O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Cedar Overview

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Liger cat challenge
Liger cat challenge
Carregando em…3
×

Confira estes a seguir

1 de 39 Anúncio

Cedar Overview

Baixar para ler offline

CEDAR is a metadata management tool that lets user define metadata templates using a well described yet flexible metdata format. CEDAR then presents the forms represented by those templates to other users to fill out. CEDAR offers semantic precision (with support from the BioPortal ontology repository), metadata completion assistance, intelligent recommendations, support for JSON-LD and RDF metadata export, and an easy-to-use user interface.

CEDAR is a metadata management tool that lets user define metadata templates using a well described yet flexible metdata format. CEDAR then presents the forms represented by those templates to other users to fill out. CEDAR offers semantic precision (with support from the BioPortal ontology repository), metadata completion assistance, intelligent recommendations, support for JSON-LD and RDF metadata export, and an easy-to-use user interface.

Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Cedar Overview (20)

Anúncio

Mais recentes (20)

Cedar Overview

  1. 1. Better Metadata for 
 Better Data Reuse in Biomedicine: 
 The CEDAR Project 1 1
  2. 2. A Metadata Ecosystem • HIPC investigators perform experiments in human immunology. • HIPC Standards Working Group makes metadata templates to encourage uniform experiment data annotation. • HIPC investigators fill out HIPC metadata using the metadata templates. • ImmPort stores HIPC data (and metadata) in its public repository for data discovery and use. • Researchers use resulting metadata resources. 2 2
  3. 3. Example entity–relationship diagram for describing metadata for annotating multiplex bead array assays 
 (e.g., Luminex) HIPC centers submit data directly to the NIAID ImmPort 
 data repository using detailed, experiment- specific templates 3 3
  4. 4. 4 4
  5. 5. MIAME and other minimal information checklists address much of the biomedical community • Processes to apply them are complicated • Investigators see even “minimal” information as burdensome 5 5
  6. 6. 6 6
  7. 7. The CEDAR Vision • End-to-end improvement in biomedical metadata • Compatibility with best known practices and standards • Use of existing semantic and data structure resources • A simple ‘life of metadata’ for users 7 7
  8. 8. How can we make 
 metadata authoring better? • Let any user build “smart” metadata templates • Use standard value sets to fill in the blanks • Make great user interfaces and powerful APIs • Use machine learning to predict and validate metadata entries • Provide easy upload of metadata (and data) • Use text processing to acquire metadata from written descriptions of the experiment 8 8
  9. 9. CEDAR’s approach to metadata 9 Training Activities 9
  10. 10. CEDAR technology • Interfaces for users – Create metadata template fields based on controlled terms – Assemble them into composite templates (a la forms) – Fill out templates with experimental metadata • A repository of metadata – Enables metadata discovery – Guides predictive entry of new metadata – Informs creation of templates • Links to unique, rigorous encodings and open data – Metadata fields are well described (a la CDEs) – Metadata are encoded using appropriate terms – References can be found and clearly cited 10 10
  11. 11. 11 Template Specifiers Research Scientists 11
  12. 12. 12 12
  13. 13. Template Designer: create templates 13
  14. 14. Metadata Editor: collect metadata 14
  15. 15. 15
  16. 16. 16
  17. 17. 17
  18. 18. 18
  19. 19. NCBI-AIRR Submission Workflow 19
  20. 20. LINCS Data Standards in CEDAR Workflow 20
  21. 21. Making Authoring Metadata Easier • A library of standard templates like MIAME, in a sharable metadata exchange format • Direct access to biomedical ontologies through BioPortal, and simple selection of concepts • Guidance on the frequency of menu selections • Predictive data entry whenever possible • Direct upload to target repositories 21
  22. 22. Using A Principled Approach • All knowledge artifacts managed as first-class entities • On-the-fly user interfaces and drop-down menus • All software components have well-defined APIs • All content represented in JSON-LD • User-friendly interfaces minimize entry time 22
  23. 23. Resources Web site: http://metadatacenter.org Workbench: https://cedar.metadatacenter.org Technical site: https://metadatacenter.github.io API: https://resource.metadatacenter.org/api/ 23
  24. 24. JSON Schema + JSON-LD JSON-LD Using JSON Schema and JSON-LD for CEDAR Template Model 24
  25. 25. What is JSON Schema? • Technology for describing and validating the structure of JSON documents • Provides a structural description of any JSON document • JSON documents that are specified with JSON Schema can be structurally validated against their associated schemas • Analogous to XML Schema 25
  26. 26. What is JSON-LD? • A lightweight syntax to serialize Linked Data in JSON • Allows existing JSON to be interpreted as Linked Data with minimal changes • JSON-LD is primarily intended to allow: – using Linked Data in Web-based programming environments – building interoperable Web services – storing Linked Data in JSON-based storage engines • Core contribution: add semantics to JSON documents • W3C Recommendation: https://www.w3.org/TR/json-ld/ 26
  27. 27. { "$schema": "http://json-schema.org/draft-04/schema#", "@type": "https://repo.metadatacenter.org/core/Template", "@id": "https://repo.metadatacenter.org/templates/434334", "title": ”Study", "description": ”Study template", "type": "object", "_ui": {...}, "properties": { "title": {...}, ”description": {...}, ”principalInvestigator": {...} }, "required": ["title", "description", "principalInvestigator"] "additionalProperties": false } Using JSON Schema to Define Template Structure 27
  28. 28. { "title": { "@value": "Immune biomarkers study" }, "description": { "@value": "Immune biomarkers …" }, "principalInvestigator": { "name": { "@value": "Dr. P.I" }, "institution": { "name": { "@value": "Stanford" }, "zip": { "@value": "94305" } } } } Using JSON-LD to add Semantics to Metadata Instances 28
  29. 29. { "@type": "http://semantic-dicom.org/dcm#Study", "@id": "https://repo.metadatacenter.org/template_instances/55417", "@context": { "title": "https://schema.org/title", "name": "https://schema.org/name", "description": "https://schema.org/description", "zip": "https://schema.org/postalCode", "pi": "https://myschema.org/property/hasPI", "institution": "https://myschema.org/property/hasInstitution" }, "title": { "@value": "Immune biomarkers study" }, "description": { "@value": "Immune biomarkers …" }, ”principalInvestigator": { "@type": "https://schema.org/Person", "@id": "https://repo.metadatacenter.org/template_elements/557", "name": { "@value": "Dr. P.I" }, "institution": { "@type": "https://schema.org/Organization", "@id": "https://repo.metadatacenter.org/template_elements/37", "name": { "@value": "Stanford" }, "zip": { "@value": "94305" } } } } Using JSON-LD to add Semantics to Metadata Instances - II 29
  30. 30. Metadata Instances as RDF Graph 30
  31. 31. Generic CEDAR Workflow Metadata External 31
  32. 32. Workflow for LINCS 32
  33. 33. Workflow for LINCS 33
  34. 34. Workflow for LINCS 34
  35. 35. Workflow for AIRR in NCBI 35
  36. 36. Workflow for AIRR in NCBI 36
  37. 37. Workflow for AIRR in NCBI 37
  38. 38. Additional Applications 38
  39. 39. Projects Under Discussion NCI Proteomics Data Commons 39

×