelos furos da garrafa. Ficando bem claro que esse cuidado quando tomado e consertado é parte essencial para o sucesso da experiência. Seção 9 AUTOR: LUCAS BERTOLDO(COLABORADOR) Material: 1. 1 garrafa Pet, ou algum material do tipo; 2. 4 Botões; 3. 4 Alfinetes; 4. 1 Bexiga; 5. 2 Canos de Lapiseiras ou canetas. CARRINHO MOVIDO À BEXIGA – JET CAR 18
  20. 20. Observações: Quando preparar o eixo, e colocar na garrafa veja se o mesmo consegue se movimentar com facilidade pelos furos da garrafa. Ficando bem claro que esse cuidado quando tomado e consertado é parte essencial para o sucesso da experiência. 19
  21. 21. OBJETIVO Mostrar um objeto que se desloca, aparentemente, contra a gravidade. DESCRIÇÃO A figura acima mostra a montagem dessa experiência. O objeto que está sobre a rampa é feito com dois funis idênticos, colados um ao outro pela borda larga. A rampa é feita com dois bastões cilíndricos servindo de trilhos. Na parte mais alta a Seção 10 AUTOR: LUCAS BERTOLDO Material: 1. Dois funis de mesmo tamanho colados pelas bordas; 2. Dois bastões cilíndricos de madeira, plástico ou metal; 3. Apoios para os bastões. UM CONE DUPLO ANTI-GRAVITACIONAL 20
  22. 22. separação entre os trilhos é maior que na parte inferior. Colocando o funil duplo sobre a rampa ele parece subir, contrariando a gravidade. ANÁLISE Levantar um objeto significa alçar seu centro de gravidade para uma posição mais alta. Nessa experiência, enquanto o funil duplo parece subir a rampa, seu centro de gravidade desce. A figura ao lado explica essa aparente contradição. Ao fazer a experiência observe cuidadosamente o que acontece com a linha horizontal que passa pelo centro de gravidade do cone duplo (seu eixo de simetria). 21
  23. 23. INTRODUÇÂO Um truque realmente engraçado você pode fazer fácil, fácil, e encantar os amigos. São as passas bailarinas, que bailam ao sabor de bolhinhas de ar! Usaremos de um refrigerante (guaraná, coca-cola, soda limonada etc.) e uvas passas. Corte-as ao meio e coloque-as no saboroso líquido gaseificado de sua escolha. Você verá que elas afundam e, em seguida, sobem e mergulham novamente, diversas vezes. ANÁLISE O que acontece? Os refrigerantes contém quantidade apreciável de gás CO2 (dióxido de carbono), dissolvido no líquido sob pressão. Bolhas de gás formam-se na superfície da uva passa, fazendo com que a densidade do conjunto se torne menor do que a do líquido, e por isso ela sobe. Quando a passa atinge a superfície, parte das bolhas estouram ou se desprendem e a densidade da passa torna-se então maior do que a do líquido, e elas afundam. O processo se repete até que a quantidade de bolhas formadas não sejam suficientes para que os pedaços de passas flutuem Seção 11 AUTOR: RAI JUCÁ Material: 1. Refrigerante, uva-passas; PASSAS BAILARINAS 22
  24. 24. OBJETIVO Verificar os efeitos do campo m a g n é t i c o a t u a n d o e m u m enrolamento de fios(solenóide ou bobina) percorrido por uma corrente elétrica. INTRODUÇÃO Um motor elétrico é uma montagem que envolve imã, fonte de corrente, e enrolamento de fio esmaltado. Ao lado (figura 1) temos um diagrama. O princípio é que: Ao receber uma corrente a espira pode estar com pólo igual ou diferente do ímã. Se for igualeles se repelem, se diferente se atraem. Por isso damos um peteleco para o mesmo ficar girando serepelindo, teste o peteleco para frente ou para trás, ele irá continuar a girar só em um sentido. Veja o nosso kit na figura 2 (podendo variar no visual). O mesmo tipo de motor CC (corrente contínua: pilhas, baterias) estão presentes nos motores de carros de brinquedo,motores de arranque e limpadores(neste caso o ímã é substituído por outro enrolamento de fio) Se Seção 12 AUTOR: ALEXANDRE GONÇALVES PINHEIRO Material: 1. 2 pilhas AA, imã, chave, e fio esmaltado; 2. Saboneteira, suporte de pilhas, estilete; 3. Barramento SINDAL. MOTOR ELÉTRICO CASEIRO 23
  25. 25. girarmos a bobina sem as pilhas, o mesmo produz eletricidade (o mesmo dos geradores das usinas elétricas). PROCEDIMENTO Para que o motor possa funcionar sem erros (veja o vídeo) é preciso que os mancais estejam regulados, nem muito baixo e nem muito alto (vá tentando). Isto já com a bobina inseridas. Como fazer a bobina? 1- Enrole de 30 a 50cm de fio esmaltado (0,5mm de diâmetro em média) em uma pilha AA(ou uma caneta de marcação de Cds, veja o diâmento melhor, que não escoste na base). Umas seis voltas. Enrole as pontas em torno nas espiras e deixe 1 cm de cada lado. Raspes o esmalte das pontas com um estilete, girando e raspando. Veja as figuras acima. 2- Coloque a bobina(ou espiras) de acordo com a figura 2. Ligue a chave e dê os petelecos(leves com o seu dedo indicador) em duas direções e veja em qual ela girará. DICAS Você pode montar este motor em sua casa de forma mais simples, basta usar (figura abaixo): 24
  26. 26. 1- Uma tábua de madeira para a base. 2- Dois pedaços de fio 14, de 4 cm para os mancais. 3- Um ímã de alto-falante, geladeira ou HD de computador. 4- Pregos, alicates, chaves, etc... Questionário: 1- Onde encontramos o motor CC em nossa casa? 2- Como funcionam os dínamos? 3- O que são motores de passo? 4- Podemos fazer um motor que gira com o líquido ao invés de bobina? Pense em uma idéia. 5- Escreva mais de três linhas sobre: (a) Lei de Lenz, (b) lei de faraday e (c) Lei de Ampére. RESOLVENDO PROBLEMAS: Caso a bobina não gire. Raspe os mancais de cobre com um estilete ou chave de fenda. A oxidação natural, cria uma camada isolante. Isto pode ocorrer em questão de 5 dias. Também sempre raspe as pontas da bobina. 25
  27. 27. OBJETIVOS Determinar a capacidade térmica de um calorímetro e o calor específico de vários sólidos, pelo método da mistura. FUNDAMENTOS: Uma das características das substâncias é o calor específico, pois é próprio de cada uma e é praticamente invariável para a mesma substância. Por Seção 13 AUTOR: ALEXANDRE GONÇALVES PINHEIRO Material: 1. Calorímetro(recipiente), termômetro, fonte de calor(aquecedor); 2. água, peça de alumínio, latão e cobre e uma balança. CALORIMETRIA 26
  28. 28. definição, calor específico de uma substância é a quantidade de calor necessária para elevar de 10 C a temperatura de um grama dessa substância. S e g u n d o a termodinâmica:“Havendo troca de calor entre os corpos isolados termicamente do meio externo, a quantidade de calor cedida pelos corpos que arrefecem é igual à quantidade de calor recebida pelos corpos que aquecem”. Haverá trocade calor entre eles até que a igualdade de temperatura se estabeleça. Um método simples para se determinar o calor específico de uma substância é chamado “método das misturas”. Como o nome indica, esse método consta em “misturar” corpos com temperaturas diferentes, porém conhecidas. A mistura deve ser realizada num ambiente isolado termicamente para que a troca de calor seja restrita aos corpos em estudo. O calorímetro, descrito a seguir, proporciona esse ambiente dentro de limites razoáveis. Eleé constituído de um recipiente metálico ou plástico, protegido por um outro que é isolante térmico (isopor). O agitador é opcional podendo ser agitada a garrafa térmica levemente. PARTE PRÁTICA: PROCEDIMENTO I Como o recipiente e o termômetro absorvem calor em quantidade significativa, é necessário que se conheça a “capacidade calorífica” (C) do conjunto, também conhecida como “equivalente em água”, isto é, a quantidade de água que absorverá tanto calor quanto o conjunto das três peças. Pode-se determinar a capacidade calorífica sem se conhecerem previamente as massas e os calores específicos desses componentes, executando o procedimento a seguir: a) Colocar uma massa m’= 100 gramas (que são 100 ml) de água no calorímetro; b) Depois do equilíbrio térmico (mais ou menos 3 minutos) anotar a temperatura t0 dessa mistura formada pela água, recipiente e termômetro. c) Aquecer m = 100 gramas de água à temperatura T = t0 + 10 oC; (Exemplo: se t0 = 30 oC, aqueça até 40 oC. Não precisa ser exato) O aquecimento pode levar menos de dois minutos. Agite a panela e veja a temperatura. Cuidado para não quebrar o termômetro e nem encostar no aquecedor. d)Para evitar perda 27
  29. 29. de calor, juntar rapidamente essa água aquecida à água do calorímetro; e) Agitando o recipiente por 1 minuto, aguardar o equilíbrio térmico e anotar a temperatura t atingida pela mistura (água quente, água fria e os componentes do calorímetro). Aplicando o princípio da conservação da energia, temos: Qcedido= Qganho.............................. (1) Considerando que não houve troca de calor entre calorímetro e meio-ambiente: Calor cedido pela água quente = Calor ganho pela água fria + Calor ganho pelo calorímetro, ou seja: onde : -m = massa de água quente __________ -m’ = massa de água fria __________ -c0 = calor específico da água 1 cal / g oC -T = temperatura da água quente__________ -t0 = temperatura da água fria ___________ -t = temperatura final da mistura __________ -C = capacidade calorífica do calorímetro _______ De (2), temos: C = .....................(3) PROCEDIMENTO II Para calcular o calor específico de uma substância qualquer, conhecendo-se previamente o equivalente em água do equipamento, a fórmula (1) nos dá: Calor cedido pelo corpo aquecido = calor ganho pela água e pelo calorímetro: 28
  30. 30. - c = calor específico da substância em teste - c0= calor específico da água - m’= massa de água no calorímetro - M = massa da substância em teste - T = temperatura inicial da substância em teste - m0 = massa equivalente em água, do calorímetro(numericamente é igual a C da fórmula (03) -t = temperatura de equilíbrio da “mistura” -t0 = temperatura da água fria a) Colocar no calorímetro a massa m’ = 200 gramas de água, à temperatura ambiente t0 . Anotar na tabela; b)Aquecer a uma temperatura T = 70 oC a substância cujo calor específico C se queira determinar(dentro da panela e aquecedor, figura 5 acima). Para isso deixar imersa em água antes de aquecer e durante o aquecimento. Anotar na Tabela; O aquecimento pode levar menos de 5 minutos. Agite a panela e veja a temperatura. Cuidado para não quebrar o termômetro e nem encostar no aquecedor. c)Colocar no calorímetro, com rapidez , a substância em teste, para não haver perda de calor; d)Balance o recipiente térmico para uniformizar a temperatura da “mistura” e anotar na tabela a temperatura de equilíbrio (t). Deixe uns 2 minutos. e) Pegue outros materiais, como pedaços de ferro (parafuso de roda de carro), ou de cobre. Use uma balança de precisão (a venda por menos de R$20,00 no M livre) E. QUESTIONÁRIO: 29
  31. 31. 1- Lembrando que o calor específico da água é maior que o da areia, explique por que as brisas marítimas sopram, durante o dia, do mar para a terra, e, à noite, em sentido contrário. Discuta a influência destes fatos sobre o clima das regiões à beira-mar. 2- O calor pode ser absorvido por uma substância sem que esta mude sua temperatura? 3- Quando um objeto quente esquenta um frio, suas mudanças de temperatura são iguais em magnitude? Dê exemplo extraído desta prática. 4- Dois sólidos de massas diferentes, a uma mesma temperatura, recebem iguais quantidades de calor. Que relação há entre seus calores específicos? 5- Consultara Literatura Científica de modo a obter os calores específicos das substâncias abaixo. Obs: Citar a fonte consultada. -Alumínio -Cobre - Latão -Ouro -Prata -Água 30
  32. 32. OBJETIVO Nessa atividade, iremos propor a construção de um motor elétrico. Cuja finalidade é ensinar os conceitos envolvidos no funcionamento de motores elétricos. INTRODUÇÃO Montagem Eis o aspecto geral da montagem: Sequência e detalhes para a montagem: a) Cole a pilha grande na região central da base; Seção 14 AUTOR: FCO. ADALCÉLIO B. PIMENTA Material: 1. 1 pilha grande, imã, chave, e fio esmaltado; 2. Dois clipes de papel e um fio de cobre esmaltado # 20 a # 26; 3. 1 base de madeira, plástico ou duratex de (10x10x1) cm. 4. Como auxiliares usaremos: alicate de bico, faca ou estilete e durex. MOTOR ELÉTRICO CASEIRO 2 31
  33. 33. b) Cole o ímã (estator) sobre a pilha, por exemplo, com a face NORTE voltada para cima (uma bússola poderá ajudá-lo nessa identificação); c) Os mancais para a bobina (2 deles) devem ser feitos com gripe de papel. Use do alicate para enrolar uma das extremidades de cada um dessa gripe. As extremidades inferiores desses mancais serão fixadas com durex diretamente sobre os terminais (+) e (-) da pilha. A altura correta é aquela que permitirá à bobina passar bem rente ao ímã. d) Faça a bobina (rotor), inicialmente com uma só espira. Numa outra oportunidade você poderá fazer, como uma variante da montagem, outra bobina com várias espiras. Uma só espira torna o motor mais didático e facilita as explicações de seu funcionamento, porém gastará a pilha bem mais rapidamente do que, por exemplo, fazer a bobina com 10 ou 20 voltas (a bobina confeccionada apresenta 6 voltas). Em ambos os casos, todavia, a parte do fio que servirá de eixo da bobina deverá ser totalmente raspada (para retirar o verniz isolante) e a outra apenas semi-raspada (só metade do fio). Veja isso na ilustração. SUGESTÃO Se você está trabalhando em equipe, nada impede que cada participante faça sua própria bobina-rotor. As demonstrações poderão ser feitas com bobina de 1 espira, 5 espiras, 10 espiras etc. Preste a devida atenção para os terminais dessas bobinas, pois eles funcionarão tanto como eixo de rotação do motor como coletores de corrente elétrica. Ajuste bem esses terminais, com o alicate, de maneira que fiquem alinhados com o eixo horizontal da bobina. Raspe completamente o verniz de um desses terminais da bobina e no outro terminal raspe apenas uma das metades ao longo do fio. Isso funcionará como comutador para o funcionamento do motor. e) Coloque a bobina nos mancais, adaptando seus terminais nas espiras do fio grosso (que já devem estar raspados). Centralize bem o conjunto móvel. Observe que, devido a raspagem de uma das extremidades do fio de um só lado, com uma face da bobina voltada para o ímã não deve haver contado elétrico entre a bobina e os mancais e, com a outra face virada para o ímã, sim. PONDO O MOTOR PARA FUNCIONAR Terminada a montagem, dê um pequeno impulso ao rotor e ele deve continuar girando. Se não girar é porque a posição da extremidade semi-raspada do terminal da bobina não é a adequada. Com o alicate, vá lentamente torcendo esse terminal (testando) até obter a posição correta. 32
  34. 34. EXPLICAÇÃO CIENTÍFICA Todos os motores elétricos valem-se dos princípios do eletromagnetismo, mediante os quais condutores situados num campo magnético e atravessados por correntes elétricas sofrem a ação de uma força mecânica, ou eletroímãs exercem forças de atração ou repulsão sobre outros materiais magnéticos. Na verdade, um campo magnético pode exercer força sobre cargas elétricas em movimento. Como uma corrente elétrica é um fluxo de cargas elétricas em movimento num condutor, conclui-se que todo condutor percorrido por uma corrente elétrica, imerso num campo magnético, pode sofrer a ação de uma força. 33
  35. 35. PROCEDIMENTOS Coloque os 100 ml de glicerina no recipiente transparente de plástico e os 100 ml de água no copo de vidro. O recipiente de plástico deve ser de um tamanho que caiba o copo de vidro dentro dele. Quando o copo fica submerso na glicerina observa-se que ele fica invisível. Por que isso acontece? Isso acontece porque o índice de refração do vidro é praticamente igual ao índice de refração da glicerina sendo assim quando a luz passa pelos dois meios é como se ela estivesse passando por um só, pois a velocidade dela não muda. Conclui- se que para ficar invisível um objeto teria que ter a mesma densidade do ar, o que não parece ser nada fácil. Seção 15 AUTOR: MARIA LUANA DE SOUZA ALMEIDA Material: 1. Um copo de vidro; 2. Um recipiente de plástico transparente; 3. 100 ml de glicerina; 4. 100 ml de água. VIDRO INVISÍVEL 34
  36. 36. A imagem mostra a tentativa de se construir o manto da invisibilidade. Usando nanomateriais os cientistas conseguiram fazer parte da luz atravessar o objeto ao invés de ser absorvida por ele. 35
  37. 37. OBJETIVO: Mostrar que em um sistema onde inicialmente não existe movimento e então duas partes diferentes do sistema começam a se movimentar, existe uma compensação: Os movimentos ocorrem na mesma direção, mas de sentidos opostos. BREVE EXPLICAÇÃO O princípio da conservação da quantidade de movimento afirma que a quantidade de movimento total do sistema se conserva se não existir nenhuma força externa atuando no sistema.Nesse caso iremos observa o suporte de do canhão (no caso os lápis de rolagem) para qual a quantidade de movimento linear inicial é nula. IDEIA PRINCIPAL Construiremos um sistema similar a um canhão real. Usaremos uma borrachona de dinheiro sobre a base do canhão com a função de atiradeira que estará prestes a impulsionar o objeto. A linha de costura e o palito de fósforo serviram para dispara o tiro. Após o sistema montado disparamos o tiro apenas queimando a linha que mantém a borrachinha esticada. O que observamos é que enquanto o objeto e Seção 16 AUTOR: MARIA VALDÊNIA MOURA DOS SANTOS Material: 1. Uma borrachinha de dinheiro; 2. Linha de costura; 3. Base de madeira e vários lápis redondos; 4. Fósforos. CANHÃO DE BORRACHA 2 36
  38. 38. lançado num sentido, o resto do sistema esse move no sentido oposto, ou seja, recua. A ideia é a de explorar a compensação de quantidade de movimento bastante visível que ocorre neste experimento. O objeto mais leve se desloca com velocidade maior, o resto do sistema que é mais pesado, se desloca no sentido oposto com velocidade menor. MONTAGEM Prepare a madeira, de forma que ela fique mais lisa possível. Numa das bordas de menor largura fixe dois parafusos nos cantos da placa, e no centro da borda oposta o outro parafuso. Passe cada uma das pontas da borrachinha pelos parafusos da extremidade que contém dois parafusos. ·Amarre no centro do elástico um pedaço de linha. ·Puxando a borrachinha pela linha, estique-a na direção do parafuso que está no centro da outra extremidade, e enrole a linha nele, para que fique preso e esticado. Não encoste a borrachinha no parafuso deixe uma folga de mais ou menos um centímetro. ·Coloque um objeto do vértice em forma de V formado pela borrachinha esticada. ·Coloque os lápis sobre a mesa, um paralelo ao outro formando uma espécie de caminho por onde o canhão deverá se deslocar após o tiro. 37
  39. 39. INTRODUÇÃO Durante muito tempo acreditou-se que o processo da visão ocorria porque dos olhos das pessoas partiam “raios visuais” que, ao atingir os objetos, Garantiam a percepção da sua cor e forma. Assim, surgiram outras dúvidas: Por que não vemos no escuro? Como esses “raios visuais” seriam gerados? Depois de muito tempo, descobriu-se que nossos olhos são receptores de luz. Os corpos que não possuem luz própria são vistos porque a luz de uma fonte qualquer é refletida por eles e chega até nossos olhos, trazendo informações acerca de sua cor. PROCEDIMENTO Forre o interior da lata com um pedaço do papel-cartão preto, para evitar que a luz reflita nas paredes da lata e atrapalhe a visualização. Para isso, basta cortar uma tira de cerca de 12 cm de largura e 40 cm de comprimento, enrolá-la em forma de um tubo com diâmetro um pouco inferior ao da abertura da lata e colocá-la no interior dela. Ajuste-a de forma a ficar “colada” na parede. Com o prego e o martelo, peça a um adulto para fazer a entrada da luz bem no centro do fundo da lata. Passe cola na “boca” da lata e emborque-a sobre o papel vegetal; deixe-a nessa posição por cerca de cinco minutos e recorte a sobra de papel vegetal. Seção 17 AUTOR: FCO. EDUARDO DA SILVA DO CARMO Material: 1. Uma lata vazia, como a de leite em pó, um martelo; 2. Meia folha de papel-cartão preto; 3. Um pedaço de papel vegetal de mais ou menos 15 cm x 15 cm, cola plástica, fita crepe; 4. Um prego bem fino, da grossura da grafite de um lápis comum. CÂMARA ESCURA PORTÁTIL 38
  40. 40. Por fim, enrole o restante de papel-cartão em volta da lata, como que prolongando sua altura, deixando a “tampa” de papel vegetal numa região escurecida. Fixe a tira nesta posição com fita crepe. Sua câmara escura portátil está pronta! Aponte o orifício na direção da janela e verifique se há alguma imagem sobre o papel vegetal. Aproxime o rosto do tubo de papel-cartão, pois assim a luz ambiente atrapalhará menos sua observação. Você deve ter percebido que a imagem aparece invertida; a câmara escura original de Alhazen também tinha o mesmo “problema” que a sua montagem, mas como a imagem do Sol é idêntica se invertida, isto não atrapalhou em nada a observação do eclipse! A inversão das imagens acontece por causa de uma propriedade muito importante: a luz só se propaga em linha reta. Essa propriedade também é responsável pela formação das sombras e pelos eclipses. 39
  41. 41. OBJETIVO Mostrar que não há relação entre a força de atrito que age em um objeto e sua área de contato com a superfície em que desliza. IDÉIA DO EXPERIMENTO A maior parte das opiniões a respeito da relação entre a força de atrito e a área de atrito entre um objeto qualquer e uma superfície é quanto maior a área de contato, maior a força de atrito. O experimento consiste em algumas caixas de CD puxadas por um elástico fino de duas formas: na primeira estão espalhadas como um tapete, na segunda elas estão empilhadas com uma área de contato com superfície muito menor que a primeira.Se a iminência do movimento das caixas, a distensão do elástico for igual nas duas situações concluir-se que a força de atrito não depende da área de contato entre as superfícies.Estamos supondo que a distensão do elástico mede a força aplicada para vencer a força de atrito.Em nossa experiência a força de atrito aumentou quando a área de contato diminuiu (mas não na mesma proporção), fato que vai contra a idéia que a maioria das pessoas tem a respeito.Percebe-se que neste caso, que ao empilhar as caixas e ocasionar um aumento de pressão de contato , aumenta-se o número de soldas microscópicas apesar da área ter diminuído. Seção 18 AUTORA: ANTONIA MARIA JOSÉ PINHEIRO Material: 1. 3 caixas de CD, um elástico fino, uma régua; 2. Fita adesiva, um lápis; 3. Caneta hidrocor (ou qualquer uma que marque elástico). ARRASTÃO 40
  42. 42. MONTAGEM Ponha três caixas de CD sobre a mesa. Prenda o elástico na primeira caixa. Complete a estrutura, prendendo as caixas de CD uma atrás da outra. Puxe o elástico até que ele fique esticado, porém não distendido; faça uma marquinha nele com a caneta. Esta marca será seu indicador. Ainda na mesma posição, risque uma reta na mesa na direção do elástico com o lápis e marque, na reta, qual a posição do indicador no elástico. Deslize a régua sobre a reta (para que ela não atrapalhe o movimento das caixas) até que ela marque zero centímetro na marca que você fez na mesa. Puxe o elástico até que o conjunto esteja quase se movendo. Registre o quanto o elástico esticou. Repita mais algumas vezes e faça uma média dos valores registrados. Descole a última caixa, dobre a segunda sobre a primeira, e ponha-a sobre as outras duas. Repita o procedimento de medida anterior e compare os valores das duas medidas. 41
  43. 43. INTRODUÇÃO O periscópio é um instrumento fundamental nos submarinos, usados para captar imagens acima da superfície da água. Eles foram muito utilizados também nas guerras, para observar o movimento inimigo de dentro de trincheiras sem correr o risco de ser alvejado. O periscópio básico emprega dois espelhos, paralelos, a certa distância um do outro. Os raios luminosos atingem o primeiro espelho, que os reflete para o segundo espelho; daí énovamente refletidos para o visor.Sua aplicação vai desde “olhar por cima do muro” até observar um desfile nos dias festivos, com toda uma multidão pela frente a atrapalhar sua visão direta. Seção 19 AUTOR: FRANCISCO KLEVINHO F. DOS SANTOS Material: 1. Cartolina preta ou papelão recoberto com papel preto; 2. Dois espelhos planos comuns de 9 cm por 14 cm; 3. Régua, tesoura ou estilete, cola, durex ou fita adesiva, régua, etc... PERISCÓPIO 42
  44. 44. MONTAGEM 1- Obter a cartolina preta (ou papelão) e cortá-la nas medidas 43 cm por 66 cm; 2- Traçar as linhas de referência e cortar a cartolina nas regiões indicadas em vermelho; 3- Dobrar a cartolina segundo as linhas marcadas em vermelho; 4- Fechar a dobradura e observar se houve alguma falha nos cortes ou nos vincos e apreciar como deverá ficar a montagem final; 5- Colocar os espelhos no interior da montagem, ajustando-o para a inclinação correta; verificar o funcionamento mesmo antes de colar a última face da caixa. 6- Usar cola ou fitas adesivas para fixar tanto o espelho nas laterais internas da caixa como para o fechamento final da caixa. 7- Se tudo estive correto cole a ultima face e ai é só se divertir com seus colegas. Ao final você terá algo parecido com as imagens abaixo: Os espelhos planos fornecem, a partir da luz proveniente de um objeto real, uma imagem virtual, do mesmo tamanho do objeto e simétrica ao objeto, em relação ao espelho (d = d'). A figura abaixo (esquerda) ilustra essas propriedades entre objeto e imagem conjugada por um espelho plano. 43
  45. 45. A ilustração acima (direita) indica dois espelhos planos associados de modo que suas faces refletoras são paralelas. O raio de luz (vermelho) reflete-se no primeiro espelho, reflete-se no segundo e sai na mesma direção do raio incidente original. Esse é o princípio de funcionamento do periscópio. 44
  46. 46. Agradecimentos: PROGRAD - UECE - CAPES - FECLESC - DEPARTAMENTO DE FÍSICA FECLESC. Editoração: Alexandre Gonçalves Pinheiro Coordenador de área PIBID Física UECE (FECLESC) agopin@agopin.com www.agopin.com 45

×