SlideShare a Scribd company logo
Enviar pesquisa
Carregar
Entrar
Cadastre-se
IRJET- Use of Plastic Waste in Constrution of Road
Denunciar
IRJET Journal
Seguir
Fast Track Publications
10 de Jul de 2019
•
0 gostou
•
98 visualizações
IRJET- Use of Plastic Waste in Constrution of Road
10 de Jul de 2019
•
0 gostou
•
98 visualizações
IRJET Journal
Seguir
Fast Track Publications
Denunciar
Engenharia
https://www.irjet.net/archives/V6/i4/IRJET-V6I4775.pdf
IRJET- Use of Plastic Waste in Constrution of Road
1 de 8
Baixar agora
1
de
8
Recomendados
IRJET- Comparative Experimental Study Between RCC, Bituminous Mix and Mod...
IRJET Journal
28 visualizações
•
7 slides
IRJET- An Experimental Study of Waste Tyres in Road Construction
IRJET Journal
115 visualizações
•
10 slides
Utilization of Industrial Polypropylene (PP) Waste in Asphalt Binder for Flex...
IRJET Journal
72 visualizações
•
6 slides
IRJET - Uses of Various Plastic Materials in Bitumious Concrete (Flexible Pav...
IRJET Journal
24 visualizações
•
5 slides
IRJET- Experimental Investigation on Concrete with Banana Fiber and Parti...
IRJET Journal
18 visualizações
•
6 slides
IRJET- Improvement of Recently Constructed Pavement
IRJET Journal
35 visualizações
•
4 slides
Mais conteúdo relacionado
Mais procurados
IRJET - Durability of Potholes Filled with Waste Materials
IRJET Journal
36 visualizações
•
5 slides
IRJET- Utilization of Waste Material in Construction – Sustainable Urbanization
IRJET Journal
21 visualizações
•
3 slides
Study of Mechanical Properties of Porous and Non-Porous Aggregate by Using Lo...
IRJET Journal
25 visualizações
•
4 slides
Noise reduction made of rubberized bituminous top layer report
Abdul Aziz
1.9K visualizações
•
36 slides
IRJET- Systematic Prevention and Repair of Potholes in Flexible Pavement
IRJET Journal
7 visualizações
•
3 slides
IRJET- Utilisation of Waste Plastics as a Replacement of Cement in Paver ...
IRJET Journal
80 visualizações
•
5 slides
Mais procurados
(18)
IRJET - Durability of Potholes Filled with Waste Materials
IRJET Journal
•
36 visualizações
IRJET- Utilization of Waste Material in Construction – Sustainable Urbanization
IRJET Journal
•
21 visualizações
Study of Mechanical Properties of Porous and Non-Porous Aggregate by Using Lo...
IRJET Journal
•
25 visualizações
Noise reduction made of rubberized bituminous top layer report
Abdul Aziz
•
1.9K visualizações
IRJET- Systematic Prevention and Repair of Potholes in Flexible Pavement
IRJET Journal
•
7 visualizações
IRJET- Utilisation of Waste Plastics as a Replacement of Cement in Paver ...
IRJET Journal
•
80 visualizações
IRJET- Stabilization of Expansive and Weak Subgrade by using Waste Generated ...
IRJET Journal
•
25 visualizações
IRJET- To Compare the Compressive Strength of OPC 43 RHA and PPC Concrete
IRJET Journal
•
38 visualizações
IRJET- Mechanical properties and Durability Properties of Concrete with P...
IRJET Journal
•
37 visualizações
IRJET- Waste Minimisation for Highway Construction
IRJET Journal
•
22 visualizações
IRJET- Experimental Analysis of Partial Replacement of Natural Aggregates wit...
IRJET Journal
•
33 visualizações
IRJET- Experimental Study on Mechanical Properties of Concrete by Addition of...
IRJET Journal
•
25 visualizações
IRJET- Rubber as a Partial Replacement to Fine Aggregate in Concrete by Waste...
IRJET Journal
•
64 visualizações
Experimental Investigation on Replacement of Sand by Quarry Dust in Concrete-...
IRJET Journal
•
104 visualizações
IRJET- Effect of Industrial Sludge and Coconut Coir in Strengthening of Red B...
IRJET Journal
•
27 visualizações
IRJET - Use of Brick Dust, Flyash and Cement Kiln Dust in SCC – A Review
IRJET Journal
•
11 visualizações
IRJET- Application of Rubber Properties in Clay Bricks
IRJET Journal
•
25 visualizações
Compressed Plastic Block
IRJET Journal
•
68 visualizações
Similar a IRJET- Use of Plastic Waste in Constrution of Road
IRJET- An Experimental Study of Waste Tyres in Road Construction
IRJET Journal
43 visualizações
•
10 slides
IRJET- Use of Plastic Waste in the Construction of Flexible Roads
IRJET Journal
18 visualizações
•
3 slides
Use of Polymer Modified Bitumen in Road Construction
IRJET Journal
71 visualizações
•
3 slides
IRJET-Waste Management by Utilization of Tire Rubber Aggregate in Concrete
IRJET Journal
34 visualizações
•
4 slides
A Sustainability Approach towards use of Plastic Waste in Bituminous Road
IRJET Journal
10 visualizações
•
7 slides
IRJET-A Study on the Properties of Bitumen & Aggregate by Replacing Waste Tyr...
IRJET Journal
136 visualizações
•
5 slides
Similar a IRJET- Use of Plastic Waste in Constrution of Road
(20)
IRJET- An Experimental Study of Waste Tyres in Road Construction
IRJET Journal
•
43 visualizações
IRJET- Use of Plastic Waste in the Construction of Flexible Roads
IRJET Journal
•
18 visualizações
Use of Polymer Modified Bitumen in Road Construction
IRJET Journal
•
71 visualizações
IRJET-Waste Management by Utilization of Tire Rubber Aggregate in Concrete
IRJET Journal
•
34 visualizações
A Sustainability Approach towards use of Plastic Waste in Bituminous Road
IRJET Journal
•
10 visualizações
IRJET-A Study on the Properties of Bitumen & Aggregate by Replacing Waste Tyr...
IRJET Journal
•
136 visualizações
Use of Plastic Waste in Bituminous Road
IRJET Journal
•
8 visualizações
Lab Work And Investigations Of Bituminous Concrete Using Varoius Types Of Add...
IRJET Journal
•
6 visualizações
PERFORMANCE EVALUATION OF MODIFIED BITUMEN BINDERS WITH WASTE PET BOTTLES AND...
IRJET Journal
•
2 visualizações
IRJET- Utilization of Waste Materials in Flexible Pavement Construction
IRJET Journal
•
39 visualizações
IRJET- Experimental Investigation on Concrete with Banana Fiber and Partial ...
IRJET Journal
•
267 visualizações
Effect of Effective Porosity and Saturated Water Absorption on Rice Husk Ash-...
IRJET Journal
•
62 visualizações
IRJET- Utilization of Waste Plastic in Concrete
IRJET Journal
•
96 visualizações
IRJET- Study on Strength of Timbercrete Blocks
IRJET Journal
•
572 visualizações
Use of Plastic Waste In Road Construction
IRJET Journal
•
3 visualizações
IRJET- Performance Tests on Waste Crumb Rubber and Bitumen Used in Bitume...
IRJET Journal
•
26 visualizações
Performance And Evaluation Of Rubber As Concrete Material
IRJET Journal
•
137 visualizações
Using Waste Plastic And Rubber In Asphalt Flexible Pavement
IRJET Journal
•
20 visualizações
UTILIZATION OF WASTE PLASTIC IN FLEXIBLE PAVEMENTS
IRJET Journal
•
2 visualizações
Rubber Modified Concrete- A Green Approach for Sustainable Infrastructural De...
IRJET Journal
•
56 visualizações
Mais de IRJET Journal
SOIL STABILIZATION USING WASTE FIBER MATERIAL
IRJET Journal
3 visualizações
•
7 slides
Sol-gel auto-combustion produced gamma irradiated Ni1-xCdxFe2O4 nanoparticles...
IRJET Journal
3 visualizações
•
7 slides
Identification, Discrimination and Classification of Cotton Crop by Using Mul...
IRJET Journal
3 visualizações
•
5 slides
“Analysis of GDP, Unemployment and Inflation rates using mathematical formula...
IRJET Journal
2 visualizações
•
11 slides
MAXIMUM POWER POINT TRACKING BASED PHOTO VOLTAIC SYSTEM FOR SMART GRID INTEGR...
IRJET Journal
2 visualizações
•
6 slides
Performance Analysis of Aerodynamic Design for Wind Turbine Blade
IRJET Journal
3 visualizações
•
5 slides
Mais de IRJET Journal
(20)
SOIL STABILIZATION USING WASTE FIBER MATERIAL
IRJET Journal
•
3 visualizações
Sol-gel auto-combustion produced gamma irradiated Ni1-xCdxFe2O4 nanoparticles...
IRJET Journal
•
3 visualizações
Identification, Discrimination and Classification of Cotton Crop by Using Mul...
IRJET Journal
•
3 visualizações
“Analysis of GDP, Unemployment and Inflation rates using mathematical formula...
IRJET Journal
•
2 visualizações
MAXIMUM POWER POINT TRACKING BASED PHOTO VOLTAIC SYSTEM FOR SMART GRID INTEGR...
IRJET Journal
•
2 visualizações
Performance Analysis of Aerodynamic Design for Wind Turbine Blade
IRJET Journal
•
3 visualizações
Heart Failure Prediction using Different Machine Learning Techniques
IRJET Journal
•
2 visualizações
Experimental Investigation of Solar Hot Case Based on Photovoltaic Panel
IRJET Journal
•
2 visualizações
Metro Development and Pedestrian Concerns
IRJET Journal
•
2 visualizações
Mapping the Crashworthiness Domains: Investigations Based on Scientometric An...
IRJET Journal
•
2 visualizações
Data Analytics and Artificial Intelligence in Healthcare Industry
IRJET Journal
•
2 visualizações
DESIGN AND SIMULATION OF SOLAR BASED FAST CHARGING STATION FOR ELECTRIC VEHIC...
IRJET Journal
•
4 visualizações
Efficient Design for Multi-story Building Using Pre-Fabricated Steel Structur...
IRJET Journal
•
3 visualizações
Development of Effective Tomato Package for Post-Harvest Preservation
IRJET Journal
•
2 visualizações
“DYNAMIC ANALYSIS OF GRAVITY RETAINING WALL WITH SOIL STRUCTURE INTERACTION”
IRJET Journal
•
2 visualizações
Understanding the Nature of Consciousness with AI
IRJET Journal
•
2 visualizações
Augmented Reality App for Location based Exploration at JNTUK Kakinada
IRJET Journal
•
4 visualizações
Smart Traffic Congestion Control System: Leveraging Machine Learning for Urba...
IRJET Journal
•
2 visualizações
Enhancing Real Time Communication and Efficiency With Websocket
IRJET Journal
•
2 visualizações
Textile Industrial Wastewater Treatability Studies by Soil Aquifer Treatment ...
IRJET Journal
•
2 visualizações
Último
PSP & Guidelines MOP.pptx
AbhishekMallick29
15 visualizações
•
23 slides
AICE- UNIT-5.pptx
GunaSekaran958261
37 visualizações
•
49 slides
Vintage Computing Festival Midwest 18 2023-09-09 What's In A Terminal.pdf
Richard Thomson
8 visualizações
•
46 slides
GAS TURBINE OPERATION - Copy.pdf
KhalidAyaz3
8 visualizações
•
8 slides
SC 24でのメタバース関連標準化概要:ヘルスケア応用事例を交えて(ISO/IEC JTC 1/SC 24)
Kurata Takeshi
27 visualizações
•
32 slides
Daher-Socata TBM 700A/B Aircraft Pilot Information Manual.pdf
TahirSadikovi
19 visualizações
•
772 slides
Último
(20)
PSP & Guidelines MOP.pptx
AbhishekMallick29
•
15 visualizações
AICE- UNIT-5.pptx
GunaSekaran958261
•
37 visualizações
Vintage Computing Festival Midwest 18 2023-09-09 What's In A Terminal.pdf
Richard Thomson
•
8 visualizações
GAS TURBINE OPERATION - Copy.pdf
KhalidAyaz3
•
8 visualizações
SC 24でのメタバース関連標準化概要:ヘルスケア応用事例を交えて(ISO/IEC JTC 1/SC 24)
Kurata Takeshi
•
27 visualizações
Daher-Socata TBM 700A/B Aircraft Pilot Information Manual.pdf
TahirSadikovi
•
19 visualizações
Portfolio 19_23.pdf
PREDRAG MILOVANCEVIC
•
120 visualizações
Applications
SusanHninn
•
32 visualizações
Foamtec Profile
SusanHninn
•
39 visualizações
Why the Wire is on Fire - Electromagnetic Field Coupling to Transmission Lines
Mathias Magdowski
•
126 visualizações
Doppler-Vor-Test-Rack.pptx
Neometrix_Engineering_Pvt_Ltd
•
12 visualizações
Fuel Injection Pump Test Bench
Neometrix_Engineering_Pvt_Ltd
•
11 visualizações
GDSC PU Cloud Study Jam Intro. Session 23-24.pdf
POORNIMA UNIVERSITY
•
48 visualizações
CLAWS of Pump Maintenance - v.10
Brian Gongol
•
29 visualizações
렌즈-자동화-공정-설명.pptx
ssuser1ee83c
•
148 visualizações
Airbus A320 Aircraft Airport & Maintenance Planning Manual.pdf
TahirSadikovi
•
48 visualizações
Socata TB20 Pilot Information Manual.pdf
TahirSadikovi
•
8 visualizações
AICE- UNIT-3.pptx
GunaSekaran958261
•
15 visualizações
HOME AUTOMATION BY PROJECT PPT NIDHI.pptx
NIDHIKUMARI585101
•
22 visualizações
NFPA 291 -2019 Ingles.pdf
JOSELUISPUMASUPAARCE2
•
16 visualizações
IRJET- Use of Plastic Waste in Constrution of Road
1.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3637 USE OF PLASTIC WASTE IN CONSTRUTION OF ROAD 1 A. S. Sandbhor 2 J. K. Patil JSPM’S RSCOE IInd Shift Polytechnic, Tathawade, Pune - 33 Department of Civil Engineering, Maharashtra, India --------------------------------------------------------------------------------------------------------------------------------------------- Abstract: Disposal of waste materials together with waste plastic baggage has become a significant drawback and waste plastics cause environmental pollution. Utilization of waste plastic baggage in hydrocarbon combines has tested that these enhance the properties of mix additionally to determination disposal issues. Plastic waste that is cleansed is remove a size specified it passes through 2-3mm sieve victimization shredding machine. The aggregate mix is heated and also the plastic is effectively coated over the combination. This plastic waste coated mixture is combined with hot hydrocarbon and also the resulted mix is employed for construction. The utilization of the innovative technology won't solely strengthen the construction however conjointly increase the road life yet as can facilitate to boost the surroundings. Plastic roads would be a boon for India’s hot and very wet climate, wherever temperatures oft cross 50°C and torrential rains produce disturbance, departure most of the roads with massive potholes. In my analysis work I even have done a radical study on the methodology of victimization plastic waste in hydrocarbon mixes and given the various tests performed on aggregates and hydrocarbon. Kyewords: Plastic, Bitumen, CO2 1. Introduction India generates 1,88,000 tons garbage every day. Plastic Waste in different forms is found to be almost 9% to 12% in municipal solid waste, which is toxic in nature. Non‐biodegradability of plastic in the environment has created numerous challenges for both urban and rural India. Common problems are choking of drains, stagnation of water, release of toxic gases upon open incineration. Research experiments in the public and private sector have been undertaken to address the growing environmental challenge. One of the solutions proposed and demonstrated was by Professor Vasudevan in utilizing waste environmental plastic in road construction. Road construction projects were pioneered in the state of Tamil Nadu followed by Karnataka as early as 2001. Both states have made significant progress since in rural and urban roads respectively. Other states such as Andhra Pradesh, Goa, Jharkhand, Delhi, and Maharashtra have demonstrated projects in other states as well. strength of concrete by small percentage. But for tensile strength it is more effective. There are number of advantages of using fibre reinforced concrete. 2. Related Work Fransis Hveem “Optimum quantity of bitumen inroads”(1942) [1] who was a project engineer of California Department of Highways. He did not have any previous experience on judging, the required mix of its colour, hence he decided to measure various mixture parameters to find the optimum quantity of bitumen. He had
2.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3638 used the surface area calculation concept, (which was already in use, at that time for the cement concrete mix design), to estimate the quantity of bitumen actually required. Anzar Hamid Mir “Plastic waste in pavement construction”(2015) [2] studied the visco-elastic nature of binders and found that the complex modulus & phase angles of the binders, need to be measured, at temperatures and loading rates which different resemble of climatic and loading conditions. Kurmadasu Chandramouli “Plastic waste: its use in the construction of the roads ”(2016) [3] reported that asphalt concrete using polyethylene modified binders were more resistant to permanent deformation at elevated temperature and found improvement in stripping characteristics of crumb rubber modified mix as compared to unmodified asphalt mix. Amit P. Gawande “Economics And Viability Of the Plastic Road” (2013) [4] evaluated flexural fatigue life of asphalt concrete modified by 3% crumb rubber as part of aggregated and reported that fatigue life and creep properties of polymer modified mixes increased significantly as compared to unmodified asphalt mixes. 3. Methodology Dry process:- Heat aggregate at 160° c to 170° c We need shredded plastic (2.36 to 4.75 mm) Add plastic in equal amount of heated aggregate Heat bitumen at 170° c then add it in aggregate. Then mix aggregate & bitumen Transfer it site Wet process:- Heat aggregate at 160° c to 170° c We need shredded plastic (2.36 to 4.75 mm) Add plastic in heated bitumen directly Heat bitumen at 170° c then add it in aggregate. Then mix aggregate & bitumen usin mechanical stirrer. Transfer it site
3.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3639 Characteristics of the process are: - Easy process without any new machinery Simple process without any industry involvement Use of lesser percentage of the bitumen and thus savings on bitumen resource Use of plastics waste for the safe and eco-friendly process Both Mini Hot Mix Plant and the Central Mixing Plant can be used Only the aggregate is polymer coated and bitumen is not modified Use 60/70 and 80/100 bitumen is possible No evolution of any toxic gases like a dioxin Material Required :- Aggregate:- Aggregates used in surface course is 10mm-20 mm Bitumen:- Bitumen acts as binding agent for aggregates in bituminous mixes. Generally in India bitumen used in road construction of the flexible pavement is of grades 60/70 or 80/100 penetration grade. Waste Plastic Modifiers:- Modifiers are generally used to enhance the properties of bituminous concrete mixes by reducing the air void present between the aggregates and also to bind them together so that no bleeding of bitumen will occur. For the present study plastic waste such as carry bags, water bottles, milk packets, glasses, cups, etc will be used as a modifier. Plastic, Polymer and Rubber Bitumen is a visco elastic material, because of bitumen pavement possess the flexibility and plays a very important role in pavement performance. Use of plastic waste and crumb rubber which is obtained from waste tire rubber from vehicles in the construction of flexible pavement is gaining importance, Since 1843 polymers are being used in bitumen as modifier. In the year 1950, North America and the Europe started to use latex rubber where the research started in 1930. Because of high expense of the polymer, USA was limited to use Polymer εodified Rubber (PεA) in the end of 1970.
4.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3640 Bituminous mixture is stable which one of the most important properties of bitumen is. The optimum stability is the design stability which can be withstand the traffic condition as required. If the stability is not enough it will cause striping, shoving and higher flow of the road surface. To prevent the pavement from these kinds of failure there must be low flow. Flow is the property of which is responsible in reducing stability. There is relation between hot climate rutting and cold climate cracking because of the sensitive response of bitumen due to temperature variation and imposed traffic load. To improve the performance and the quality of the asphalt addition of the polymers is a very effective way. The very first company which started to use poly phosphoric (PPA) as a modifier in bitumen without the blowing of air is TOSCO (The Oil Shale Company). There are some virgin polymers of that can be classified into 5 groups. Table 1 shows the summary of these polymers and their advantages and disadvantages along with the current use as bitumen modifiers. Table 1. Characteristics of polymers used to modify bitumen Polymer Advantages Disadvantages Uses Polyethylene High temperature resistance Hard to disperse in the bitumen Industrial uses (PE) Aging resistance Instability problems High modulus Few road High polymer contents are applications low cost required to achieve better properties No elastic recovery Polypropylene No important viscosity increase Separation problems Isotactic PP is (PP) even though high amount of not polymer are necessary (ease of commercially handling and layout) High RandB No improvement in elasticity or applied low penetration mechanical properties Widens the plasticity range and low thermal fatigue cracking Ataxic PP is improves the binder’s load resistance used for roofing resistance Polyvinylchlori de lower cracking Acts mostly as filler Not (PVC) PVC disposal commercially applied
5.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3641 4. Results Test Preparation of Modified Bituminous Binders The collected Plastic waste was cut into small pieces as far as possible. It is clean by washing. The plastic pieces were sieved through 4.75 mm. sieve and retaining at 2.36 mm sieve was collected. Firstly, Bitumen was heated up to the temperature about 160° -170° c which is its melting temp. Pieces were added slowly to be the hot bitumen of temperature around 160-170° c. The mixture was stirred manually for about half an hour. In that time of period temperature was kept constant about 160-170° c. Plastic-bitumen mixtures of different compositions were prepared for experimental procedures. The percentage of modifier varied from 1% to 9%. Different percentages of modifier (waste plastic fibers) added to VG 30 grades of bitumen affected the physical properties of the binder in terms of penetration, softening point, ductility and viscosity which is presented in Table 4. 1. Penetration Test Results The Penetration values are decreasing significantly when VG 30 grade bitumen are mixed with the modifier and this variation is much more when firstly plastic is added in bitumen. And after this when continuously increases plastic modifier by the 1% of weight, small decrement is occur in the penetration value, and after 8% this decrement is more than the previous value of penetration. Thus there is a significant decrease in the penetration values for modified blends, indication the improvement in their temperature susceptibility resistant characteristics. 2. Ductility test results The binders possessing high ductility have good cementing qualities in the road surface and adhere well to aggregates. It may be seen that he ductility values for VG 30 bitumen modified with 9 percent modifiers are low compared to 8 percent modifier. The ductility values decrease with increase in percentage of modified.
6.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3642 Table 2 Properties of modified bitumen Bituminous Penetration Ductility Softening Viscosity at 60° C, Binder+%Modifier Point poise VG 30 Bitumen 63.00 93.00 50.00 2689 VG 30+1% 56.231 92.522 50.654 4430 VG 30+2% 55.941 91.804 51.155 6850 VG 30+3% 55.253 91.102 51.822 7100 VG 30+4% 54.614 90.451 52.355 7900 VG 30+5% 54.121 89.784 52.92 7200 VG 30+6% 53.665 88.240 53.524 6450 VG 30+7% 52.001 88.355 54.00 6725 VG 30+8% 51.851 87.661 54.821 7290 VG 30+9% 50.555 86.256 56.757 7500 3. Softening point test results The softening point is increase when plastic percentage is increases modifiers bitumen and this is due to the bitumen becomes increasingly viscous. Softening point of VG 30 grade bitumen, increase to more than 550 c by addition of 9 percent fibers. Therefore 8 percent should be the upper limit for VG 30 bitumen. The results show that lower percentage of plastic fibers can be used in road construction satisfactorily.
7.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3643 4. Viscosity When bitumen is blended with polymer, a multi phase system is formed; one such phase is rich in asphaltenes not absorbed by the polymer which enhances the viscosity by the formation of more complex internal structure. The flow behavior of a bituminous material described in terms of viscosity, exhibits Newtonian and non-Newtonian characteristics depending on the composition and source of the crude .Temperature and loading also affect the behavior describing the viscoelastic properties of the material. In VG 30 grade bitumen with viscosity of 600 C shows increase in viscosity with the increase in polymer concentration. However, Non- Newtonian behavior is observed with the decrease in viscosity as shear rate increases for polymers at 8% concentration. This non-Newtonian phenomenon is dependent on the internal structure of the Polyethylene. Fig 1 Properties of Modified Bituminous Mix Thus the increase in percentage of polymer decreased the penetration value. This shows that the when plastic are start adding the bitumen hardness are increases. Also the penetration values of the bituminous mix are decreasing this is depending upon the percentage of polyethylene by weight are added. The ductility is decreased by the addition of plastic waste to bitumen. The decrease in the ductility value is due to binding properties of ethene monomers molecules with bitumen. The softening point of the bituminous mix is also increased by the addition of polyethylene into the bitumen. With increasing the percentage of plastic waste by weight the softening point is also increases. The increment in softening of point may be due to the chemical nature of plastic waste are added. The increase in the softening point shows that there will be less bleeding during summer. So friction was reduces for the moving vehicles and on the other side, if it rains the bleedings accounts for the slippery condition. Both these adverse conditions are much reduced by plastic-bitumen blend.
8.
International Research Journal
of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 3644 5. Conclusion we can conclude that, the using plastic waste in mix will help reduction in need of bitumen by around 10%, increase the strength and performance of road, avoid use of anti stripping agent, avoid disposal of the plastic waste by incineration and land filling and ultimately develop a technology, which is eco-friendly. Increased traffic conditions will and are reducing the life span of roads. Plastic roads are means of the prevention and ultimately will be the cure. It will save millions of Rupees in future and reduce the amount of resources used for construction. The generation of waste the plastics is increasing day by day. The major polymers, of namely polyethylene, polypropylene, and polystyrene show adhesion property in their molten state. Plastics will be the increase the melting point of the bitumen. Hence, the use of the waste plastics for pavement is one of the best methods for easy disposal of waste plastics. The use of the innovative technology not only the strengthened of the road construction but also increased the road life as well as creating a source of income. Plastic roads would be a boon for India’s hot and extremely humid climate, where temperatures frequently cross 50°C, and torrential rains create havoc, leaving most of the roads with big potholes. It is hoped that in near future we will have the strong, the durable and eco-friendly roads that will relieve the earth from all type of plastic waste. We compared standard concrete block with fibre reinforced concrete block. We got compressive strength of standard concrete block 20.76 N/mm2. We got compressive strength of fibre reinforced concrete block 23.08 N/mm2. Hence, we conclude that fibre reinforced concrete has more strength than standard concrete block. Therefore, fibre reinforced concrete should be used for construction purposes. References 1. Abrishambaf, Amin, “Principles and Practices of Seismic Isolated Buildings”, Masters. Cyprus: Eastern Mediterranean University.[2009.] 2. Ashish R. Akhare, Tejas R.Wankhade, “Seismic Performance of the RC Structure Using the Different Base Isolator”. International journal of the engineering sciences & research technology, [May,2014] 3. A. Hameed, M. Saleem, A. U. Qazi and H. Rizwana,” The Seismic response evolution of the base isolated buildings”, Pakistan Journal of Science ,Vol. 65 No. [1 March,2013] 4. Chopra, A. K. _2007_. Dynamics of structures: Theory and applications to earthquake engineering, 3rd Ed., Prentice-Hall, Upper Saddle River,N.J.