Aldeídos e cetonas

1.877 visualizações

Publicada em

aldeidos e cetonas

Publicada em: Ciências
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.877
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
51
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aldeídos e cetonas

  1. 1. ALDEÍDOS E CETONAS 1- Nomenclatura e exemplos Para aldeídos: Nomenclatura oficial IUPAC: prefixo + infixo + al Nomenclatura usual I: aldeído + prefixo + ílico Nomenclatura usual II: prefixo + aldeído Para cetonas: Nomenclatura oficial IUPAC: prefixo + infixo + ona Nomenclatura usual: radical menor + radical maior + cetona Alguns exemplos importantes: 2- Propriedades físicas À temperatura de 25o C, os aldeídos com um ou dois carbonos são gasosos, de 3 a 11 carbonos são líquidos e os demais são sólidos. Os aldeídos mais simples são bastante solúveis em água e em alguns solventes apolares. Apresentam também odores penetrantes e geralmente desagradáveis. Com o aumento da massa molecular esses odores vão se tornando menos fortes até se tornarem agradáveis nos termos que contêm de 8 a 14 carbonos. Alguns deles encontram inclusive emprego na perfumaria (especialmente os aromáticos). O grupo carbonilo confere uma considerável polaridade aos aldeídos, e por isso, possuem pontos de ebulição mais altos que outros compostos de peso molecular comparável. No entanto, não se formam ligações de hidrogênio intermoleculares, visto que eles contêm apenas hidrogênio ligado a carbono. Comparando-se as cetonas com os aldeídos isômeros, as cetonas têm ponto de ebulição mais elevados e são mais solúveis em água, pois suas moléculas são mais polares que a dos aldeídos.
  2. 2. 3- Métodos de obtenção Veja aqui os principais métodos de obtenção dos aldeídos e cetonas 4- Propriedades químicas Os aldeídos e cetonas são bastante reativos, em decorrência da grande polaridade gerada pelo grupo carbonilo, que serve como local de adição nucleofílica e aumentando a acidicidade dos átomos de hidrogênio ligados ao carbono  (carbono ligado diretamente à carbonila). Em relação às cetonas, os aldeídos são bem mais reativos. Como o grupo carbonilo confere à molécula uma estrutura plana, e a adição de um reagente nucleófilo pode ocorrer em dois lados, ou seja, a superfície de contato é maior, o que facilita a reação. Isso possibilita a formação de racematos (mistura de enantiômeros), caso o carbono seja assimétrico. Outros fatores influenciam a reatividade dos aldeídos e cetonas são a intensidade da polaridade entre C e O e o volume do(s) grupamento(s) ligado(s) à carbonila. Os grupos de indução +I diminuem a deficiência eletrônica no carbono e, consequentemente, diminui a afinidade deste por reagentes nucleofílicos (:Nu), ou seja, a reação de adição nucleofílica é mais difícil. Já os grupos de indução - I aumentam a deficiência eletrônica no carbono e, consequentemente, aumentam a afinidade deste por reagentes nucleofílicos, ou seja, a reação de adição nucleofílica é mais fácil. Quanto ao volume do(s) grupamento(s) ligado(s) à carbonila, tanto mais facilitada será a reação quanto menor forem esses grupos, devido a um menor impedimento estérico (facilita a aproximação do reagente nucleofílico ao carbono). Também a velocidade da reação cresce proporcionalmente à intensidade da polaridade do grupo carbonilo, pois mais intensa será a carga parcial positiva sobre o carbono, e maior será sua afinidade com o nucleófilo. Veja alguns testes simples em laboratório que prmitem identificar e distinguir aldeídos de cetonas. Veja aqui as principais reações dos aldeídos e cetonas 5- Aplicações dos aldeídos e cetonas Os aldeídos mais importantes são os mais simples. O aldeído fórmico é utilizado como:  Desinfetante  Líquido para conservação de cadáveres e peças anatômicas  Matéria-prima na fabricação de plásticos  Reagente para síntese de urotropina (medicamento renal) O aldeído acético é utilizado para:  Produção de cloral (CCl3 - CHO), usado como hipnótico, como clarificador de tecidos animais e na produção de DDT  Produção de ácido acético, anidrido acético, álcool n-butílico etc.  Produção de resinas  Fabricação de espelhos (usado como redutor da prata)  Indústria de materiais fotográficos A cetonas mais importante é, sem dúvida, a propanona (acetona comum), utilizada principalmente:
  3. 3.  Como solvente no laboratório e na indústria  Na fabricação de pólvora sem fumaça  Na fabricação de medicamentos hipnóticos (clorofórmio, sulfonal, cloretona etc.)  Na produção de anidrido acético  Na extração de óleos e gorduras de sementes  Na fabricação de vernizes Dentre as cetonas aromáticas, merece destaque a acetofenona, utilizada principalmente como solvente na indústria de perfumaria e como intermediária em certas sínteses orgânicas. Reactividade de aldeídos e cetonas Prof. Doutor Pedro Silva Professor Associado, Universidade Fernando Pessoa Outras páginas de Química Orgânica: Bioquímica metabólica:  Síntese e reactividade característica de aldeídos e cetonas  Redução de aldeídos e cetonas  Hidratação  Formação de acetais  Enóis  Condensação aldólica Já encontrámos várias reacções que produzem aldeídos e/ou cetonas: a oxidação dos álcoois, a ozonólise e a acilação de Friedel-Crafts:
  4. 4. A natureza polar do grupo carbonilo permite-lhe reagir quer com electrófilos como com nucleófilos: os nucleófilos atacarão o carbono (que tem deficiência de electrões) e os electrófilos atacarão o oxigénio (que tem elevada densidade electrónica). Redução de aldeídos e cetonas Os aldeídos e as cetonas podem ser reduzidos respectivamente a álcoois primários e a álcoois secundários. A redução pode ser realizada (tal como a redução de alcenos) por hidrogenação na presença de Pt, Pd, Rh ou Ni. Para a maior parte das aplicações laboratoriais, este método foi substituído por métodos baseados em hidretos metálicos. Os reagentes mais comuns são o boroidreto de sódio (NaBH4) e o LiAlH4. Hidratação Os aldeídos e as cetonas reagem com a água num equilíbrio rápido: O produto é um diol (uma molécula com dois grupos álcool). A quantidade de hidrato presente no equilíbrio é muito variável, e é normalmente muito maior para os aldeídos do que para as cetonas. A posição do equilíbrio depende de factores electrónicos e de factores estéricos (relacionados com o volume). Substituintes que libertam densidade electrónica (por exemplo, grupos metilo) estabilizam o grupo carbonilo e diminuem a extensão da hidratação.
  5. 5. Da mesma forma, substituintes que instabilizam o carbonilo favorecem a formação do hidrato. Factores estéricos: No hidrato, o carbono central está muito mais “apertado” do que no aldeído ou cetona inicial. Quanto maiores forem R1 e R2, maior será a instabilização da forma hidratada, e portanto a quantidade de hidrato presente no equilíbrio será menor. A hidratação dos aldeídos e cetonas pode ser catalizada quer por ácidos quer por bases. Catálise alcalina Catálise ácida Formação de acetais Sob condições de catálise ácida, os aldeídos reagem com álcoois formando diéteres denominados acetais. O primeiro passo é o ataque (catalizado por ácido) do aldeído por uma molécula de álcool, num processo bastante semelhante ao ocorrido na hidratação: Nas condições ácidas da sua formação, o hemiacetal é convertido num carbocatião:
  6. 6. Este carbocatião é estabilizado por ressonância, devido à presença dos pares de electrões não-ligantes do oxigénio: O acetal é formado por reacção do carbocatião com outra molécula de álcool: Enóis Aldeídos e cetonas com pelo menos um hidrogénio  (hidrogénio ligado ao carbono imediatamente adjacente ao carbonilo) encontram-se em equilíbrio com um isómero denominado enol. Este equilíbrio chama-se tautomerismo ceto-enol. Os tautómeros são isómeros que diferem entre si apenas na posição de um átomo ou grupo de átomos. Para cetonas e aldeídos simples, o equilíbrio encontra-se fortemente deslocado no sentido do composto carbonilo. Isto permite sintetizar aldeídos a partir de alcinos: a hidratação de um alcino dá origem a um enol, que está em equilíbrio com o composto carbonilo correspondente: A enolização pode ser catalizada por uma base forte, como o anião hidróxido. A base retira um hidrogénio, dando origem ao enolato correspondente. O enolato é uma espécie estabilizada por ressonância:
  7. 7. Esta ressonância é a razão da elevada acidez dos hidrogénios a dos aldeídos e cetonas, uma vez que o anião enolato é mais estabilizado do que o composto carbonilo original. Condensação aldólica O aldeído pode ser parcialmente convertido em enolato por catálise alcalina. O enolato assim formado pode atacar outra molécula de aldeído dando origem a um aldol (uma molécula com um grupo aldeído e um grupo álcool). Apresenta-se a seguir o mecanismo desta reacção (adição aldólica) A adição aldólica é um equilíbrio que favorece os produtos quando o reagente é um aldeído. Quando se usam cetonas o equilíbrio normalmente encontra-se deslocado no sentido dos reagentes; as cetonas dão por isso fracos rendimentos de produtos de adição aldólica. O produto da adição aldólica de um aldeído é um aldeído -hidroxilado. Da mesma forma, sob determinadas condições, um aldeído (ou cetona) -hidroxilado pode ser quebrado em duas moléculas mais pequenas numa reacção que é o inverso da adição aldólica. Uma reacção deste tipo é a quebra de frutose-1,6-bisfosfato em dihidroxiacetona fosfatada e gliceraldeído-3-fosfato, que ocorre na glicólise . Por aquecimento, estes compostos desidratam, dando origem a uma ligação dupla carbono-carbono conjugada com o aldeído. A desidratação ocorre sempre na direcção em que se formam ligações conjugadas C=C-C=O. Bibliografia Organic Chemistry, 7th Edition, Solomons & Fryhle Um texto clássico, pormenorizado e escrito de forma muito clara. Organic Chemistry: a Brief Course, Carey & Atkins Um bom resumo de
  8. 8. química orgânica. Organic Chemistry, Francis Carey Bastante pormenorizado, este livro inclui um óptimo programa de construção tridimensional de moléculas, bastante útil para o estudo da estereoquímica, conformações, etc. "Química Orgânica", Carlos Corrêa Centro de Investigação em Química da Universidade do Porto visitas desde 4 de Janeiro de 2002 Já encontrámos várias reacções que produzem aldeídos e/ou cetonas: a oxidação dos álcoois, a ozonólise e a acilação de Friedel-Crafts: A natureza polar do grupo carbonilo permite-lhe reagir quer com electrófilos como com nucleófilos: os nucleófilos atacarão o carbono (que tem deficiência de electrões) e os electrófilos atacarão o oxigénio (que tem elevada densidade electrónica). Redução de aldeídos e cetonas Os aldeídos e as cetonas podem ser reduzidos respectivamente a álcoois primários e a álcoois secundários. A redução pode ser realizada (tal como a redução de alcenos) por hidrogenação na presença de Pt, Pd, Rh ou Ni. Para a maior parte das aplicações laboratoriais, este método foi substituído por métodos baseados em hidretos metálicos. Os reagentes mais comuns são o boroidreto de sódio (NaBH4) e o LiAlH4. Hidratação Os aldeídos e as cetonas reagem com a água num equilíbrio rápido: O produto é um diol (uma molécula com dois grupos álcool). A quantidade de hidrato presente no equilíbrio é muito variável, e é normalmente muito maior para os aldeídos do que para as cetonas. A posição do equilíbrio depende de factores electrónicos e de factores estéricos (relacionados com o volume). Substituintes que libertam densidade electrónica (por exemplo, grupos metilo) estabilizam o grupo carbonilo e diminuem a extensão da hidratação. Da mesma forma, substituintes que instabilizam o carbonilo favorecem a formação do hidrato. Factores estéricos: No hidrato, o carbono central está muito mais “apertado” do que no aldeído ou cetona inicial. Quanto maiores forem R1 e R2, maior será a instabilização da forma hidratada, e portanto a quantidade de hidrato presente no equilíbrio será menor. A hidratação dos aldeídos e cetonas pode ser catalizada quer por ácidos quer por bases. Catálise alcalina Catálise ácida Formação de acetais Sob condições de catálise ácida, os aldeídos reagem com álcoois formando diéteres denominados acetais. O primeiro passo é o ataque (catalizado por ácido) do aldeído por uma molécula de álcool, num processo bastante semelhante ao ocorrido na hidratação:
  9. 9. Nas condições ácidas da sua formação, o hemiacetal é convertido num carbocatião: Este carbocatião é estabilizado por ressonância, devido à presença dos pares de electrões não-ligantes do oxigénio: O acetal é formado por reacção do carbocatião com outra molécula de álcool: Enóis Aldeídos e cetonas com pelo menos um hidrogénio a (hidrogénio ligado ao carbono imediatamente adjacente ao carbonilo) encontram-se em equilíbrio com um isómero denominado enol. Este equilíbrio chama-se tautomerismo ceto-enol. Os tautómeros são isómeros que diferem entre si apenas na posição de um átomo ou grupo de átomos. Para cetonas e aldeídos simples, o equilíbrio encontra-se fortemente deslocado no sentido do composto carbonilo. Isto permite sintetizar aldeídos a partir de alcinos: a hidratação de um alcino dá origem a um enol, que está em equilíbrio com o composto carbonilo correspondente: A enolização pode ser catalizada por uma base forte, como o anião hidróxido. A base retira um hidrogénio a, dando origem ao enolato correspondente. O enolato é uma espécie estabilizada por ressonância: Esta ressonância é a razão da elevada acidez dos hidrogénios a dos aldeídos e cetonas, uma vez que o anião enolato é mais estabilizado do que o composto carbonilo original. Condensação aldólica O aldeído pode ser parcialmente convertido em enolato por catálise alcalina. O enolato assim formado pode atacar outra molécula de aldeído dando origem a um aldol (uma molécula com um grupo aldeído e um grupo álcool). Apresenta-se a seguir o mecanismo desta reacção (adição aldólica) A adição aldólica é um equilíbrio que favorece os produtos quando o reagente é um aldeído. Quando se usam cetonas o equilíbrio normalmente encontra-se deslocado no sentido dos reagentes; as cetonas dão por isso fracos rendimentos de produtos de adição aldólica. O produto da adição aldólica de um aldeído é um aldeído b- hidroxilado. Da mesma forma, sob determinadas condições, um aldeído (ou cetona) b-hidroxilado pode ser quebrado em duas moléculas mais pequenas numa reacção que é o inverso da adição aldólica. Uma reacção deste tipo é a quebra de frutose-1,6-bisfosfato em dihidroxiacetona fosfatada e gliceraldeído-3-fosfato, que ocorre na glicólise . Por aquecimento, estes compostos desidratam, dando origem a uma ligação dupla carbono- carbono conjugada com o aldeído. A desidratação ocorre sempre na direcção em que se formam ligações conjugadas C=C-C=O.

×