SlideShare a Scribd company logo
1 of 12
Download to read offline
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1058
Inventory Model for Perishable Items with Deterioration and Time
Dependent Demand Rate
Shakib Ali1, R.B. Singh2
1PG student, Department of Mathematics, Monad University, Hapur
2Professor, Department of Mathematics, Monad University, Hapur
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - In this paper, an inventory management of the
perishable items is needed in order to avoid therelevantlosses
due to their deterioration. This research work develops an
inventory model for perishable items, constrained by both
physical and freshness condition degradations. By working
with perishable items that eventually deteriorates, this
inventory model also takes into consideration the expiration
date, a salvage value, and the costofdeterioration. Inaddition,
the holding cost is modelled as a quadratic function of time.
The proposed inventory model jointly determines the optimal
price, the replenishment cycle time, and the order quantity,
which together result in maximum total profitperunitoftime.
The inventory model has a wide application since it can be
implemented in several fields such as food goods (milk,
vegetables, and meat), organisms, and ornamental flowers,
among others. Some numerical examples are presented to
illustrate the use of the inventory model. The resultsshowthat
increasing the value of the shelf-life results in an increment in
price, inventory cycle time, quantity ordered, and profits that
are generated for all price demand functions. Finally, a
sensitivity analysis is performed, and several managerial
insights are provided.
Key Words: Inventory, Perishable Items, Deterioration,
Salvage value, Optimal price, Replenishment cycle time.
1.INTRODUCTION
Deterioration of physical goods is one of the important
factors in any inventory and production system.Ifthe rateof
deterioration is very low its effect can be ignored. But in
many practical situations deterioration plays an important
role. It is important to control and maintain the inventories
of decaying items for the model corporation. Most of the
physical goods undergo decay or deterioration over time.
Commodities such as fruits, vegetables-andfoodstuffssuffer
from depletion by direct spoilage while kept in store. Highly
volatile liquids such as alcohol, gasolines etc. undergo
physical depletion over time through the process of
evaporation. Electronic goods, photographic film, grain,
chemicals, pharmaceuticals etc. deteriorate through a
gradual loss of potential or utility with the passage of time.
Thus deterioration of physical goods in stock isveryrealistic
feature. Deterioration rate of any item is either constant or
time dependent. When deteriorationistimedependent,time
is accompanied by proportional loss in the value of the
product. Realization of this factor motivated modelers to
consider the deterioration factor as one of the modeling
aspects.
Mashud et al. [1] determined the optimal replenishment
policy of deteriorating goods for the classical newsboy
inventory problem by considering multiple just-in-time
deliveries. Additionally, Mashud et al. [2] derived an
inventory model for deteriorating products that calculates
the optimal vales for replenishment time, price, and green
investment cost.
Given that the inherent perishability can occur immediately,
Pal et al. [3] addressed a production-inventory model for
deteriorating productswhen theproductioncostdependson
both production order quantity and production rate.Bhunia
A.K and M. Maiti, [4] were the first proponent for developing
a deterministic inventory model fordeterioratingitemswith
finite rate of replenishment dependent on inventory level.
Cheng TCE [5] discussed an economic order quantity model
with demand-dependent unit production costandimperfect
production processes. In most of the inventory models,
authors have taken constantrateofdeterioration.Inpractice
it can be observed that constant rate of deterioration occurs
rarely. Most of the items deteriorate as fast as the time
passes. It can be noticed that deteriorationdoesnotdepends
upon time only: it can be affected due to weather conditions,
humidity, and storage conditions etc. Therefore it is much
more realistic to consider deterioration rate as two or three
parameter Weibull distribution function. Many researchers
considered the constant demand rate in their inventory
models, but the assumption of constant demand is not
always applicable in real situations.
Tirkolaee et al. [8] noted that the inherent perishability
widely occurs in food goods (e.g., milk, vegetables, and
meat), organisms, and ornamental flowers. These authors
also stated that the time window between preparation and
sales of perishable items is very significant for producers
and purchasers. Giri et al. [9] noted such demand patternfor
fashionable products which initially increases exponentially
with time for a period of time after that it becomes steady
rather thanincreasing exponentially.Theramp-typedemand
demonstrates a time period classified demand pattern. In
different time periods the demand is either constant or its
rate of change is different.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1059
According to Yavari et al. [13], one of the challenges when
managing inventories is the inherent perishability of many
items, which means their freshness and quality decrease
over time, and these cannot be sold after their expiration
date. Many researchers have modified inventory policies by
considering the "time proportional partial backloggingrate".
The present section deals with a mathematical model of tie
economic order quantity for finite time horizon. This
inventory model has been developed for a single
deteriorating item byconsideringtheconstant-deterioration
rate. In this model, a new demand pattern has been
introduced in which thedemandfollowsquadratic patternin
the initial period of time and becomes linear later on. It is
believed that such type of demand is quiterealistic fornewly
launched product in the market. Shortages are allowed and
the backlogging rate is dependentonthedurationon waiting
time and taken as exponential decreasing function of time.
The effect due to changeofdeteriorationparameterhasbeen
considered for different parameters numerically.
2. ASSUMPTIONS AND NOTATIONS
To develop inventory models for perishable items with
variable demand and partial back logging. The following
notations and assumption are used.
(i) I (t) be the inventory level at time t, t 0

(ii) 1
t is the time at which shortage starts and T is the
length of replenishment cycle 1
0 t T
  .
(iii) Replenishment rate is infinite and lead time is zero.
(iv) There is no repair OR replenishment of deteriorated
units during the period.
(v) A single item is considered over the prescribed period
T units of time.
(vi) S be the initial inventory level after fulfilling
backorders.
(vii) In this model  be the constant rate of defective units
out of on hand inventory at any time, 0
  .
(viii) Demand rate D(t) is assumed to be a function of time
such that
     
 
D t a bt c t t H t t
      where
 
H t  is the Heaviside’s functions defined as
follows.
 
1 if t
H t
0 if t
 
 
   
 
 
and ‘a’ is the initial rate of demand, b is the rate with
which the demand rate increase. The rate of change in
demand rate itself increase at a rate ‘c’. a, b and c are
positive constant.
(ix) Unsatisfied demand is back logged at a rate exp
 
x
 , where x is the time up to next replenishment.
The backlogging parameters  is a positive constant.
(x) 1 2 3
C ,C ,C and 4
C are the holding costper unittime,
unit purchase cost per unit, shortage cost per unit per
unit time and the unit cost of lost sales respectively. C’
is the inventory ordering cost per order.
3. FORMULATION AND SOLUTION OF THE MODEL
Figure 1
The depletion of inventory duringtheinterval  
1
0,t isdue
to joint effect of demand and deteriorating of items and the
demand is partially backlogged in the interval  
1
t ,T . The
depletion of inventory is given in the (figure 1).
The governing deferential equations of the proposed
inventory system in the interval (0, T) are
     
2
I t I t a bt ct
       , 0 t
   … (2.1)
     
I t I t a kt
      , 1
t t
   … (2.2)
    t
I t a kt e
    , 1
t t T
  … (2.3)
where k b c
  
with the conditions
   
1
I 0 S and I t 0
  … (2.4)
Solution of the equation (2.1)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1060
 
   
2
dI t
I t a bt ct
dt
     
dt t
I F e e
 

   
Now
 
 
t t t
t t t
0 0 0
d e I t dt a e dt t e dt
  
   
  
 
t
2 t t
0
C t e dte I t S
 
 

t t t
t t t
2
0 0 0
a b b
e t e e
  
     
    
     
  
t t t
2 t t t
2
0 0 0
C C2 b
t e t e t e
  
     
    
     
 

t t t
t 2 t t
2 2
0 0 0
b C C2
e t e t e
  
     
   
     

 
t
t
3 0
2C
e
 
  

 
t t t
a b
e I t S e 1 te
  
   
    
   
 
t
2
b
e 1

 
 
 

2 t
C
t e
 
 
 

t
2
2C
te
 
 

t
3
2C
e 1

 
 
 

2
t
2 2 3
a bt b ct 2ct 2c
e  
      
 
  
  
 
2 3
a b 2c
  
  
t
2 2 2 2
3
e
a b t b c t 2c t 2c

 
           
 

2
3
1
a b 2c
 
    
 

t
2 2 2 2
3
e
a b t b c t 2c t 2c

 
          
 

2
3
1
a b 2c
 
    
 

   
2 t
3
1
I t S a b 2c e
 
    
 

 
 
 2
3
1
a b t 1
     

 
2 2
c t 2 t 2
     , 0 t
   …(2.5)
Now the solution of the equation (2.2)
 
   
dI t
I t a kt
dt
    
 
   
1 1
t t
t t
t t
d e I t dt a kt e dt
 
   
 
 
1 1
t t
t t t
t t
e I t 0 ae dt k t e dt
  
    
 
1 1 1
t t t
t t t
2
t t t
a k k
e t e e
  
     
    
     
  
1
t
t 1
2 2
a kt k a t k k
e e
    
      
   
   
 
   
   
t
t
2
e
e I t a k t k


     

 
1
t
1
2
e
a k t k

    

   
   
1
t t
1
2
1
I t a k t 1 e
 
   

 
 
2
1
a k t 1
    

,  
1
t t
   …(2.6)
By the equations (2.5) and (2.6) we getinitial inventorylevel
after fulfilling backorders (S)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1061
 
   
1
t t
1
2
1
a k t 1 e
 
   

 
 
2
1
a k t 1
    

 
3
2 t
1
S a b 2c e
 
 
     
 

 
 
 
 2
3
1
a b t 1
     

 
2 2
c t 2 t 2
    
Multiplying on both sides by
t
e
 
2
3
1
S a b 2c
     

   
 
t
2 2 2
3
e
a b t 1 c t 2 t 2

          

1
t
2
e


 
 
1
a k t 1
    
  t
2
1
a k t 1 e
    

 
2
3
1
a b 2c
     

 
  1
t
1
2
1
a k t 1 e
    

 

t
2
3
e
a b t 1

     

  
2 2 2 2
c t 2 t 2 a k t k
          
 
2
3
1
a b 2c
     

 
  1
t
1
2
1
a k t 1 e
    

t
2 2 2
3
e
b t b c t


     


2 2
2c t 2c tb tc b c 
        
Putting t  
 
2
3
1
S a b 2c
     

 
  1
t
1
2
1
a k t 1 e
    


t
2 2 2
3
e
b b c t

      

2 2 2
2c 2c b c b c 
         
 
2
3
1
S a b 2c
     

 
  1
t
1
2
1
a k t 1 e
    

 
3
e
2c c

  

 
2
3
1
S a b 2c
     

 
  1
t
1
2
1
a k t 1 e
    

 
3
c
2 e
   

… (2.7)
Using (2.7) in (2.5), we get
   
2 t
3
1
I t a b 2c e
     

 
   
1
t 1
1
2
1
a k t 1 e
 
    

   
t
3
c
2 e
 
  

 
2 t
3
1
a b 2c e
    

   
 
2 2 2
3
1
a b t 1 c t 2 t 2
          

   
   
1
t t
1
2
1
I t a k t 1 e
 
   

   
 

t 2
3 3
c 1
2 e a b t 1
 
        
 
 
2 2
c t 2 t 2
     , 
0 t
   … (2.8)
Now the solution of the equation (2.4)
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1062
 
  t
dI t
a kt e
dt

  
    t
dI t a kt e dt

  
 
 
1 1 1
t t t
t t
t t t
d I t dt a e dt k t e dt
 
   
  
 
1
t
t
t
a
I t 0 e
 
   
 1 1
t t
t t
2
t t
k k
t e e
 
   
  
   
 
1 1
t t
t t
1
a k
e e t e t e
 
 
   
    
   
 
1
t
t
2
k
e e

 
 
 

t
2
a tk k
e  
  
 
  
 
1
t 1
2
a t k k
e  
   
 
  
 
   
  t
2
1
I t a k t 1 e

    


 
  1
t
1
a k t 1 e 
     , 1
t t T
  …(2.9)
(0, T) becomes
1
2
C


 
   
1
1
t
t t
1
a k t 1 e dt
 

   

 
 
1
t
1
2
C
a k t 1 dt

    
 
Solving all integration in the above equation separately now
first integration term
 
   
1
t t
1
1
2
0
C
I a k t 1 e dt

 
    
 
 
  1
t t
1
1
2
0
C
a k t 1 e e dt

 
    
 
 
 
1
t
1
1
2
C e
a k t 1 1 e


 
     
 


 
   
1
1 t
t
1
1
3
C
I a k t 1 e e
 

 
    
 

… (p)
Now second integration term
   
t
1
3
0
C C
II 2 e dt

 
  
 
  t
1
3
0
C C
2 e e dt

 
   
 
  t
1
3 0
C C e
2 e
 

 
   
 


  
1
4
C C
II 2 1 e
    

… (q)
Now third integration term
 
          

C
a b t 1 C t 2 t 2 dt
0
2 2 2
1
3
   
 
 
  

 
C C
2 e dt
0
1
3
 
t
 
 
    

 
C
C a k t 1 e dt
2
0
1
H 1
t t
 
   
1
 
 
 
 
 
 


C C I t dt I t dt
H 1
0
t1
   
c during the period
H
Hence the inventory holding cost  
C t 2 t 2 dt
    
2 2
  
 
     

C
III a b t 1
0
1
3
2
 

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1063
2
2 2
1
3
C t
a t b b t
2

     

 
3 2
2
0
t t
C 2 C 2Ct
3 2


      

2 3
2 2 2
1
3
C
a b b C
2 3
  
        

 
2 2
2 2
2 C 2C a b b
2 2
 
          
3 2
2
C 2 C 2C
3 2

 
      

2
1 2
a b b
III C
2
   

  

  


3 2
2 3
C C 2C
3

  
   
   

… (r)
Now the fourth integration term
 
   
1
1
t
t t
1 1
2
1
IV C a k t 1 e dt
 



    




 
 
1
t
2
1
a k t 1 dt

    
 
 
 
1
1
t
t t
1
1
2
C
a k t 1 e e dt
 

    
 
 
1 1
t t
1 1
2
C C k
a k dt dt
 
   

  
 
 
1
1
t
t
1
1
2
C e
a k t 1 e e



 
     
 


  
1
1
2
C
a k t
   

2 2
1
1
C k
t
2
 
 
 

 
   
 
1
t
1
1
3
C
a k t 1 e 1
 
    

  
1
1
2
C
a k t
    

 
2 2
1
1
C k
t
2


 
   
 
1
t
1
1
3
C
a k t 1 e 1
 
    

 
1
1
2
C
a k t
  

1
2
C


 
2
a b c
    
 
2 2
1
1
C k
t
2
 

 
   
 
1
t
1
1
3
C
IV a k t 1 e 1
 
    

 
1 1 1
1
2 2
C ac C b
a k t
 
    

 
 
2
2 2
1 1
1
2
C C C k
t
2

  


… (s)
After adding p, q, r and s, we get H
C as
 
   
 
1
1 t
t
1
H 1
3
C
C a k t 1 e e
 

    

  
1
4
C C
2 1 e
   

2 3 2
1 2 2 3
a b b c c 2c
C
2 3
 
     
     
 
  
  
 
 
 
1
1
3
C
a k t 1
    

 
 
1
t
e 1
 

 
1 1
1
2
C c a
a k t

   


International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1064
 
2
2 2
1 1 1
1
2 2
c b c c c k
t
2
 
   

 
 
  
1
t
1
1
3
C
a k t 1 e 1

     

  
2 3
1 1 1
4
c c c b cc
2 1 e
2 3
  
     
 

   
2 2
1 1 1
1 1
3 2
2c c c c k
a k t t
2

    

 
 
  
1
t
1
1
3
C
a k t 1 e 1

     

  
2
1 1
4
c c c b
2 1 e
2
 
    


1
3
c
3


   
3 2 1
1
2
c
c 6c a k t
      

 
2 2
1
1
c k
t
2
 

 
  
1
t
1
1
3
C
a k t 1 e 1

     

  
2
1 1
4
c c c b
2 1 e
2
 
    


1
3
c c
3



   
2 2 1
1
2
c
6 a k t
     

 
2 2
1
1
c k
t
2
 

  
H 1 4
c
C C 2 1 e

   


 
  
1
t
1
3
1
a k t 1 e 1

     

2
b
2

 

 
2 2
3
c
6
3

  

   
2 2
1 1
2
1 k
a k t t
2

     

 
…(2.10)
The cost due to deterioration of units  
D
C during the
period (0, T)
   
1
t
D 2
0
C C I t dt I t dt


 
 
   
 
 
 
   
1
t
2
0
C I t dt I t dt


 
 
  
 
 
 
  
D 2 4
c
C C 2 1 e

    


 
  
1
t
1
3
1
a k t 1 e 1

     

2
b
2



 
2 2
3
c
6
3

   

   
2 2
1 1
2
1 k
a k t t
2

     

 
…(2.11)
The cost due to shortage of units  
s
C during the given
period is given by
 
1
T
s 3
t
C C I t dt
  
 
 
1
T
t
3
s 2
t
C
C a k t 1 e

     

 
 
  1
t
1
a k t 1 e dt
 
       
 
3
1
2
C
a k t 1
    

1 1
T T
t t
3 3
2 2
t t
C C k
a e dt t e dt
 

    
 
 
1
T
t
3
2
t
C k
e dt


 
 
 
3
1
2
C
a k t 1
    

1
1
T
t
t
e dt

 
 

 
 

1 1
T T
t t
3 3
t t
C a C k
e dt t e dt
 
   
 
 
1
T
t
3
2
t
C k
e dt


 
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1065
 
 
3
1
2
C
a k t 1
    

1
1
T
t
t
e dt

 
 

 
 

1 1
T T
t t
3
3 2
t t
C k
a k
C e dt t e dt
 
 
    
 
 

 
 
 
   
1
t
3
1 1
2
C
a k t 1 e T t

     

 
1
t
T
3
2
C a k
e e

 
  
 
  
 
 
1
t
T
3
1
2
C k
T e t e

  

 
1
t
T
3
3
C k
e e

 

 
   
1
t
3
1 1
2
C
a k t 1 e T t

      

 
T
3 3 3
3
e
C a 2C k C Tk

    

 
1
t
3 3 3 1
3
e
C a 2C k C t k

    

3
2
C


 
   
1
t
1 1
a k t 1 e T t

    
 
 
T
3
s 3
C
C e a k 2 T


    


 
 
1
t
1
e a k 2 t

    
 
   
1
t
2
1 1
a k t 1 e T t

       …(2.12)
The opportunity cost due to lost sales  
0
C is given by
  
1
T
t
0 4
t
C C 1 e a kt dt

  

   
1 1
T T
t
4 4
t t
C a kt dt C e a kt dt

   
 
 
1 1
T T
t
4 4
t t
C a kt dt C ae dt

  
 
1
T
t
4
t
C k t e dt

 

 1 1 1
T T
T 2 t
4 4
4 t t t
C k C a
C at t e
2

   
  
   

1 1
T T
t t
4 4
2
t t
C k C k
te e
 
   
 
   
 
   
2 2
4
4 1 1
C k
C a T t T t
2
   
T 4 4 4
2
C a TC k C k
e  
  
 
  
 
1
t
e
 4 1 4 4
2
C a t C k C k
 
 
 
  
 
   
2 2
4
4 1 1
C k
C a T t T t
2
   
 
 
T
4
2
C e
a k 1 T

    

1
t
4
2
C e


 
 
1
a k 1 t
   
   
2 2
0 4 1 1
k
C C a T t T t
2

   


 
 
T
2
e
a k 1 T

    

1
t
2
e


 
 
1
a k 1 t 
     …(2.13)
The total average cost (k) of the inventory system permit
time is given by
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1066
 
H D s 0
C C C C C R
K
T T
    
 
where R is the total cost of ht inventory cycle
  
1
4
1 C C
K C 2 1 e
T

 
    
 

 
  
1
2
t
1 1
1
3
C c b
a k t 1 e 1
2
 
      


   
2 2
1 1
1
3 2
CC C
6 a k t
3

     
 
    
2 2
1 2
1 3
C k C C
t 2 1 e
2

     
 
 
  
1
2
t
2 2
1
2
C C b
a k t 1 e 1
2
 
      

   
2 2
2 2
1
2
CC C
6 a k t
3

     


   
 

2 2 T
3
2
1 3
C
C k
t e a k 2 T
2

      

 
 
1
t
1
e a k 2 t

    
 
   
1
t
2
1 1
a k t 1 e T t

      
   
2 2
4 1 1
k
C a T t T t
2

   


 
  T
2
1
a k T 1 e
    

 
 
1
t
1
2
e
a k t 1
 


     

 

To minimize (k), the optimal values of 1
t & T can be
obtained by solving
1
k
0
t



and
k
0
T



simultaneously.
Now
  1 1
t t
1 1 1
2
1
C a k e
k C kt e
t
 
 

 
 

1
t
1 1 1 1 1 1
2 2 2
C ke C k C a C k C kt

    
 
  
1
t
2
C ae

1 1
1
t t
t
2 2
2 1
C ke C ke
C kt e
 

  
 
2 2
2 2 1
C k C k
C a C kt
   
 
 
1 1
t t
3 3 1
2
C e C t ke
a 2k
 
   


 
1
1
t
t
2
3 3
2 2
C ke C T
a k e


    
 
1 1
t t
3
3 1
C
C Tkt e e Tk
 
 

   
1 1
t t
3 3
1 2
C C
t e a k e a k
 
     
 
1 1
t t
2 3
3 1 1
C
C kt e e .2t k
 
 

 
1
t
4
4 4 1
C e
C a C kt a k

    

1 1
t t
4
4 1
C
C e kt ke
 
 

 
1
1
t
t
1 1 1
2
C C kt e
a k e


   


1 1
t t
1 1 1 1
2
2
C C a C kt
ke C ae
 
   
 

1
t
2
C ke


1
1
t
t 2
2 1 2
C ke
C kt e C a


  

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1067
1 1 1
t t t
3 3 3 1
2 1 2
C ae 2kC e C t ke
C kt
  
   
 

1
1 1
t
t t
3 3
3
2
C C Tke
ke C Tae

 
  


1 1 1
t t t
3
3 1 3 1
C
C Tkt e e Tk C t ae
   
  

1 1 1
t t t
3 3 3
1 2
C C a C
t ke e ke
  
  
  
1 1
t t
2 3
3 1 1
C
C kt e 2t ke
 
 

   
1 1
t t
4 4 1
C a 1 e c kt 1 e
 
   
1 1 1
t t t
1 1 1
1
2 2
C C k C k
ae e t e
  
  

 
1
1
t
t
1 1 1 1
2
2
C ke C a C kt
C ae


   
 

1
t
2
C k
e


1 1
t t
2
2 1
C k
C kt e e
 
 

1
1
t
t
3 3
2 2 1 2
C a 2kC e
C a C kt e


   
 
1
t
3 1
C t ke


1
1
t
t
3
3
2
C ke
C Tae


 

1
1
t
t t
3 3
3 1
C Tke C
C Tkt e Tke

 
  
 
1
t
3 1
C t ae

1
1
t
t
3 1 3
C t k C e a
e


 
 
1
1 1
t
t t
2
3 3
3 1 1
2
C ke C
C kt e 2t ke

 
  
 
 
1
t
4
C a 1 e
   
1
t
4 1
C kt 1 e .

 
1 1
t t
1 1 1 1 1 1
C ae C kt e C a C kt
 
   
   
1 1
t t
2 2 1 2
C ae C kt e C a
 
   2 1
C kt

1
t
3
C Tae
 1 1
t t
3 1 3 1
C Tkt e C t ae
 
 
  
1 1
t t
2
3 1 4 1
C kt e C a e a kt
 
   
   
1 1
t t
1 1 1
C a C kt
e 1 e 1
 
  
 
   
1 1
t t
2 1 3 1
C kt e 1 TC e a kt
 
   
    
1 1
t t
3 1 1 4 1
C t e a kt C 1 e a kt
 
   
 
1
t 1 1 1
2 2 1
C a C kt
e 1 C a C kt
  
    
 
 
 
  
1
t
3 1 1
C e t T a kt

     
1
t
4 1
C a kt 1 e
  
     
1
t 1
1 2 1
C
e 1 a kt C a kt
  
     
 

 
  
1
t
3 1 1
C e t T a kt

     
1
t
4 1
C a kt 1 e
  
   
1 1
t t
1
2 3 1
C
e C C e t T
 
  
   
 
 
 

 
1
t
4 4 1
C e C a kt
 
  

Now putting
1
k
0
t



, we get
 
1
t 1
2
1
k C
0 e 1 C
t

   
   
 

 
 

   
1 1 4
t t C
3 1 4 1
C e t T C e a kt
   
   

 
1
t 1
2
C
e 1 C
  
 
 

 
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1068
 
 
1
t
3 1 4 4
e C t T C C 0

     …(2.14)
Now for
k
0
T



Since
R
k
T

 2
k R R 1 R
T T T T T
T
  
   
   
   
  
   
 
T
3
2 2
C e
k R 1
a 2k
T T
T



     

 

  1
t
T T
3 3 3
2 2
C kT C C
e ke a k e
 
    
  
1
t
3
1 4 4
C
t ke C a C kT

  

T
4
C
e


  T T
4
4
C
a k C kTe e k
  
    
 
T
3
2 2 2
R 1 a 2k kT k
C e
T
T
  

      
 
  
 
 
1
t 1
3 2
a k t k
C e  
  
 
 

 
  T
4 4
k k
C a kT C e a kT
 
 
      
 
 
 
T
3
2 2
R 1 a k kT
C e
T
T

  
     
 
  

 

1
t 1
3 4
2
a k t k
C e C
  
   
 
 

 
 
T
4
C e a kT
 
   
 
 
 1
t
3
1
2 2
C
R 1
e a k 1 t
T
T


      
 

 
 
T
e a k 1 T

       
T
4
C a kT 1 e 
  

Putting
k
0
T



, we get
 
 
 1
t
3
1
2 2
C
k R 1
e a k 1 t
T T
T

 
      

 

 
 
T
e a k 1 T

    
4
C
   
T
a kT 1 c 0
 
  

 
  1
t
3
1
2
C
a k t 1 e
    


 
   
T
4
a k T 1 e C a kT
 
      

 
T R
1 e 0
T

   …(2.15)
The above equations
1
k
0
t



and
k
0
T



provided, they
satisfy the following conditions :
2 2
2 2
1
2
2 2 2
2 2
1
1
k k
0, 0
t T
k k k
0
t T
t T

 
  
  

    
   
 
     
   
 
   
  
…(2.16)
Equation (2.14) and (2.15) are highly nonlinear equations.
Therefore numerical solution of these equation obtained by
using the software MATLAB 7.0.1.
4. CONCLUSIONS
This research work develops an inventory model withprice,
stock, and time-dependent demand. The physical
deterioration and condition of freshness degradation over
time are both considered, and zero-ending inventory is
assumed. When working with perishable products, a
salvaged value and a deterioration costareconsideredinthe
entire cycle. A nonlinear time-dependent holding cost is
included, specifically with a quadratic-type function.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072
© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1069
Through an algorithm, the inventory model determines the
optimal values for price, the inventory cycle time, and the
order quantity. Some numerical examples are provided,and
a sensitivity analysis is presented for all the input
parameters. By observing the behavior of the decision
variables and total profits, it was found that an increase in
the ordering cost , purchasingcost , andshelf-life results ina
similar pattern in the selling price, the inventory cycle time,
the quantity to order, and the total profit. Furthermore, an
increase in the value of the shelf-life results in an increment
in price, inventory cycle time, quantity ordered, and profits
generated for all functions. In addition, as the ordering cost
increases, price, the inventory cycle time and quantity
ordered also increase for all functions. Nonetheless, the
profits show a decreasing trend. Finally, by escalating the
purchasing cost for all functions, there is an increase in both
the price and the inventory cycletime;however,thequantity
to order and total profits tend to decrease.
This research work extends and widely contributes to the
state-of-the-art on the inventory field, with focus on
perishable items with price-stock-time-dependent demand.
The inventory model studied here hassomelimitationsfrom
where several directions for extension and further research
are highlighted. First, an inventory model can be built with
the same characteristics and demand pattern, but including
the sustainability elements, so the effects of the carbon-tax
and cap-and-trade mechanisms can be assessed. Second, a
model that allows shortages with full or partial backlogging
should be explored. Third, the trade-off and benefits of
investing on preservation technologyshouldbealsostudied.
Fourth, the noninstantaneous item’s freshness degradation
can be integrated intotheproposedinventorymodel.Finally,
other components such as incorporatingdiscountpoliciesor
advertising efforts can also be investigated.
5. REFERENCES
[1] A. H. M. Mashud, H. M. Wee, C. V. Huang, and J. Z. Wu,
“Optimal replenishment policy for deteriorating
products in a newsboy problem with multiple just-in-
time deliveries,” Mathematics, vol. 8, no. 11, pp. 1–18,
2020.
[2] A. H. M. Mashud, D. Roy, Y. Daryanto, and M. H. Ali, “A
sustainable inventory model with imperfect products,
deterioration,andcontrollableemissions,” Mathematics,
vol. 8, no. 11, pp. 1–21, 2020.
[3] B. Pal, S. S. Sana, and K. Chaudhuri, “A stochastic
production inventorymodel fordeterioratingitemswith
productsʼ finite life-cycle,” RAIRO-Operations Research,
vol. 51, no. 3, pp. 669–684, 2017.
[4] Bhunia A.K and M. Maiti, Deterministic inventory model
for deteriorating items with finite rate of replenishment
dependent on inventory level. Computers and
Operations Research 25 (11), 997-1006, 1998.
[5] Cheng TCE., An economic order quantity model with
demand-dependent unit production cost and imperfect
production processes, IIE Transactions 23, 23-28,1991.
[6] Chu. P and Patrick S.H., A note on inventory
replenishment policies for deteriorating items in an
exponentially declining market. Computers and
Operations Research 29 (13), 1827-1842, 2002.
[7] Covert, R.P and G. C. Philip, An EOQ model foritems with
Weibull distributed deterioration. AIIE Transactions 5,
323-326, 1973.
[8] E. B. Tirkolaee, A. Goli, M. Bakhsi, and I. Mahdavi, “A
robust multi-trip vehicle routing problem of perishable
products with intermediate depots and time
windows,” Numerical Algebra, Control & Optimization,
vol. 7, no. 4, pp. 417–433, 2017.
[9] Giri, B.C. and Chaudhari K.S., “Deterministic models of
perishable inventory withstock dependentdemandrate
and nonlinear holding cost”, European Journal of
Operational Research, 105, 3, pp467-474, 1998.
[10] Yan H. and TCE Cheng, Optimal productionstopping and
restarting times for an EOQ model with deteriorating
items. Journal ofOperational ResearchSociety,49, 1288-
1295, 1998.
[11] Kuo-Lung Hou, An inventory model for deteriorating
items with stock-dependent consumption rate and
shortages under inflation and time discounting.
European Journal of Operations Research 168,463-474,
2006.
[12] Chandra M.G., An EPQinventorymodel for exponentially
deteriorating items under retail partial trade policy in
supply chain, Expert Systems and applications. 39(3),
3537-3550, 2012.
[13] M. Yavari, H. Enjavi, and M. Geraeli, “Demand
management to cope with routes disruptions in
location-inventory-routing problem for perishable
products,” Research in Transportation Business &
Management, vol. 37, Article ID 100552, pp. 1–14,2020.
[14] Teng J.T. and Chang C.T., Economic production quantity
models for deteriorating items with price- and stock-
dependent demand. Computers and Operations
Research 32, 297-308, 2005.
[15] Zaid T. Balkhi & Lakdere Benkherouf, An inventory
model for deteriorating items with stock dependent
demand and time-varyingdemandrates.Computersand
pertains Research 31, 223-240, 2004.

More Related Content

Similar to Inventory Model for Perishable Items with Deterioration and Time Dependent Demand Rate

Paper id 21201462
Paper id 21201462Paper id 21201462
Paper id 21201462
IJRAT
 
An eoq model with stock dependent demand
An eoq model with stock dependent demandAn eoq model with stock dependent demand
An eoq model with stock dependent demand
Divyesh Solanki
 
An entropic order quantity (en oq)
An entropic order quantity (en oq)An entropic order quantity (en oq)
An entropic order quantity (en oq)
Divyesh Solanki
 

Similar to Inventory Model for Perishable Items with Deterioration and Time Dependent Demand Rate (20)

A new study of an eoq model
A new study of an eoq modelA new study of an eoq model
A new study of an eoq model
 
Ig3614301436
Ig3614301436Ig3614301436
Ig3614301436
 
Ig3614301436
Ig3614301436Ig3614301436
Ig3614301436
 
Inventory Model with Different Deterioration Rates for Imperfect Quality Item...
Inventory Model with Different Deterioration Rates for Imperfect Quality Item...Inventory Model with Different Deterioration Rates for Imperfect Quality Item...
Inventory Model with Different Deterioration Rates for Imperfect Quality Item...
 
An epq model having weibull distribution deterioration with
 An epq model having weibull distribution deterioration with An epq model having weibull distribution deterioration with
An epq model having weibull distribution deterioration with
 
An Inventory Model with Variable Demand Rate for Deteriorating Items under Pe...
An Inventory Model with Variable Demand Rate for Deteriorating Items under Pe...An Inventory Model with Variable Demand Rate for Deteriorating Items under Pe...
An Inventory Model with Variable Demand Rate for Deteriorating Items under Pe...
 
9 different deterioration rates of two warehouse inventory model with time a...
9  different deterioration rates of two warehouse inventory model with time a...9  different deterioration rates of two warehouse inventory model with time a...
9 different deterioration rates of two warehouse inventory model with time a...
 
Paper id 21201462
Paper id 21201462Paper id 21201462
Paper id 21201462
 
An eoq model with stock dependent demand
An eoq model with stock dependent demandAn eoq model with stock dependent demand
An eoq model with stock dependent demand
 
Inventory Model with Different Deterioration Rates under Exponential Demand, ...
Inventory Model with Different Deterioration Rates under Exponential Demand, ...Inventory Model with Different Deterioration Rates under Exponential Demand, ...
Inventory Model with Different Deterioration Rates under Exponential Demand, ...
 
An inventory control model for fixed deterioration and logarithmic demand rates
An inventory control model for fixed  deterioration and logarithmic demand ratesAn inventory control model for fixed  deterioration and logarithmic demand rates
An inventory control model for fixed deterioration and logarithmic demand rates
 
Perishable Inventory Model Having Weibull Lifetime and Time Dependent Demand
Perishable Inventory Model Having Weibull Lifetime and Time Dependent DemandPerishable Inventory Model Having Weibull Lifetime and Time Dependent Demand
Perishable Inventory Model Having Weibull Lifetime and Time Dependent Demand
 
INVENTORY MODEL FOR DETERIORATING ITEMS WITH QUADRATIC DEMAND, PARTIAL BACKLO...
INVENTORY MODEL FOR DETERIORATING ITEMS WITH QUADRATIC DEMAND, PARTIAL BACKLO...INVENTORY MODEL FOR DETERIORATING ITEMS WITH QUADRATIC DEMAND, PARTIAL BACKLO...
INVENTORY MODEL FOR DETERIORATING ITEMS WITH QUADRATIC DEMAND, PARTIAL BACKLO...
 
Establishing control on consumables inventory in a pressure vessel manufactur...
Establishing control on consumables inventory in a pressure vessel manufactur...Establishing control on consumables inventory in a pressure vessel manufactur...
Establishing control on consumables inventory in a pressure vessel manufactur...
 
An entropic order quantity (en oq)
An entropic order quantity (en oq)An entropic order quantity (en oq)
An entropic order quantity (en oq)
 
study of an integrated inventory with controllable lead time
 study of an integrated inventory with controllable lead time  study of an integrated inventory with controllable lead time
study of an integrated inventory with controllable lead time
 
A production - Inventory model with JIT setup cost incorporating inflation an...
A production - Inventory model with JIT setup cost incorporating inflation an...A production - Inventory model with JIT setup cost incorporating inflation an...
A production - Inventory model with JIT setup cost incorporating inflation an...
 
Volume Flexibility in Production Model with Cubic Demand Rate and Weibull Det...
Volume Flexibility in Production Model with Cubic Demand Rate and Weibull Det...Volume Flexibility in Production Model with Cubic Demand Rate and Weibull Det...
Volume Flexibility in Production Model with Cubic Demand Rate and Weibull Det...
 
Modeling Of an Inventory System for Non-Instantaneous decaying Items with Par...
Modeling Of an Inventory System for Non-Instantaneous decaying Items with Par...Modeling Of an Inventory System for Non-Instantaneous decaying Items with Par...
Modeling Of an Inventory System for Non-Instantaneous decaying Items with Par...
 
Artigo 1
Artigo 1Artigo 1
Artigo 1
 

More from IRJET Journal

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 

Recently uploaded (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Bridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptxBridge Jacking Design Sample Calculation.pptx
Bridge Jacking Design Sample Calculation.pptx
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 

Inventory Model for Perishable Items with Deterioration and Time Dependent Demand Rate

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1058 Inventory Model for Perishable Items with Deterioration and Time Dependent Demand Rate Shakib Ali1, R.B. Singh2 1PG student, Department of Mathematics, Monad University, Hapur 2Professor, Department of Mathematics, Monad University, Hapur ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this paper, an inventory management of the perishable items is needed in order to avoid therelevantlosses due to their deterioration. This research work develops an inventory model for perishable items, constrained by both physical and freshness condition degradations. By working with perishable items that eventually deteriorates, this inventory model also takes into consideration the expiration date, a salvage value, and the costofdeterioration. Inaddition, the holding cost is modelled as a quadratic function of time. The proposed inventory model jointly determines the optimal price, the replenishment cycle time, and the order quantity, which together result in maximum total profitperunitoftime. The inventory model has a wide application since it can be implemented in several fields such as food goods (milk, vegetables, and meat), organisms, and ornamental flowers, among others. Some numerical examples are presented to illustrate the use of the inventory model. The resultsshowthat increasing the value of the shelf-life results in an increment in price, inventory cycle time, quantity ordered, and profits that are generated for all price demand functions. Finally, a sensitivity analysis is performed, and several managerial insights are provided. Key Words: Inventory, Perishable Items, Deterioration, Salvage value, Optimal price, Replenishment cycle time. 1.INTRODUCTION Deterioration of physical goods is one of the important factors in any inventory and production system.Ifthe rateof deterioration is very low its effect can be ignored. But in many practical situations deterioration plays an important role. It is important to control and maintain the inventories of decaying items for the model corporation. Most of the physical goods undergo decay or deterioration over time. Commodities such as fruits, vegetables-andfoodstuffssuffer from depletion by direct spoilage while kept in store. Highly volatile liquids such as alcohol, gasolines etc. undergo physical depletion over time through the process of evaporation. Electronic goods, photographic film, grain, chemicals, pharmaceuticals etc. deteriorate through a gradual loss of potential or utility with the passage of time. Thus deterioration of physical goods in stock isveryrealistic feature. Deterioration rate of any item is either constant or time dependent. When deteriorationistimedependent,time is accompanied by proportional loss in the value of the product. Realization of this factor motivated modelers to consider the deterioration factor as one of the modeling aspects. Mashud et al. [1] determined the optimal replenishment policy of deteriorating goods for the classical newsboy inventory problem by considering multiple just-in-time deliveries. Additionally, Mashud et al. [2] derived an inventory model for deteriorating products that calculates the optimal vales for replenishment time, price, and green investment cost. Given that the inherent perishability can occur immediately, Pal et al. [3] addressed a production-inventory model for deteriorating productswhen theproductioncostdependson both production order quantity and production rate.Bhunia A.K and M. Maiti, [4] were the first proponent for developing a deterministic inventory model fordeterioratingitemswith finite rate of replenishment dependent on inventory level. Cheng TCE [5] discussed an economic order quantity model with demand-dependent unit production costandimperfect production processes. In most of the inventory models, authors have taken constantrateofdeterioration.Inpractice it can be observed that constant rate of deterioration occurs rarely. Most of the items deteriorate as fast as the time passes. It can be noticed that deteriorationdoesnotdepends upon time only: it can be affected due to weather conditions, humidity, and storage conditions etc. Therefore it is much more realistic to consider deterioration rate as two or three parameter Weibull distribution function. Many researchers considered the constant demand rate in their inventory models, but the assumption of constant demand is not always applicable in real situations. Tirkolaee et al. [8] noted that the inherent perishability widely occurs in food goods (e.g., milk, vegetables, and meat), organisms, and ornamental flowers. These authors also stated that the time window between preparation and sales of perishable items is very significant for producers and purchasers. Giri et al. [9] noted such demand patternfor fashionable products which initially increases exponentially with time for a period of time after that it becomes steady rather thanincreasing exponentially.Theramp-typedemand demonstrates a time period classified demand pattern. In different time periods the demand is either constant or its rate of change is different.
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1059 According to Yavari et al. [13], one of the challenges when managing inventories is the inherent perishability of many items, which means their freshness and quality decrease over time, and these cannot be sold after their expiration date. Many researchers have modified inventory policies by considering the "time proportional partial backloggingrate". The present section deals with a mathematical model of tie economic order quantity for finite time horizon. This inventory model has been developed for a single deteriorating item byconsideringtheconstant-deterioration rate. In this model, a new demand pattern has been introduced in which thedemandfollowsquadratic patternin the initial period of time and becomes linear later on. It is believed that such type of demand is quiterealistic fornewly launched product in the market. Shortages are allowed and the backlogging rate is dependentonthedurationon waiting time and taken as exponential decreasing function of time. The effect due to changeofdeteriorationparameterhasbeen considered for different parameters numerically. 2. ASSUMPTIONS AND NOTATIONS To develop inventory models for perishable items with variable demand and partial back logging. The following notations and assumption are used. (i) I (t) be the inventory level at time t, t 0  (ii) 1 t is the time at which shortage starts and T is the length of replenishment cycle 1 0 t T   . (iii) Replenishment rate is infinite and lead time is zero. (iv) There is no repair OR replenishment of deteriorated units during the period. (v) A single item is considered over the prescribed period T units of time. (vi) S be the initial inventory level after fulfilling backorders. (vii) In this model  be the constant rate of defective units out of on hand inventory at any time, 0   . (viii) Demand rate D(t) is assumed to be a function of time such that         D t a bt c t t H t t       where   H t  is the Heaviside’s functions defined as follows.   1 if t H t 0 if t             and ‘a’ is the initial rate of demand, b is the rate with which the demand rate increase. The rate of change in demand rate itself increase at a rate ‘c’. a, b and c are positive constant. (ix) Unsatisfied demand is back logged at a rate exp   x  , where x is the time up to next replenishment. The backlogging parameters  is a positive constant. (x) 1 2 3 C ,C ,C and 4 C are the holding costper unittime, unit purchase cost per unit, shortage cost per unit per unit time and the unit cost of lost sales respectively. C’ is the inventory ordering cost per order. 3. FORMULATION AND SOLUTION OF THE MODEL Figure 1 The depletion of inventory duringtheinterval   1 0,t isdue to joint effect of demand and deteriorating of items and the demand is partially backlogged in the interval   1 t ,T . The depletion of inventory is given in the (figure 1). The governing deferential equations of the proposed inventory system in the interval (0, T) are       2 I t I t a bt ct        , 0 t    … (2.1)       I t I t a kt       , 1 t t    … (2.2)     t I t a kt e     , 1 t t T   … (2.3) where k b c    with the conditions     1 I 0 S and I t 0   … (2.4) Solution of the equation (2.1)
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1060       2 dI t I t a bt ct dt       dt t I F e e        Now     t t t t t t 0 0 0 d e I t dt a e dt t e dt             t 2 t t 0 C t e dte I t S      t t t t t t 2 0 0 0 a b b e t e e                        t t t 2 t t t 2 0 0 0 C C2 b t e t e t e                        t t t t 2 t t 2 2 0 0 0 b C C2 e t e t e                       t t 3 0 2C e         t t t a b e I t S e 1 te                   t 2 b e 1         2 t C t e        t 2 2C te      t 3 2C e 1         2 t 2 2 3 a bt b ct 2ct 2c e                    2 3 a b 2c       t 2 2 2 2 3 e a b t b c t 2c t 2c                   2 3 1 a b 2c           t 2 2 2 2 3 e a b t b c t 2c t 2c                  2 3 1 a b 2c               2 t 3 1 I t S a b 2c e                2 3 1 a b t 1          2 2 c t 2 t 2      , 0 t    …(2.5) Now the solution of the equation (2.2)       dI t I t a kt dt            1 1 t t t t t t d e I t dt a kt e dt           1 1 t t t t t t t e I t 0 ae dt k t e dt           1 1 1 t t t t t t 2 t t t a k k e t e e                        1 t t 1 2 2 a kt k a t k k e e                               t t 2 e e I t a k t k            1 t 1 2 e a k t k                1 t t 1 2 1 I t a k t 1 e            2 1 a k t 1       ,   1 t t    …(2.6) By the equations (2.5) and (2.6) we getinitial inventorylevel after fulfilling backorders (S)
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1061       1 t t 1 2 1 a k t 1 e            2 1 a k t 1         3 2 t 1 S a b 2c e                     2 3 1 a b t 1          2 2 c t 2 t 2      Multiplying on both sides by t e   2 3 1 S a b 2c              t 2 2 2 3 e a b t 1 c t 2 t 2              1 t 2 e       1 a k t 1        t 2 1 a k t 1 e         2 3 1 a b 2c            1 t 1 2 1 a k t 1 e          t 2 3 e a b t 1            2 2 2 2 c t 2 t 2 a k t k              2 3 1 a b 2c            1 t 1 2 1 a k t 1 e       t 2 2 2 3 e b t b c t           2 2 2c t 2c tb tc b c           Putting t     2 3 1 S a b 2c            1 t 1 2 1 a k t 1 e        t 2 2 2 3 e b b c t          2 2 2 2c 2c b c b c              2 3 1 S a b 2c            1 t 1 2 1 a k t 1 e         3 e 2c c        2 3 1 S a b 2c            1 t 1 2 1 a k t 1 e         3 c 2 e      … (2.7) Using (2.7) in (2.5), we get     2 t 3 1 I t a b 2c e              1 t 1 1 2 1 a k t 1 e             t 3 c 2 e         2 t 3 1 a b 2c e             2 2 2 3 1 a b t 1 c t 2 t 2                     1 t t 1 2 1 I t a k t 1 e               t 2 3 3 c 1 2 e a b t 1                2 2 c t 2 t 2      ,  0 t    … (2.8) Now the solution of the equation (2.4)
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1062     t dI t a kt e dt         t dI t a kt e dt         1 1 1 t t t t t t t t d I t dt a e dt k t e dt            1 t t t a I t 0 e        1 1 t t t t 2 t t k k t e e                1 1 t t t t 1 a k e e t e t e                    1 t t 2 k e e         t 2 a tk k e             1 t 1 2 a t k k e                    t 2 1 I t a k t 1 e             1 t 1 a k t 1 e       , 1 t t T   …(2.9) (0, T) becomes 1 2 C         1 1 t t t 1 a k t 1 e dt             1 t 1 2 C a k t 1 dt         Solving all integration in the above equation separately now first integration term       1 t t 1 1 2 0 C I a k t 1 e dt               1 t t 1 1 2 0 C a k t 1 e e dt               1 t 1 1 2 C e a k t 1 1 e                     1 1 t t 1 1 3 C I a k t 1 e e              … (p) Now second integration term     t 1 3 0 C C II 2 e dt           t 1 3 0 C C 2 e e dt            t 1 3 0 C C e 2 e                 1 4 C C II 2 1 e       … (q) Now third integration term               C a b t 1 C t 2 t 2 dt 0 2 2 2 1 3               C C 2 e dt 0 1 3   t             C C a k t 1 e dt 2 0 1 H 1 t t       1               C C I t dt I t dt H 1 0 t1     c during the period H Hence the inventory holding cost   C t 2 t 2 dt      2 2             C III a b t 1 0 1 3 2   
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1063 2 2 2 1 3 C t a t b b t 2           3 2 2 0 t t C 2 C 2Ct 3 2           2 3 2 2 2 1 3 C a b b C 2 3                2 2 2 2 2 C 2C a b b 2 2              3 2 2 C 2 C 2C 3 2            2 1 2 a b b III C 2               3 2 2 3 C C 2C 3              … (r) Now the fourth integration term       1 1 t t t 1 1 2 1 IV C a k t 1 e dt                   1 t 2 1 a k t 1 dt             1 1 t t t 1 1 2 C a k t 1 e e dt             1 1 t t 1 1 2 C C k a k dt dt               1 1 t t 1 1 2 C e a k t 1 e e                   1 1 2 C a k t      2 2 1 1 C k t 2                1 t 1 1 3 C a k t 1 e 1            1 1 2 C a k t         2 2 1 1 C k t 2           1 t 1 1 3 C a k t 1 e 1           1 1 2 C a k t     1 2 C     2 a b c        2 2 1 1 C k t 2            1 t 1 1 3 C IV a k t 1 e 1           1 1 1 1 2 2 C ac C b a k t             2 2 2 1 1 1 2 C C C k t 2       … (s) After adding p, q, r and s, we get H C as         1 1 t t 1 H 1 3 C C a k t 1 e e             1 4 C C 2 1 e      2 3 2 1 2 2 3 a b b c c 2c C 2 3                             1 1 3 C a k t 1           1 t e 1      1 1 1 2 C c a a k t       
  • 7. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1064   2 2 2 1 1 1 1 2 2 c b c c c k t 2               1 t 1 1 3 C a k t 1 e 1            2 3 1 1 1 4 c c c b cc 2 1 e 2 3                 2 2 1 1 1 1 1 3 2 2c c c c k a k t t 2               1 t 1 1 3 C a k t 1 e 1            2 1 1 4 c c c b 2 1 e 2          1 3 c 3       3 2 1 1 2 c c 6c a k t           2 2 1 1 c k t 2         1 t 1 1 3 C a k t 1 e 1            2 1 1 4 c c c b 2 1 e 2          1 3 c c 3        2 2 1 1 2 c 6 a k t          2 2 1 1 c k t 2       H 1 4 c C C 2 1 e             1 t 1 3 1 a k t 1 e 1         2 b 2       2 2 3 c 6 3          2 2 1 1 2 1 k a k t t 2           …(2.10) The cost due to deterioration of units   D C during the period (0, T)     1 t D 2 0 C C I t dt I t dt                     1 t 2 0 C I t dt I t dt                   D 2 4 c C C 2 1 e              1 t 1 3 1 a k t 1 e 1         2 b 2      2 2 3 c 6 3           2 2 1 1 2 1 k a k t t 2           …(2.11) The cost due to shortage of units   s C during the given period is given by   1 T s 3 t C C I t dt        1 T t 3 s 2 t C C a k t 1 e               1 t 1 a k t 1 e dt             3 1 2 C a k t 1       1 1 T T t t 3 3 2 2 t t C C k a e dt t e dt             1 T t 3 2 t C k e dt         3 1 2 C a k t 1       1 1 T t t e dt            1 1 T T t t 3 3 t t C a C k e dt t e dt           1 T t 3 2 t C k e dt    
  • 8. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1065     3 1 2 C a k t 1       1 1 T t t e dt            1 1 T T t t 3 3 2 t t C k a k C e dt t e dt                         1 t 3 1 1 2 C a k t 1 e T t           1 t T 3 2 C a k e e                1 t T 3 1 2 C k T e t e        1 t T 3 3 C k e e           1 t 3 1 1 2 C a k t 1 e T t            T 3 3 3 3 e C a 2C k C Tk          1 t 3 3 3 1 3 e C a 2C k C t k        3 2 C         1 t 1 1 a k t 1 e T t           T 3 s 3 C C e a k 2 T              1 t 1 e a k 2 t             1 t 2 1 1 a k t 1 e T t         …(2.12) The opportunity cost due to lost sales   0 C is given by    1 T t 0 4 t C C 1 e a kt dt          1 1 T T t 4 4 t t C a kt dt C e a kt dt          1 1 T T t 4 4 t t C a kt dt C ae dt       1 T t 4 t C k t e dt      1 1 1 T T T 2 t 4 4 4 t t t C k C a C at t e 2              1 1 T T t t 4 4 2 t t C k C k te e                   2 2 4 4 1 1 C k C a T t T t 2     T 4 4 4 2 C a TC k C k e             1 t e  4 1 4 4 2 C a t C k C k                2 2 4 4 1 1 C k C a T t T t 2         T 4 2 C e a k 1 T        1 t 4 2 C e       1 a k 1 t         2 2 0 4 1 1 k C C a T t T t 2            T 2 e a k 1 T        1 t 2 e       1 a k 1 t       …(2.13) The total average cost (k) of the inventory system permit time is given by
  • 9. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1066   H D s 0 C C C C C R K T T        where R is the total cost of ht inventory cycle    1 4 1 C C K C 2 1 e T                 1 2 t 1 1 1 3 C c b a k t 1 e 1 2                2 2 1 1 1 3 2 CC C 6 a k t 3               2 2 1 2 1 3 C k C C t 2 1 e 2               1 2 t 2 2 1 2 C C b a k t 1 e 1 2               2 2 2 2 1 2 CC C 6 a k t 3                 2 2 T 3 2 1 3 C C k t e a k 2 T 2              1 t 1 e a k 2 t             1 t 2 1 1 a k t 1 e T t             2 2 4 1 1 k C a T t T t 2            T 2 1 a k T 1 e           1 t 1 2 e a k t 1               To minimize (k), the optimal values of 1 t & T can be obtained by solving 1 k 0 t    and k 0 T    simultaneously. Now   1 1 t t 1 1 1 2 1 C a k e k C kt e t           1 t 1 1 1 1 1 1 2 2 2 C ke C k C a C k C kt            1 t 2 C ae  1 1 1 t t t 2 2 2 1 C ke C ke C kt e         2 2 2 2 1 C k C k C a C kt         1 1 t t 3 3 1 2 C e C t ke a 2k           1 1 t t 2 3 3 2 2 C ke C T a k e          1 1 t t 3 3 1 C C Tkt e e Tk          1 1 t t 3 3 1 2 C C t e a k e a k           1 1 t t 2 3 3 1 1 C C kt e e .2t k        1 t 4 4 4 1 C e C a C kt a k        1 1 t t 4 4 1 C C e kt ke        1 1 t t 1 1 1 2 C C kt e a k e         1 1 t t 1 1 1 1 2 2 C C a C kt ke C ae          1 t 2 C ke   1 1 t t 2 2 1 2 C ke C kt e C a      
  • 10. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1067 1 1 1 t t t 3 3 3 1 2 1 2 C ae 2kC e C t ke C kt           1 1 1 t t t 3 3 3 2 C C Tke ke C Tae         1 1 1 t t t 3 3 1 3 1 C C Tkt e e Tk C t ae         1 1 1 t t t 3 3 3 1 2 C C a C t ke e ke          1 1 t t 2 3 3 1 1 C C kt e 2t ke          1 1 t t 4 4 1 C a 1 e c kt 1 e       1 1 1 t t t 1 1 1 1 2 2 C C k C k ae e t e          1 1 t t 1 1 1 1 2 2 C ke C a C kt C ae          1 t 2 C k e   1 1 t t 2 2 1 C k C kt e e      1 1 t t 3 3 2 2 1 2 C a 2kC e C a C kt e         1 t 3 1 C t ke   1 1 t t 3 3 2 C ke C Tae      1 1 t t t 3 3 3 1 C Tke C C Tkt e Tke         1 t 3 1 C t ae  1 1 t t 3 1 3 C t k C e a e       1 1 1 t t t 2 3 3 3 1 1 2 C ke C C kt e 2t ke           1 t 4 C a 1 e     1 t 4 1 C kt 1 e .    1 1 t t 1 1 1 1 1 1 C ae C kt e C a C kt           1 1 t t 2 2 1 2 C ae C kt e C a      2 1 C kt  1 t 3 C Tae  1 1 t t 3 1 3 1 C Tkt e C t ae        1 1 t t 2 3 1 4 1 C kt e C a e a kt           1 1 t t 1 1 1 C a C kt e 1 e 1            1 1 t t 2 1 3 1 C kt e 1 TC e a kt            1 1 t t 3 1 1 4 1 C t e a kt C 1 e a kt         1 t 1 1 1 2 2 1 C a C kt e 1 C a C kt                  1 t 3 1 1 C e t T a kt        1 t 4 1 C a kt 1 e          1 t 1 1 2 1 C e 1 a kt C a kt                  1 t 3 1 1 C e t T a kt        1 t 4 1 C a kt 1 e        1 1 t t 1 2 3 1 C e C C e t T                   1 t 4 4 1 C e C a kt       Now putting 1 k 0 t    , we get   1 t 1 2 1 k C 0 e 1 C t                      1 1 4 t t C 3 1 4 1 C e t T C e a kt            1 t 1 2 C e 1 C          
  • 11. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1068     1 t 3 1 4 4 e C t T C C 0       …(2.14) Now for k 0 T    Since R k T   2 k R R 1 R T T T T T T                         T 3 2 2 C e k R 1 a 2k T T T                1 t T T 3 3 3 2 2 C kT C C e ke a k e           1 t 3 1 4 4 C t ke C a C kT      T 4 C e     T T 4 4 C a k C kTe e k           T 3 2 2 2 R 1 a 2k kT k C e T T                     1 t 1 3 2 a k t k C e               T 4 4 k k C a kT C e a kT                  T 3 2 2 R 1 a k kT C e T T                    1 t 1 3 4 2 a k t k C e C                 T 4 C e a kT            1 t 3 1 2 2 C R 1 e a k 1 t T T                 T e a k 1 T          T 4 C a kT 1 e      Putting k 0 T    , we get      1 t 3 1 2 2 C k R 1 e a k 1 t T T T                   T e a k 1 T       4 C     T a kT 1 c 0           1 t 3 1 2 C a k t 1 e              T 4 a k T 1 e C a kT             T R 1 e 0 T     …(2.15) The above equations 1 k 0 t    and k 0 T    provided, they satisfy the following conditions : 2 2 2 2 1 2 2 2 2 2 2 1 1 k k 0, 0 t T k k k 0 t T t T                                         …(2.16) Equation (2.14) and (2.15) are highly nonlinear equations. Therefore numerical solution of these equation obtained by using the software MATLAB 7.0.1. 4. CONCLUSIONS This research work develops an inventory model withprice, stock, and time-dependent demand. The physical deterioration and condition of freshness degradation over time are both considered, and zero-ending inventory is assumed. When working with perishable products, a salvaged value and a deterioration costareconsideredinthe entire cycle. A nonlinear time-dependent holding cost is included, specifically with a quadratic-type function.
  • 12. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 08 | Aug 2022 www.irjet.net p-ISSN: 2395-0072 © 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1069 Through an algorithm, the inventory model determines the optimal values for price, the inventory cycle time, and the order quantity. Some numerical examples are provided,and a sensitivity analysis is presented for all the input parameters. By observing the behavior of the decision variables and total profits, it was found that an increase in the ordering cost , purchasingcost , andshelf-life results ina similar pattern in the selling price, the inventory cycle time, the quantity to order, and the total profit. Furthermore, an increase in the value of the shelf-life results in an increment in price, inventory cycle time, quantity ordered, and profits generated for all functions. In addition, as the ordering cost increases, price, the inventory cycle time and quantity ordered also increase for all functions. Nonetheless, the profits show a decreasing trend. Finally, by escalating the purchasing cost for all functions, there is an increase in both the price and the inventory cycletime;however,thequantity to order and total profits tend to decrease. This research work extends and widely contributes to the state-of-the-art on the inventory field, with focus on perishable items with price-stock-time-dependent demand. The inventory model studied here hassomelimitationsfrom where several directions for extension and further research are highlighted. First, an inventory model can be built with the same characteristics and demand pattern, but including the sustainability elements, so the effects of the carbon-tax and cap-and-trade mechanisms can be assessed. Second, a model that allows shortages with full or partial backlogging should be explored. Third, the trade-off and benefits of investing on preservation technologyshouldbealsostudied. Fourth, the noninstantaneous item’s freshness degradation can be integrated intotheproposedinventorymodel.Finally, other components such as incorporatingdiscountpoliciesor advertising efforts can also be investigated. 5. REFERENCES [1] A. H. M. Mashud, H. M. Wee, C. V. Huang, and J. Z. Wu, “Optimal replenishment policy for deteriorating products in a newsboy problem with multiple just-in- time deliveries,” Mathematics, vol. 8, no. 11, pp. 1–18, 2020. [2] A. H. M. Mashud, D. Roy, Y. Daryanto, and M. H. Ali, “A sustainable inventory model with imperfect products, deterioration,andcontrollableemissions,” Mathematics, vol. 8, no. 11, pp. 1–21, 2020. [3] B. Pal, S. S. Sana, and K. Chaudhuri, “A stochastic production inventorymodel fordeterioratingitemswith productsʼ finite life-cycle,” RAIRO-Operations Research, vol. 51, no. 3, pp. 669–684, 2017. [4] Bhunia A.K and M. Maiti, Deterministic inventory model for deteriorating items with finite rate of replenishment dependent on inventory level. Computers and Operations Research 25 (11), 997-1006, 1998. [5] Cheng TCE., An economic order quantity model with demand-dependent unit production cost and imperfect production processes, IIE Transactions 23, 23-28,1991. [6] Chu. P and Patrick S.H., A note on inventory replenishment policies for deteriorating items in an exponentially declining market. Computers and Operations Research 29 (13), 1827-1842, 2002. [7] Covert, R.P and G. C. Philip, An EOQ model foritems with Weibull distributed deterioration. AIIE Transactions 5, 323-326, 1973. [8] E. B. Tirkolaee, A. Goli, M. Bakhsi, and I. Mahdavi, “A robust multi-trip vehicle routing problem of perishable products with intermediate depots and time windows,” Numerical Algebra, Control & Optimization, vol. 7, no. 4, pp. 417–433, 2017. [9] Giri, B.C. and Chaudhari K.S., “Deterministic models of perishable inventory withstock dependentdemandrate and nonlinear holding cost”, European Journal of Operational Research, 105, 3, pp467-474, 1998. [10] Yan H. and TCE Cheng, Optimal productionstopping and restarting times for an EOQ model with deteriorating items. Journal ofOperational ResearchSociety,49, 1288- 1295, 1998. [11] Kuo-Lung Hou, An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. European Journal of Operations Research 168,463-474, 2006. [12] Chandra M.G., An EPQinventorymodel for exponentially deteriorating items under retail partial trade policy in supply chain, Expert Systems and applications. 39(3), 3537-3550, 2012. [13] M. Yavari, H. Enjavi, and M. Geraeli, “Demand management to cope with routes disruptions in location-inventory-routing problem for perishable products,” Research in Transportation Business & Management, vol. 37, Article ID 100552, pp. 1–14,2020. [14] Teng J.T. and Chang C.T., Economic production quantity models for deteriorating items with price- and stock- dependent demand. Computers and Operations Research 32, 297-308, 2005. [15] Zaid T. Balkhi & Lakdere Benkherouf, An inventory model for deteriorating items with stock dependent demand and time-varyingdemandrates.Computersand pertains Research 31, 223-240, 2004.