SlideShare a Scribd company logo
1 of 6
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 8 ǁ August 2013 ǁ PP.10-15
www.ijesi.org 10 | Page
Moisture Content Effect on Sliding Shear Test Parameters in
Woven Geotextile Reinforced Pilani Soil
Kamalesh Kumar1
, Anmol Verma2
, Aman Aggarwal3
1
Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031
2
Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031
3
Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031
ABSTRACT: Woven geotextile is widely used as reinforcing material in soil. Adhesion and interface friction
are the primary parameters affecting reinforced soil performance under these conditions. They are determined
using sliding shear test in the laboratory. Soil gradation, plasticity, in-situ dry density, moisture content and
surface characteristics of the geotextile are important parameters affecting them. In the present experimental
study, effect of moisture content on adhesion and on interface friction has been studied for local soil reinforced
with woven geotextile. Trend of variation has been explained. Practical significance of the study has also been
discussed.
KEYWORDS: Adhesion, Interface friction, Local soil, Moisture content, Sliding shear test, Woven Geotextile.
I. INTRODUCTION
The term “Geosynthetics” essentially includes family of materials. These materials are used in
conjunction with soil to improve its geotechnical performance in a specific geotechnical context. These
materials include geotextiles, geomembranes as well as host of other products such as geogrids, geonets,
geocomposites, geosynthetic clay liners, geopipes, geobags etc. While in soil, geosynthetics perform functions,
such as reinforcement, separator, filtration, drainage and moisture barrier.
Use of geosynthetics as reinforcing material in soil is one of its primary applications. While
functioning as reinforcing material in soil, geosynthetics ensures improved response of soil to loading. It also
reduces disturbing shear forces. Consequently, steep slopes can be constructed or an embankment of increased
height can be built on soft soil. In pavements, geosynthetics, owing to their membrane action induces tensile
forces, which controls deformation and significantly improves pavement performance.
While being used as reinforcing material in soil, the interface friction angle as well as adhesion
between geosynthetic and soil are the primary and most contentious variables used. The tensile stress-strain
behavior of geotextile is also significant. An understanding of soil/geosynthetic interface’s shear strength is
essential to the design and stability analysis of geosynthetically reinforced soil structures. An interface with a
stronger shearing resistance in a geosynthetically lined slope can reduce the tensile forces mobilized in the
geosynthetics, as well as increase the safe slope inclination [1], [2]. The shear strength of the soil/geosynthetic
interface is also essential to understand the behavior of the sub-grade and base layers of roads.
Sliding shear testing is one of the techniques used in laboratory to determine interface friction angle as
well as adhesion between geotextile and soil. In sliding shear test, sliding of soil mass over a stationary
reinforcement takes place. From the mechanics point of view the sliding test is akin to kinetic or rolling friction
condition. In sliding shear tests, the soil movement is minimum at the interface, since the movement of soil is
restrained by reinforcement, and increases with distance away from it (Figure 1) [3].
Figure 1: Sliding shear test [3]
Moisture Content Effect On Sliding Shear…
www.ijesi.org 11 | Page
The above relative movement induces constant normal stress condition for sliding shear test. Adhesion and
interface friction angle values obtained from sliding shear tests can be used for designing a footing resting on
dense sand reinforced with stiff reinforcement, where soil slides over the stationary reinforcement (Figure
Figure 2: Sliding resistance (dense sand) [3]
In sliding shear test involving geotextiles as reinforcing material, an wooden block of appropriate
dimensions is selected. The dimension of wooden block is such that it just fits in the lower half of standard shear
box used in direct shear testing. The geotextile material which is to be used as reinforcing material is glued on
the top surface of the aforementioned wooden block using appropriate adhesive. Experimental soil at required
dry density (which is usually close to in-situ dry density) is compacted only in the upper half of shear box.
Experiment similar to direct shear testing is then conducted at different normal stresses to obtain corresponding
failure shear stresses. Using the results of the aforementioned experiment, adhesion as well as interface friction
angle between geotextile and soil is determined. Technique is same as cohesion and angle of internal friction
determination in direct shear testing. Testing is conducted under fully drained conditions. Usefulness of
experiment is limited to freely draining soils. Soil gradation, plasticity, in-situ dry density, moisture content and
surface characteristics of the geotextile are important parameters affecting adhesion as well as interface friction
angle between geotextile and soil. It was concluded that the test using a large solid block as the lower shear box
is the best at replicating the testing results of the soil/geotextile interface [4]. It has been stated that the
geotextile and geomembrane can be tested with a solid block or soil in the lower part of the shear box, while the
geogrid must be tested by a device in which both parts of the shear test device have to be filled with soil [5].
Geotextile is one of the geosynthetics commonly used as reinforcing agent in soil. It could be woven,
non-woven or knitted type. In the present study woven geotextile has been used as reinforcing material in the
soil. Large numbers of geotextiles are of woven type. They can be sub-divided into several categories based
upon their method of manufacture. They were the first to be developed from synthetic fibers. Woven geotextiles
are manufactured by adopting techniques which are similar to weaving usual clothing textiles. This type has the
characteristic appearance of two sets of parallel threads or yarns. The yarn running along the length is called
warp and the one which is perpendicular is called weft. The majority of low to medium strength woven
geotextile is manufactured from polypropylene fiber. This can be in the extruded tape, silt film, monofilament or
multifilament form. Usually a combination of yarn types is used in the warp and weft directions. Objective is to
optimize performance as well as cost [6]. Higher permeability is obtained when monofilament and multifilament
form of polypropylene fiber is used in woven geotextile manufacture.
Experimental soil has been collected from Birla Institute of Technology & Science, Pilani campus.
Sliding shear testing of woven geotextile reinforced experimental soil has been conducted at four different
moisture contents. Variation of adhesion and interface friction angle with moisture content has been thus
investigated. Practical significane of the study has also been discussed.
II. MATERIALS USED
The materials used in this study were local soil, woven geotextile and ordinary tap water. Woven
geotextile was glued on wooden block which was having 6cm x 6cm plan area. Dimensions of the wooden block
was such that it just fitted into the lower half of standard shear box. This shear box was used in present study
and its inner plan area was also 6cm x 6cm.
Local soil used in the study was collected from Birla Institute of Technology & Science, Pilani campus.
Soil was collected from ground surface using core cutter technique. Standard core cutter was used for this
purpose. The collected soil had in-situ water content 10%, in-situ bulk density 1.922 gm/cc and in-situ dry
density 1.747 gm/cc. Specific gravity of this experimental soil using pycnometer was found to be 2.577. Particle
Moisture Content Effect On Sliding Shear…
www.ijesi.org 12 | Page
size distribution of experimental soil is shown in Table 1. Its particle size distribution curve is also shown in
Figure 3. All the experimental soil used in sieve analysis was found to pass through 4.75mm sieve and only
2.4% was found to be finer than 75µ sieve indicating that the soil was sand type. From particle size distribution
curve of Figure 3, it was found that uniformity coefficient of the experimental soil was 2.89 & its coefficient of
curvature was 0.96 indicating it to be poorly graded sand & is of freely draining type.
Table 1: Particle size distribution of experimental soil
Particle
Size
2.36mm 1.18mm 600µ 300µ 150µ 75µ Pan
% Finer 97.4 92.8 91.6 67.2 34.0 2.4 0
Figure 3: Particle size distribution curve of experimental soil
III. EXPERIMENTAL DETAILS
Sliding shear testing of experimental soil was conducted at in-situ dry density of 1.747 gm/cc. First
sliding shear testing was conducted at in-situ water content, which was 10%. Soil which was collected from
field using core cutter was used for this purpos e. Volume of the upper half of shear box (after fitting woven
geotextile glued wooden block in the lower half) was found to be 99cm3
. Hence, in order to get 1.747 gm/cc dry
density, bulk weight of in-situ soil compacted in upper half of shear box was 190.2gm. Water present in soil at
this 10% water content was in-situ water.
Experimental soil collected from field was then oven dried for 24 hours. The dry soil at 0% water
content was also subjected to sliding shear testing at 1.747 gm/cc dry density. Weight of dry soil thus compacted
in upper half of shear box was thus 172.9gm.
Results of aforementioned two sliding shear testing experiments have been summarized in Table 2. It is
also plotted in Figure 4.
Table 2: Sliding shear test results (In-situ & dry soil sample)
Normal stress (kg/cm2
) Failure shear stress (kg/cm2
)
(In-situ soil sample)
Failure shear stress (kg/cm2
)
(Dry soil sample)
0.0491 0.0982 0.0675
0.0694 0.1166 0.0920
0.0986 0.1289 0.1105
0.1388 0.1596 0.1350
Moisture Content Effect On Sliding Shear…
www.ijesi.org 13 | Page
Figure 4: Sliding shear test results (In-situ & dry soil sample)
For third sliding shear testing, required amount of tap water was added in oven dried experimental soil
to get 5% water content in it. This testing was also conducted at 1.747gm/cc dry density. Bulk weight of tap
water mixed compacted soil in upper half of shear box was thus 181.6gm. Sliding shear testing was also
conducted at 15% water content in oven dried experimental soil by adding required amount of tap water in it.
Like previous three sliding shear tests, this test was also conducted at 1.747gm/cc dry density. Bulk weight of
tap water mixed compacted soil in upper half of shear box was thus 198.9gm. Results of these two sliding shear
testing experiments have been summarized in Table 3. It is also plotted in Figure 5.
Table 3: Sliding shear test results (Soil sample at 5% & 15% water contents)
Normal stress (kg/cm2
) Failure shear stress (kg/cm2
)
(Soil sample at 5% water content)
Failure shear stress (kg/cm2
)
(Soil sample at 15% water content)
0.0491 0.0982 0.0859
0.0694 0.1227 0.1105
0.0986 0.1473 0.1350
0.1388 0.1596 0.1596
Figure 5: Sliding shear test results (Soil sample with 5% & 15% water content)
Adhesion and interface friction angle values between experimental soil and woven geotextile at tested
water contents have been shown in Table 4. They have also been plotted in Figures 6 & 7 respectively.
Table 4: Adhesion & interface friction angle values at tested water contents
Tested water content Adhesion (kg/cm2
) Interface friction angle (deg.)
0% 0.0372 35.795
5% 0.0619 33.731
10% (In-situ) 0.0676 33.216
20% 0.0743 31.566
Moisture Content Effect On Sliding Shear…
www.ijesi.org 14 | Page
Figure 6: Variation of adhesion between tested soil & woven geotextile with water content
Figure 7: Variation of interface friction angle between tested soil & woven geotextile with water
content
IV. DISCUSSION ON EXPERIMENTAL RESULTS
In-situ experimental soil of present study has negligible cohesion. Its angle of internal friction is around
280
. These values are under similar conditions of direct shear testing as reported in present study. In the present
study it was observed that this in-situ soil, when reinforced with woven geotextile gave adhesion value of
0.0676kg/cm2
and interfacial friction angle value of 33.2160
under sliding shear testing conditions. Hence there
will be substantial shear strength increase if woven geotextile is used as reinforcing material in the tested soil
under shallow footing conditions at appropriate place & location in the in-situ soil. From Figure 6 it is clear that
adhesion between tested soil and woven geotextile increases as water content increases from 0% to 20% under
sliding shear testing conditions. Adhesion is the tendency of dissimilar particles or surfaces to cling to one
another. The intermolecular forces responsible for adhesion fall into the categories of chemical adhesion,
dispersive adhesion, and diffusive adhesion [7]. These effects are enhanced as water content increases resulting
in increased adhesion. From Figure 7 it is clear that interface friction angle between tested soil and woven
geotextile decreases as water content increases from 0% to 20% under sliding shear testing conditions. If
substantial water is present in soil sample, it has lubricating effect at the interface between soil and woven
geotextile [8]. This leads to decrease in interface friction between soil and woven geotextile. As per
geotechnical design requirement, if water content is altered from its in-situ value in the experimental soil,
desired adhesion as well as interface friction angle can be obtained at the interface between experimental soil
and woven geotextile. This also will have practical application when woven geotextile is used as reinforcing
material in tested soil under shallow footing conditions.
Moisture Content Effect On Sliding Shear…
www.ijesi.org 15 | Page
REFERENCES
[1]. C.N. Liu, and R.B. Gilbert, Simplified method for estimating geosynthetic loads in landfill liner side slopes during filling.
Geosynthetics International 10(1), 2003, 24–33.
[2]. E.M. Palmeira, and H.N.L. Viana, Effectiveness of geogrids as inclusions in cover soils of slopes of waste disposal areas.
Geotextiles and Geomembranes 21(5), 2003, 317–337.
[3]. S. Saran, Reinforced Soil and its Engineering Applications (I.K. International Pvt. Ltd., New Delhi, 2005).
[4]. E.A. Richards, and J.D. Scott, Soil Geotextile Frictional Properties. Second Canadian Symposium on Geotextiles and
Geomenbranes, Edmonton, 1985, 13–24.
[5]. R.A. Jewell, Soil Reinforcement with Geotextiles (Thomas Telford, London, 1996).
[6]. B.J. Agrawal, Geotextile: it’s application to civil Engineeering – Overview. National Conference on Recent Trends in
Engineering & Technology, V.V. Nagar, Gujarat, 2011, 1-6.
[7]. http://en.wikipedia.org/wiki/Adhesion.
[8]. S.L. Zhiling, and J. Makinda, Drained Direct Shear Testing on Soil-Geotextile Interfaces. UMT 11th International Annual
Symposium on Sustainability Science and Management, Terengganu, Malaysia, 2012, 1144-1151.

More Related Content

What's hot

IRJET- Behaviour of Reinforced Soil using Geogrid
IRJET- Behaviour of Reinforced Soil using GeogridIRJET- Behaviour of Reinforced Soil using Geogrid
IRJET- Behaviour of Reinforced Soil using GeogridIRJET Journal
 
soil stabilization using waste finber by RAJ S PYARA
soil stabilization using waste finber by RAJ S PYARAsoil stabilization using waste finber by RAJ S PYARA
soil stabilization using waste finber by RAJ S PYARArajkumar pyara
 
An Experimental Study of Soil Stabilization with Cement and Polymer
An Experimental Study of Soil Stabilization with Cement and PolymerAn Experimental Study of Soil Stabilization with Cement and Polymer
An Experimental Study of Soil Stabilization with Cement and Polymerijtsrd
 
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENT
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENTSTABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENT
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENTIAEME Publication
 
Design of pavement on subgrade soil by stabilization
Design of pavement on subgrade soil by stabilizationDesign of pavement on subgrade soil by stabilization
Design of pavement on subgrade soil by stabilizationAmeer Muhammed
 
Soil stabilization using plastic bottle strips
Soil stabilization using plastic bottle stripsSoil stabilization using plastic bottle strips
Soil stabilization using plastic bottle stripsTEJASKRIYA PRADHAN
 
Stabilization of black cotton soil using wooden ash
Stabilization of black cotton soil using wooden ashStabilization of black cotton soil using wooden ash
Stabilization of black cotton soil using wooden ashAFSAL
 
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...IRJET Journal
 
Polypropylene fiber reinforced cohesive soil - constro facilitator
Polypropylene fiber reinforced cohesive soil - constro facilitatorPolypropylene fiber reinforced cohesive soil - constro facilitator
Polypropylene fiber reinforced cohesive soil - constro facilitatorConstrofacilitator
 
An Experimental Study on Stabilization of Soils by Using Bio Enzymes
An Experimental Study on Stabilization of Soils by Using Bio EnzymesAn Experimental Study on Stabilization of Soils by Using Bio Enzymes
An Experimental Study on Stabilization of Soils by Using Bio Enzymesijtsrd
 
soil stabilization_by_using_plastics
soil stabilization_by_using_plasticssoil stabilization_by_using_plastics
soil stabilization_by_using_plasticsnbkrist
 
IRJET- Stabilization of Black Cotton Soil by using Waste Gypsum
IRJET- Stabilization of Black Cotton Soil by using Waste GypsumIRJET- Stabilization of Black Cotton Soil by using Waste Gypsum
IRJET- Stabilization of Black Cotton Soil by using Waste GypsumIRJET Journal
 
Stabilization of Black Cotton Soil with Lime and Geo-grid
Stabilization of Black Cotton Soil with Lime and Geo-gridStabilization of Black Cotton Soil with Lime and Geo-grid
Stabilization of Black Cotton Soil with Lime and Geo-gridAM Publications
 
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES IAEME Publication
 
SOIL STABILIZATION USING FLY ASH
SOIL STABILIZATION USING FLY ASHSOIL STABILIZATION USING FLY ASH
SOIL STABILIZATION USING FLY ASHHariKrishnan P A
 
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...IJERA Editor
 
Soil stabalisation ppt
Soil stabalisation pptSoil stabalisation ppt
Soil stabalisation pptAbdulAhad334
 
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell AshStabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell AshKrunal Thanki
 
Stabilization of Natural Soil with Sand and Cement
Stabilization of Natural Soil with Sand and CementStabilization of Natural Soil with Sand and Cement
Stabilization of Natural Soil with Sand and CementIJSRD
 

What's hot (20)

IRJET- Behaviour of Reinforced Soil using Geogrid
IRJET- Behaviour of Reinforced Soil using GeogridIRJET- Behaviour of Reinforced Soil using Geogrid
IRJET- Behaviour of Reinforced Soil using Geogrid
 
soil stabilization using waste finber by RAJ S PYARA
soil stabilization using waste finber by RAJ S PYARAsoil stabilization using waste finber by RAJ S PYARA
soil stabilization using waste finber by RAJ S PYARA
 
An Experimental Study of Soil Stabilization with Cement and Polymer
An Experimental Study of Soil Stabilization with Cement and PolymerAn Experimental Study of Soil Stabilization with Cement and Polymer
An Experimental Study of Soil Stabilization with Cement and Polymer
 
Improving Properties of Black Cotton Soil with Quarry Dust
Improving Properties of Black Cotton Soil with Quarry DustImproving Properties of Black Cotton Soil with Quarry Dust
Improving Properties of Black Cotton Soil with Quarry Dust
 
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENT
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENTSTABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENT
STABILIZATION OF BLACK COTTON SOIL WITH SAND AND CEMENT AS A SUBGRADE PAVEMENT
 
Design of pavement on subgrade soil by stabilization
Design of pavement on subgrade soil by stabilizationDesign of pavement on subgrade soil by stabilization
Design of pavement on subgrade soil by stabilization
 
Soil stabilization using plastic bottle strips
Soil stabilization using plastic bottle stripsSoil stabilization using plastic bottle strips
Soil stabilization using plastic bottle strips
 
Stabilization of black cotton soil using wooden ash
Stabilization of black cotton soil using wooden ashStabilization of black cotton soil using wooden ash
Stabilization of black cotton soil using wooden ash
 
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...
IRJET-Strength and Stability Behavior of Soil Reinforced using Randomly Distr...
 
Polypropylene fiber reinforced cohesive soil - constro facilitator
Polypropylene fiber reinforced cohesive soil - constro facilitatorPolypropylene fiber reinforced cohesive soil - constro facilitator
Polypropylene fiber reinforced cohesive soil - constro facilitator
 
An Experimental Study on Stabilization of Soils by Using Bio Enzymes
An Experimental Study on Stabilization of Soils by Using Bio EnzymesAn Experimental Study on Stabilization of Soils by Using Bio Enzymes
An Experimental Study on Stabilization of Soils by Using Bio Enzymes
 
soil stabilization_by_using_plastics
soil stabilization_by_using_plasticssoil stabilization_by_using_plastics
soil stabilization_by_using_plastics
 
IRJET- Stabilization of Black Cotton Soil by using Waste Gypsum
IRJET- Stabilization of Black Cotton Soil by using Waste GypsumIRJET- Stabilization of Black Cotton Soil by using Waste Gypsum
IRJET- Stabilization of Black Cotton Soil by using Waste Gypsum
 
Stabilization of Black Cotton Soil with Lime and Geo-grid
Stabilization of Black Cotton Soil with Lime and Geo-gridStabilization of Black Cotton Soil with Lime and Geo-grid
Stabilization of Black Cotton Soil with Lime and Geo-grid
 
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES
OPTIMUM USE OF POLYPROPYLENE FIBERS IMPROVES SOIL PROPERTIES
 
SOIL STABILIZATION USING FLY ASH
SOIL STABILIZATION USING FLY ASHSOIL STABILIZATION USING FLY ASH
SOIL STABILIZATION USING FLY ASH
 
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...
Bearing Capacity of High Density Polyethylene (HDPE) Reinforced Sand Using Pl...
 
Soil stabalisation ppt
Soil stabalisation pptSoil stabalisation ppt
Soil stabalisation ppt
 
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell AshStabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash
Stabilization Analysis of Black Cotton Soil by using Groundnut Shell Ash
 
Stabilization of Natural Soil with Sand and Cement
Stabilization of Natural Soil with Sand and CementStabilization of Natural Soil with Sand and Cement
Stabilization of Natural Soil with Sand and Cement
 

Similar to International Journal of Engineering and Science Invention (IJESI)

Utilisation of Waste Materials in the Construction Of Roads
Utilisation of Waste Materials in the Construction Of RoadsUtilisation of Waste Materials in the Construction Of Roads
Utilisation of Waste Materials in the Construction Of RoadsIJERD Editor
 
IRJET - Study on the Engineering Properties of Fibre-Reinforced Low Plast...
IRJET -  	  Study on the Engineering Properties of Fibre-Reinforced Low Plast...IRJET -  	  Study on the Engineering Properties of Fibre-Reinforced Low Plast...
IRJET - Study on the Engineering Properties of Fibre-Reinforced Low Plast...IRJET Journal
 
Soil Stabilization using Natural Fiber Coir
Soil Stabilization using Natural Fiber CoirSoil Stabilization using Natural Fiber Coir
Soil Stabilization using Natural Fiber CoirIRJET Journal
 
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly Ash
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly AshStabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly Ash
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly AshEditorIJAERD
 
Soil Stabalizationbjbvdjbvdsjbvdjbjvdbjv
Soil StabalizationbjbvdjbvdsjbvdjbjvdbjvSoil Stabalizationbjbvdjbvdsjbvdjbjvdbjv
Soil Stabalizationbjbvdjbvdsjbvdjbjvdbjvbazeeshaikngm
 
To Study the Effect of Use of Geosynthetics Fibres in Sub grade Soil
To Study the Effect of Use of Geosynthetics Fibres in Sub grade SoilTo Study the Effect of Use of Geosynthetics Fibres in Sub grade Soil
To Study the Effect of Use of Geosynthetics Fibres in Sub grade Soilijtsrd
 
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...IRJET Journal
 
Effect of discrete_fiber_reinforcement_on_soil_ten
Effect of discrete_fiber_reinforcement_on_soil_tenEffect of discrete_fiber_reinforcement_on_soil_ten
Effect of discrete_fiber_reinforcement_on_soil_tenShuhaib Mohammed
 
A Research Paper on Stabilization of Soil by using Bituminous Material
A Research Paper on Stabilization of Soil by using Bituminous MaterialA Research Paper on Stabilization of Soil by using Bituminous Material
A Research Paper on Stabilization of Soil by using Bituminous MaterialIRJET Journal
 
A review-effect-of-geo-grid-reinforcement-on-soil
A review-effect-of-geo-grid-reinforcement-on-soilA review-effect-of-geo-grid-reinforcement-on-soil
A review-effect-of-geo-grid-reinforcement-on-soilIjcem Journal
 
Shear Behavior of Sand Reinforced with Plastic Strips
Shear Behavior of Sand Reinforced with Plastic StripsShear Behavior of Sand Reinforced with Plastic Strips
Shear Behavior of Sand Reinforced with Plastic StripsEditorIJAERD
 
IRJET- Study of the Strength Characteristics of the Soil Processed with F...
IRJET-  	  Study of the Strength Characteristics of the Soil Processed with F...IRJET-  	  Study of the Strength Characteristics of the Soil Processed with F...
IRJET- Study of the Strength Characteristics of the Soil Processed with F...IRJET Journal
 
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilThreads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilIRJET Journal
 
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilThreads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilIRJET Journal
 
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...AM Publications
 
IRJET - Heave Reduction on Expansive Soil by using Geotextiles
IRJET - Heave Reduction on Expansive Soil by using GeotextilesIRJET - Heave Reduction on Expansive Soil by using Geotextiles
IRJET - Heave Reduction on Expansive Soil by using GeotextilesIRJET Journal
 

Similar to International Journal of Engineering and Science Invention (IJESI) (20)

Utilisation of Waste Materials in the Construction Of Roads
Utilisation of Waste Materials in the Construction Of RoadsUtilisation of Waste Materials in the Construction Of Roads
Utilisation of Waste Materials in the Construction Of Roads
 
G05614854
G05614854G05614854
G05614854
 
IRJET - Study on the Engineering Properties of Fibre-Reinforced Low Plast...
IRJET -  	  Study on the Engineering Properties of Fibre-Reinforced Low Plast...IRJET -  	  Study on the Engineering Properties of Fibre-Reinforced Low Plast...
IRJET - Study on the Engineering Properties of Fibre-Reinforced Low Plast...
 
Soil Stabilization using Natural Fiber Coir
Soil Stabilization using Natural Fiber CoirSoil Stabilization using Natural Fiber Coir
Soil Stabilization using Natural Fiber Coir
 
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly Ash
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly AshStabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly Ash
Stabilization of Expansive Soil Subgrade Using Recycled Carpet Waste and Fly Ash
 
Soil Stabalizationbjbvdjbvdsjbvdjbjvdbjv
Soil StabalizationbjbvdjbvdsjbvdjbjvdbjvSoil Stabalizationbjbvdjbvdsjbvdjbjvdbjv
Soil Stabalizationbjbvdjbvdsjbvdjbjvdbjv
 
To Study the Effect of Use of Geosynthetics Fibres in Sub grade Soil
To Study the Effect of Use of Geosynthetics Fibres in Sub grade SoilTo Study the Effect of Use of Geosynthetics Fibres in Sub grade Soil
To Study the Effect of Use of Geosynthetics Fibres in Sub grade Soil
 
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...
“STABILAZATION OF SOIL USING PLASTIC WASTE GENERATED FROM PLASTIC BAGS AND BO...
 
I012265155
I012265155I012265155
I012265155
 
Effect of discrete_fiber_reinforcement_on_soil_ten
Effect of discrete_fiber_reinforcement_on_soil_tenEffect of discrete_fiber_reinforcement_on_soil_ten
Effect of discrete_fiber_reinforcement_on_soil_ten
 
A Research Paper on Stabilization of Soil by using Bituminous Material
A Research Paper on Stabilization of Soil by using Bituminous MaterialA Research Paper on Stabilization of Soil by using Bituminous Material
A Research Paper on Stabilization of Soil by using Bituminous Material
 
A review-effect-of-geo-grid-reinforcement-on-soil
A review-effect-of-geo-grid-reinforcement-on-soilA review-effect-of-geo-grid-reinforcement-on-soil
A review-effect-of-geo-grid-reinforcement-on-soil
 
Shear Behavior of Sand Reinforced with Plastic Strips
Shear Behavior of Sand Reinforced with Plastic StripsShear Behavior of Sand Reinforced with Plastic Strips
Shear Behavior of Sand Reinforced with Plastic Strips
 
E0391032040
E0391032040E0391032040
E0391032040
 
IRJET- Study of the Strength Characteristics of the Soil Processed with F...
IRJET-  	  Study of the Strength Characteristics of the Soil Processed with F...IRJET-  	  Study of the Strength Characteristics of the Soil Processed with F...
IRJET- Study of the Strength Characteristics of the Soil Processed with F...
 
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilThreads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
 
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red SoilThreads of Stability: Harnessing Polypropylene's Grip on Red Soil
Threads of Stability: Harnessing Polypropylene's Grip on Red Soil
 
It3515151519
It3515151519It3515151519
It3515151519
 
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...
Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ij...
 
IRJET - Heave Reduction on Expansive Soil by using Geotextiles
IRJET - Heave Reduction on Expansive Soil by using GeotextilesIRJET - Heave Reduction on Expansive Soil by using Geotextiles
IRJET - Heave Reduction on Expansive Soil by using Geotextiles
 

Recently uploaded

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 

Recently uploaded (20)

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 

International Journal of Engineering and Science Invention (IJESI)

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 8 ǁ August 2013 ǁ PP.10-15 www.ijesi.org 10 | Page Moisture Content Effect on Sliding Shear Test Parameters in Woven Geotextile Reinforced Pilani Soil Kamalesh Kumar1 , Anmol Verma2 , Aman Aggarwal3 1 Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031 2 Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031 3 Department of Civil Engineering, Birla Institute of Technology & Science, Pilani-333031 ABSTRACT: Woven geotextile is widely used as reinforcing material in soil. Adhesion and interface friction are the primary parameters affecting reinforced soil performance under these conditions. They are determined using sliding shear test in the laboratory. Soil gradation, plasticity, in-situ dry density, moisture content and surface characteristics of the geotextile are important parameters affecting them. In the present experimental study, effect of moisture content on adhesion and on interface friction has been studied for local soil reinforced with woven geotextile. Trend of variation has been explained. Practical significance of the study has also been discussed. KEYWORDS: Adhesion, Interface friction, Local soil, Moisture content, Sliding shear test, Woven Geotextile. I. INTRODUCTION The term “Geosynthetics” essentially includes family of materials. These materials are used in conjunction with soil to improve its geotechnical performance in a specific geotechnical context. These materials include geotextiles, geomembranes as well as host of other products such as geogrids, geonets, geocomposites, geosynthetic clay liners, geopipes, geobags etc. While in soil, geosynthetics perform functions, such as reinforcement, separator, filtration, drainage and moisture barrier. Use of geosynthetics as reinforcing material in soil is one of its primary applications. While functioning as reinforcing material in soil, geosynthetics ensures improved response of soil to loading. It also reduces disturbing shear forces. Consequently, steep slopes can be constructed or an embankment of increased height can be built on soft soil. In pavements, geosynthetics, owing to their membrane action induces tensile forces, which controls deformation and significantly improves pavement performance. While being used as reinforcing material in soil, the interface friction angle as well as adhesion between geosynthetic and soil are the primary and most contentious variables used. The tensile stress-strain behavior of geotextile is also significant. An understanding of soil/geosynthetic interface’s shear strength is essential to the design and stability analysis of geosynthetically reinforced soil structures. An interface with a stronger shearing resistance in a geosynthetically lined slope can reduce the tensile forces mobilized in the geosynthetics, as well as increase the safe slope inclination [1], [2]. The shear strength of the soil/geosynthetic interface is also essential to understand the behavior of the sub-grade and base layers of roads. Sliding shear testing is one of the techniques used in laboratory to determine interface friction angle as well as adhesion between geotextile and soil. In sliding shear test, sliding of soil mass over a stationary reinforcement takes place. From the mechanics point of view the sliding test is akin to kinetic or rolling friction condition. In sliding shear tests, the soil movement is minimum at the interface, since the movement of soil is restrained by reinforcement, and increases with distance away from it (Figure 1) [3]. Figure 1: Sliding shear test [3]
  • 2. Moisture Content Effect On Sliding Shear… www.ijesi.org 11 | Page The above relative movement induces constant normal stress condition for sliding shear test. Adhesion and interface friction angle values obtained from sliding shear tests can be used for designing a footing resting on dense sand reinforced with stiff reinforcement, where soil slides over the stationary reinforcement (Figure Figure 2: Sliding resistance (dense sand) [3] In sliding shear test involving geotextiles as reinforcing material, an wooden block of appropriate dimensions is selected. The dimension of wooden block is such that it just fits in the lower half of standard shear box used in direct shear testing. The geotextile material which is to be used as reinforcing material is glued on the top surface of the aforementioned wooden block using appropriate adhesive. Experimental soil at required dry density (which is usually close to in-situ dry density) is compacted only in the upper half of shear box. Experiment similar to direct shear testing is then conducted at different normal stresses to obtain corresponding failure shear stresses. Using the results of the aforementioned experiment, adhesion as well as interface friction angle between geotextile and soil is determined. Technique is same as cohesion and angle of internal friction determination in direct shear testing. Testing is conducted under fully drained conditions. Usefulness of experiment is limited to freely draining soils. Soil gradation, plasticity, in-situ dry density, moisture content and surface characteristics of the geotextile are important parameters affecting adhesion as well as interface friction angle between geotextile and soil. It was concluded that the test using a large solid block as the lower shear box is the best at replicating the testing results of the soil/geotextile interface [4]. It has been stated that the geotextile and geomembrane can be tested with a solid block or soil in the lower part of the shear box, while the geogrid must be tested by a device in which both parts of the shear test device have to be filled with soil [5]. Geotextile is one of the geosynthetics commonly used as reinforcing agent in soil. It could be woven, non-woven or knitted type. In the present study woven geotextile has been used as reinforcing material in the soil. Large numbers of geotextiles are of woven type. They can be sub-divided into several categories based upon their method of manufacture. They were the first to be developed from synthetic fibers. Woven geotextiles are manufactured by adopting techniques which are similar to weaving usual clothing textiles. This type has the characteristic appearance of two sets of parallel threads or yarns. The yarn running along the length is called warp and the one which is perpendicular is called weft. The majority of low to medium strength woven geotextile is manufactured from polypropylene fiber. This can be in the extruded tape, silt film, monofilament or multifilament form. Usually a combination of yarn types is used in the warp and weft directions. Objective is to optimize performance as well as cost [6]. Higher permeability is obtained when monofilament and multifilament form of polypropylene fiber is used in woven geotextile manufacture. Experimental soil has been collected from Birla Institute of Technology & Science, Pilani campus. Sliding shear testing of woven geotextile reinforced experimental soil has been conducted at four different moisture contents. Variation of adhesion and interface friction angle with moisture content has been thus investigated. Practical significane of the study has also been discussed. II. MATERIALS USED The materials used in this study were local soil, woven geotextile and ordinary tap water. Woven geotextile was glued on wooden block which was having 6cm x 6cm plan area. Dimensions of the wooden block was such that it just fitted into the lower half of standard shear box. This shear box was used in present study and its inner plan area was also 6cm x 6cm. Local soil used in the study was collected from Birla Institute of Technology & Science, Pilani campus. Soil was collected from ground surface using core cutter technique. Standard core cutter was used for this purpose. The collected soil had in-situ water content 10%, in-situ bulk density 1.922 gm/cc and in-situ dry density 1.747 gm/cc. Specific gravity of this experimental soil using pycnometer was found to be 2.577. Particle
  • 3. Moisture Content Effect On Sliding Shear… www.ijesi.org 12 | Page size distribution of experimental soil is shown in Table 1. Its particle size distribution curve is also shown in Figure 3. All the experimental soil used in sieve analysis was found to pass through 4.75mm sieve and only 2.4% was found to be finer than 75µ sieve indicating that the soil was sand type. From particle size distribution curve of Figure 3, it was found that uniformity coefficient of the experimental soil was 2.89 & its coefficient of curvature was 0.96 indicating it to be poorly graded sand & is of freely draining type. Table 1: Particle size distribution of experimental soil Particle Size 2.36mm 1.18mm 600µ 300µ 150µ 75µ Pan % Finer 97.4 92.8 91.6 67.2 34.0 2.4 0 Figure 3: Particle size distribution curve of experimental soil III. EXPERIMENTAL DETAILS Sliding shear testing of experimental soil was conducted at in-situ dry density of 1.747 gm/cc. First sliding shear testing was conducted at in-situ water content, which was 10%. Soil which was collected from field using core cutter was used for this purpos e. Volume of the upper half of shear box (after fitting woven geotextile glued wooden block in the lower half) was found to be 99cm3 . Hence, in order to get 1.747 gm/cc dry density, bulk weight of in-situ soil compacted in upper half of shear box was 190.2gm. Water present in soil at this 10% water content was in-situ water. Experimental soil collected from field was then oven dried for 24 hours. The dry soil at 0% water content was also subjected to sliding shear testing at 1.747 gm/cc dry density. Weight of dry soil thus compacted in upper half of shear box was thus 172.9gm. Results of aforementioned two sliding shear testing experiments have been summarized in Table 2. It is also plotted in Figure 4. Table 2: Sliding shear test results (In-situ & dry soil sample) Normal stress (kg/cm2 ) Failure shear stress (kg/cm2 ) (In-situ soil sample) Failure shear stress (kg/cm2 ) (Dry soil sample) 0.0491 0.0982 0.0675 0.0694 0.1166 0.0920 0.0986 0.1289 0.1105 0.1388 0.1596 0.1350
  • 4. Moisture Content Effect On Sliding Shear… www.ijesi.org 13 | Page Figure 4: Sliding shear test results (In-situ & dry soil sample) For third sliding shear testing, required amount of tap water was added in oven dried experimental soil to get 5% water content in it. This testing was also conducted at 1.747gm/cc dry density. Bulk weight of tap water mixed compacted soil in upper half of shear box was thus 181.6gm. Sliding shear testing was also conducted at 15% water content in oven dried experimental soil by adding required amount of tap water in it. Like previous three sliding shear tests, this test was also conducted at 1.747gm/cc dry density. Bulk weight of tap water mixed compacted soil in upper half of shear box was thus 198.9gm. Results of these two sliding shear testing experiments have been summarized in Table 3. It is also plotted in Figure 5. Table 3: Sliding shear test results (Soil sample at 5% & 15% water contents) Normal stress (kg/cm2 ) Failure shear stress (kg/cm2 ) (Soil sample at 5% water content) Failure shear stress (kg/cm2 ) (Soil sample at 15% water content) 0.0491 0.0982 0.0859 0.0694 0.1227 0.1105 0.0986 0.1473 0.1350 0.1388 0.1596 0.1596 Figure 5: Sliding shear test results (Soil sample with 5% & 15% water content) Adhesion and interface friction angle values between experimental soil and woven geotextile at tested water contents have been shown in Table 4. They have also been plotted in Figures 6 & 7 respectively. Table 4: Adhesion & interface friction angle values at tested water contents Tested water content Adhesion (kg/cm2 ) Interface friction angle (deg.) 0% 0.0372 35.795 5% 0.0619 33.731 10% (In-situ) 0.0676 33.216 20% 0.0743 31.566
  • 5. Moisture Content Effect On Sliding Shear… www.ijesi.org 14 | Page Figure 6: Variation of adhesion between tested soil & woven geotextile with water content Figure 7: Variation of interface friction angle between tested soil & woven geotextile with water content IV. DISCUSSION ON EXPERIMENTAL RESULTS In-situ experimental soil of present study has negligible cohesion. Its angle of internal friction is around 280 . These values are under similar conditions of direct shear testing as reported in present study. In the present study it was observed that this in-situ soil, when reinforced with woven geotextile gave adhesion value of 0.0676kg/cm2 and interfacial friction angle value of 33.2160 under sliding shear testing conditions. Hence there will be substantial shear strength increase if woven geotextile is used as reinforcing material in the tested soil under shallow footing conditions at appropriate place & location in the in-situ soil. From Figure 6 it is clear that adhesion between tested soil and woven geotextile increases as water content increases from 0% to 20% under sliding shear testing conditions. Adhesion is the tendency of dissimilar particles or surfaces to cling to one another. The intermolecular forces responsible for adhesion fall into the categories of chemical adhesion, dispersive adhesion, and diffusive adhesion [7]. These effects are enhanced as water content increases resulting in increased adhesion. From Figure 7 it is clear that interface friction angle between tested soil and woven geotextile decreases as water content increases from 0% to 20% under sliding shear testing conditions. If substantial water is present in soil sample, it has lubricating effect at the interface between soil and woven geotextile [8]. This leads to decrease in interface friction between soil and woven geotextile. As per geotechnical design requirement, if water content is altered from its in-situ value in the experimental soil, desired adhesion as well as interface friction angle can be obtained at the interface between experimental soil and woven geotextile. This also will have practical application when woven geotextile is used as reinforcing material in tested soil under shallow footing conditions.
  • 6. Moisture Content Effect On Sliding Shear… www.ijesi.org 15 | Page REFERENCES [1]. C.N. Liu, and R.B. Gilbert, Simplified method for estimating geosynthetic loads in landfill liner side slopes during filling. Geosynthetics International 10(1), 2003, 24–33. [2]. E.M. Palmeira, and H.N.L. Viana, Effectiveness of geogrids as inclusions in cover soils of slopes of waste disposal areas. Geotextiles and Geomembranes 21(5), 2003, 317–337. [3]. S. Saran, Reinforced Soil and its Engineering Applications (I.K. International Pvt. Ltd., New Delhi, 2005). [4]. E.A. Richards, and J.D. Scott, Soil Geotextile Frictional Properties. Second Canadian Symposium on Geotextiles and Geomenbranes, Edmonton, 1985, 13–24. [5]. R.A. Jewell, Soil Reinforcement with Geotextiles (Thomas Telford, London, 1996). [6]. B.J. Agrawal, Geotextile: it’s application to civil Engineeering – Overview. National Conference on Recent Trends in Engineering & Technology, V.V. Nagar, Gujarat, 2011, 1-6. [7]. http://en.wikipedia.org/wiki/Adhesion. [8]. S.L. Zhiling, and J. Makinda, Drained Direct Shear Testing on Soil-Geotextile Interfaces. UMT 11th International Annual Symposium on Sustainability Science and Management, Terengganu, Malaysia, 2012, 1144-1151.