números decimais

10.493 visualizações

Publicada em

0 comentários
3 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
10.493
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
79
Comentários
0
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

números decimais

  1. 1. 1 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES NÚMEROS DECIMAIS LEITURA DE UM NÚMERO DECIMAL No número decimal, temos: Parte inteira , parte decimal Exemplo: 3,52 3 , 52 Para se ler um número decimal, procede-se do seguinte modo: 1- Lêem-se os inteiros. 2- Lê-se a parte decimal, seguida da palavra: • Décimos – se houver uma casa decimal. • Centésimos – se houver duas casas decimais • Milésimos – se houver três casas decimais. • E assim por diante. Exemplos: a) 1,7 um inteiro e sete décimos b) 5,23 cinco inteiros e vinte três centésimos c) 12,006 doze inteiros e seis milésimos Quando a parte inteira for zero, lê-se apenas a parte decimal. Exemplos; a) 0,8 oito décimos b) 0,08 oito centésimos c) 0,25 vinte e cinco centésimos d) 0,003 três milésimos
  2. 2. 2 ILUSTRANDO , Exemplo: 54,3287 Lê-se: cinqüenta e quatro inteiros, três mil duzentos e oitenta e sete décimos de milésimos. TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL Para transformarmos uma fração decimal em número decimal, escrevemos o numerador e separamos à direita da vírgula, tantas casa quantos são os zeros do denominador. Exemplos: a) 9,4 10 49 = b) 34,2 100 234 = c) 786,5 1000 5786 = Quando a quantidade de algarismos do numerador não é suficiente para colocar a vírgula, acrescentamos zero à esquerda do número. Exemplos: a) 023,0 1000 23 = b) 1000 7 = 0,007 EXERCÍCIOS 1) Escreva com se lêem os números: a) 0,8 d) 1,9 b) 0,27 e) 2,63 c) 0,003 f) 10,245 2) Represente os decimais com algarismos: a) sete centésimos e) quinze milésimos b) nove milésimos f) cinco décimos de milésimos c) dois inteiros e quatro décimos g) nove inteiros e dois centésimos d) seis inteiros e vinte e um centésimos. h) oito inteiros e vinte e oito milésimos dezenascentena unidade centésim os milésimo s Décimos milésimo s Centésimos milésimos décimo s
  3. 3. 3 3) Transforme as frações decimais em números decimais: a) 10 3 b) 10 27 c) 10 519 d) 10 3127 e) 100 87 f) 100 249 g) 100 1364 h) 1000 698 i) 1000 5116 j) 1000 1586 l) 10000 4762 m) 10000 12538 4)Transforme as frações em números decimais: a) 100 9 b) 1000 5 c) 1000 45 d) 1000 67 e) 10000 3 f) 10000 19 TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO DECIMAL Para transformarmos um número decimal em fração decimal, escrevemos uma fração em que: • O numerador é o número decimal sem a vírgula. • O denominador é o número 1 seguido de tantos zeros quantos forem os algarismos do número decimal depois da vírgula. Exemplos: a) 1 , 7 = 10 17 b) 2 , 34 = 100 234 c) 5 , 481 = 1000 5481 O número de casas depois da vírgula é igual ao número de zeros do denominador. PROPRIEDADE FUNDAMENTAL DOS NÚMEROS DECIMAIS O valor de um número decimal não se altera quando acrescentamos ou retiramos um ou mais zeros à direita de sua parte decimal. Exemplo:0 , 3 = 0 , 30 = 0 , 300 = .... ... 1000 300 100 30 10 3 ===
  4. 4. 4 EXERCÍCIOS 1) Transforme os números decimais em frações decimais: a) 0,9 e) 16,3 i) 0,023 b) 7,1 f) 0,05 j) 74,09 c) 3,29 g) 2,468 l) 5,016 d) 0,573 h) 49,37 m) 148,33 2) Quais das igualdades abaixo são verdadeiras: a) 0,7 = 0,70 c) 8,9 = 8,90 e) 0,6 = 0, 6000 g) 0,41 = 0,401 i) 4,02 = 4,002 b) 3,6 = 0,36 d) 2,0 = 2,000 f) 6,07 = 60,7 h) 0,90 = 0,09 j) 3,45 = 3,450 OPERAÇÕES COM NÚMEROS DECIMAIS ADIÇÃO E SUBTRAÇÃO Para adicionarmos ou subtrairmos números decimais: 1º Colocamos vírgula debaixo de vírgula. 2º Adicionamos ou subtraímos como se fossem números naturais. Exemplos: a) Efetuar: 3,54 + 2,19 b) Efetuar: 7,28 – 1,32 + 73,5 19,2 54,3 - 96,5 32,1 28,7 Se o número de casa depois da vírgula for diferente, igualamos com zeros à direita. c) Efetuar: 4,52 + 7,1 d) Efetuar: 18,3 – 3,42 18,3 = 18,30 + 62,11 10,7 52,4 7,1 = 7,10 - 88,14 42,03 30,18
  5. 5. 5 EXERCÍCIOS 1) Calcule: a) 2 + 0,89 c) 0,5 + 0,5 e) 0,8 + 0,8 + 1,4 + 3,9 b) 0,7 + 0,6 d) 3,5 + 0,5 + 1,2 f) 2 + 0,4 + 1,3 + 16,1 2) Calcule: a) 9,08 + 4,1 e) 8,01 + 4,317 + 4 b) 6,1 + 0,08 f) 7,02 + 0,010 + 1,0214 c) 3,7 + 8,06 g) 0,3 + 0,4 + 1,5 + 8,71 d) 3,52 + 6,48 h) 1,02 + 28,6 + 14,95 + 0,085 3) Calcule: a) 9,2 – 1,7 c) 7,28 – 1,3 e) 9,7 – 0,42 g) 7 – 0,4851 b) 8,3 – 0,47 d) 1,54 – 0,6 f) 5,62 – 0,082 h) 15,73 – 0,999 4) Calcule o valor das expressões: a) 4 – 1,8 + 2,1 c) 18,3 + 0,16 – 9 e) 10,9 + 7,1 – 6,22 b) 3,2 – 1,5 + 0,18 d) 4,25 – 1,01 – 2,13 f) 8 – 5,62 + 1,435 5) Calcule o valor das expressões: a) ( 1 + 0,8 ) – 0,5 e) 10 + ( 18 – 12,56 ) b) 0,45 + ( 1,4 – 0,6 ) f) 1,703 – ( 1,35 – 1,04 ) c) ( 6 – 2,5 ) – 0,42 g) ( 5,8 – 2,6 ) – ( 7,2 – 5,2 ) d) 27 – ( 12,8 – 6,9 ) h) ( 4 + 3,75 ) – ( 0,23 + 1,04 )
  6. 6. 6 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES MULTIPLICAÇÃO DE NÚMEROS DECIMAIS 1º CASO: Multiplicação de números decimais por múltiplos de 10. ( 10, 100, 1000, 10000, ...) Deslocamos a vírgula à direita quantas casas decimais forem necessárias, de acordo com a quantidade de zeros do múltiplo de 10. Exemplos: a) 12 · 1000 = 12000 c) 0,032 · 100000 = 3200 b) 4,56 · 10000 = 45600 d) 0,0000594 · 100 = 0,00594 2º CASO: Multiplicação de números decimais por submúltiplos de 10 ( 0,1 ; 0,01 ; 0,001 ; 0,0001; ...) Deslocamos a vírgula à esquerda quantas casas decimais forem necessárias, de acordo com a quantidade de casas decimais após a vírgula do submúltiplo de 10. Exemplos: a) 456 · 0,1 = 45,6 c) 0,256 · 0,001 = 0,000256 b) 13520000 · 0,0001 = 1352 d) 458,69 · 0,001 = 4,5869 3º CASO: Multiplicação de dois números decimais Multiplicamos os números decimais como se fossem números naturais. Separamos no produto, da direita para a esquerda, o total de casas dos dois fatores. Exemplos: a) 4,26 · 2,3 b) 0,23 · 0,007 798,9 852 1278 3,2 26,4 x 00161,0 007,0 23,0 x
  7. 7. 7 EXERCÍCIOS 1- Calcule: a) 20 · 100 e) 0,0026 · 100 b) 3,25 · 1000 f) 0,00039 · 10000 c) 85,975 · 100000 g) 968000 · 1000 d) 6,071 · 100 h) 1,50 · 10 2- Calcule: a) 143,8 · 0,1 e) 0,3 · 0,0001 b) 12 · 0,0001 f) 0,002 · 0,01 c) 2,359 · 0,00001 g) 90,223 ·0,001 d) 2800000 · 0,00001 i) 7 · 0,00001 3- Calcule: a) 2,012 · 0,23 f) 0,3 · 0,3 · 0,3 b) 2,8 · 3,5 g) 1,001 · 3,3 c) 0,25 · 0,6 h) 0,7 ·0,00101 d) 0,5 · 0,04 i) 0,000003 · 0,42 e) 5,03 · 1,4 j) 1,082 · 0,003 4- Calcule: a) o dobro de 0,65 c) o quádruplo de 9,25 b) o triplo de 4,5 d) o quíntuplo de 10,42
  8. 8. 8 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS Para transformar uma fração em um número decimal, basta dividir o numerador pelo denominador. Exemplos: a) ⇒= 2:7 2 7 7 2 (divisão exata ) 5,3 2 7 : =Então é um decimal exato 10 3,5 0 b) ⇒= 9:5 9 5 50 9 O resto dessa divisão nunca será zero e, no quociente, aparecerá o 50 0,555... algarismo 5 se repetindo. O algarismo que se repete (5) é chamado 50 de período. 50 50 Então: 5/9 = 0,555... é uma dízima periódica simples. 5 c) ⇒= 6:5 6 5 5 6 Observe que, logo após a vírgula, aparece o algarismo 8, que não se 20 0,8333... repete (parte não-periódica), para depois aparecer o período (3). 20 Então: 5/6 = 0,8333... é uma dízima periódica composta. 20 2 Vejamos outros exemplos de dízimas periódicas: a) 3,888... – dízima periódica simples ( período 8 ). b) 5,7272... – dízima periódica simples ( período 72 ). c) 0,6363...- dízima periódica simples ( período 63 ). d) 0,5222... – dízima periódica composta ( período 2 e parte não-periódica 5 ). e) 7,81444...- dízima periódica composta ( período 2 e parte não-periódica 81).
  9. 9. 9 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES DIVISÃO DE NÚMEROS DECIMAIS 1º CASO: Divisão de números decimais por múltiplos de 10. ( 10, 100, 1000, 10000, ...) Deslocamos a vírgula à esquerda quantas casas decimais forem necessárias, de acordo com a quantidade de zeros do múltiplo de 10. Exemplos: a) 12 : 10 = 1,2 c) 0,032 : 1000 = 0,000032 b) 4,56 : 100 = 0,456 d) 59400000 : 100000 = 594 2º CASO: Divisão de números decimais por submúltiplos de 10 ( 0,1 ; 0,01 ; 0,001 ; 0,0001; ...) Deslocamos a vírgula à direita quantas casas decimais forem necessárias, de acordo com a quantidade de casas decimais após a vírgula do submúltiplo de 10. Exemplos: a) 456 : 0,1 = 4560 c) 0,256 : 0,001 = 256 b) 1352 : 0,0001 = 13520000 d) 0,000045869 : 0,001 = 0,045869 3º CASO: Divisão de dois números decimais Igualamos o número de casas decimais dos dois números. Efetuamos a divisão como se fossem números naturais. Exemplos: a) 3,6 : 0,12 = 30 120 3600 12 100 10 36 100 12 : 10 36 === x b) Podemos calcular o quociente de dois números decimais do seguinte modo: 3,6 : 0,12 = 360 : 12 = 30 ( Multiplicamos ambos os números por 100 ) c) 8,84 : 1,7 = 884 : 170 = 5,2 ( Multiplicamos ambos os números por 100 ) d) 1,2975 : 0,15 = 1,2975 : 0,1500 = 8, 65 ( Multiplicamos ambos os membros por 10000 ) e) 6,14 : 2 = 614 : 200 = 3,07 ( Multiplicamos ambos os números por 100 )
  10. 10. 10 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES EXERCÍCIOS 1- Efetue as divisões: a) 4,83 : 10 f) 6312,4 : 100 b) 59,61 : 10 g) 7814,9 :1000 c) 381,7 : 10 h) 0,017 : 100 d) 674,9 : 100 i) 0,08 : 10 e) 85,35 : 100 J) 789,14 : 1000 2- Efetue as divisões: a) 5,16 : 0,1 g) 0,45 : 0,001 b) 85,4 : 0,01 h) 0,02 : 0,1 c) 0,012 : 0,01 i) 0,0009 : 0,001 d) 5,9 : 0,001 j) 500 : 0,001 e) 0,00084 : 0,0001 l) 0,6 : 0,001 f) 8 : 0,001 m) 0,8 : 0,1 3- Efetue as divisões: a) 13,5 : 5 f) 59,5 : 0,7 b) 7,2 : 1,8 g) 72 : 0,09 c) 5,6 : 0,7 h) 9,112 : 5,36 d) 38,13 : 12,3 i) 88,88 : 1,1 e) 144 : 0,25 j) 14,4235 : 3.5 4- Calcule o valor das expressões: a) 7,5 : 2,5 + 1,8 d) 6,38 : 2 – 1,01 b) 3,9 + 6,4 : 2 e) 3,6 : 4 – 0,18 c) 9,6 : 3 – 0,24 f) 19,5 – 4,5 : 0,3 OBS.: UTILIZE O MÉTODO VISUAL NO 1º E 2º
  11. 11. 11 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES POTENCIAÇÃO DE NÚMEROS DECIMAIS Vejamos alguns exemplos: a) ( 0,2 )2 = 0,2 x 0,2 = 0,04 b) ( 0,3 )3 = 0,3 x 0,3 x 0,3 = 0,027 c) ( 0,1 )4 = 0,1 x 0,1 x 0,1 x 0,1 = 0,0001 d) ( 0,12 )2 = 0,12 x 0,12 = 0,0144 EXERCÍCIOS Efetue as potências: a) ( 0,4 )2 d) ( 0,6 )4 b) ( 0,25 )2 e) ( 0,31)2 c) ( 0,8 )3 f) (0,123)2 POTENCIAÇÃO I- POTÊNCIA DE EXPOENTE INTEIRO Seja a um número real e m e n inteiros positivos. Então: 1. an = a · a · a · ... · a · ( n vezes) 2. a0 = 1 3. a1 = a 4. a-n = n a 1 5. nmnm aaa + =⋅ 6. 0,: ≠= − aaaa nmnm 7. mnnm aa =)( 8. 0, ≠=      b b a b a n nn
  12. 12. 12 FACULDADE JOAQUIM NABUCO PROF.: MÁRCIO NEVES EXERCÍCIOS (POTÊNCIA DE EXPOENTE INTEIRO) Calcule as potências: a) 3 2 b) ( )3 2− c) 0 2 d) 5 2− e) 3 5 2       f) ( )23 2 g) 3 2 1 −       h) 4 7 3 3 i) ( )[ ]43 1− j) ( )3 1,0− l) ( )2 41,01+ m) 43 25 4 1 − −+ n) ( )3 1−− o) ( ) 53 42 −− −+ p) ( ) ( ) 12 ...181818,2...333,0 − + q) ( ) 22 2 5431 1 1 2 1 5 4 − − −−+ +      +− r) ( ) 114 6 1 8 1 5 3 4 1 2 ++−−      − − s) ( ) ( ) 12 18 7 1 31 3 5 − −+−− t) ( ) 2 1 2 3 2 14,02 5141 3 1 1       −− +−−      − + −
  13. 13. 13

×