SlideShare a Scribd company logo
1 of 4
Download to read offline
Better Batteries, Better World
Why Improved Energy Storage Will Matter More than Fracking and
Renewable Energy
By James Manyika and Michael Chui
Believe it or not, the electric storage battery -- a technology that has been around since the eighteenth
century -- could change the economic course of the twenty-first century. Thanks to breakthroughs on
the horizon, batteries qualify as one of 12 disruptive technologies that the McKinsey Global Institute
has identified as part of a recent report on innovations that will change the way the world works.
Each game-changing technology could affect hundreds of millions of people, create hundreds of
billions of dollars a year in economic value, and reconfigure large sectors of the global economy.
Advanced batteries, for their part, have the potential to shape global demand for fossil fuels, increase
the use of renewables in the electric grid, bring reliable electric power to businesses in developing
economies, and extend electricity -- and therefore access to the modern world -- to millions of the
world’s poorest.
All told, energy storage could have as much as $635 billion a year in economic impact, which is a
measurement of the value created by the use of a technology as well as the revenue that it generates
for the companies that produce it. Value to users includes improved performance, better costs, greater
convenience, time savings, and other benefits. The total value that we estimate could be created
annually in 2025 by energy storage -- mostly achieved through fuel savings -- is almost equivalent to
the GDP of Saudi Arabia and more than the potential estimated impact for such high-profile
developments as 3-D printing, hydraulic fracturing, and renewable energy. Not bad for a technology
that has been evolving for more than 200 years and can be found anywhere in both developing and
advanced economies.
By definition, energy storage is any system or technology that allows you to generate energy at one
time and use it at another. One of the most common forms of energy storage is pumped hydroelectric
storage (PHES), which involves pumping water uphill into a reservoir and releasing it later to flow
through a turbine and generate more electricity. Hydro companies use electricity to pump the water
uphill when the cost of electricity is low and generate more power from the water when rates are high.
Another common form of energy storage, of course, is your average battery.
In our work, we focused on the battery because that technology, unlike PHES, is undergoing a rapid
evolution that could shake up the entire industry. In the next ten to 15 years, advances in the
components that go into batteries could double storage capacity, reduce costs, and extend the lives of
rechargeable batteries, making it more practical for consumers to use stored energy in more places.
The advances that enable these performance gains include new types of cathodes (the positive
terminal in a battery cell) that eliminate dead zones and boost performance. They also include new
kinds of anodes (negative terminals) made of silicon that could increase cell capacity by 30 percent
over today’s graphite components. Further out, there may be additional advances through the
introduction of nanomaterials that have exceptional powers of conductivity.
Most of the economic gains from better batteries would come through their use in electric-powered
motor vehicles. With advances in storage capacity, falling costs for components, and more efficient
battery manufacturing, fully electric and partially electric (hybrid and plug-in hybrid) cars could
become more attractive to consumers. Today, the total cost of ownership over five years for a compact
hybrid is estimated by automotive sites such as Edmunds.com to be around 39 percent higher than for
a comparable internal-combustion model. By 2025, the total cost of owning a hybrid or a conventional
car could be about equal, assuming gasoline prices of $2.85 a gallon or higher. With equal cost of
ownership, the share of hybrids in annual global auto sales could rise from about three percent today
to anywhere from 20 to 40 percent in 2025. The total value of using less (or no) fossil fuels in these
partially or fully electric vehicles could be as much as $415 billion a year in 2025.
In developing economies, battery storage could have a huge impact on economic growth. Developing
economies suffer from two problems that better batteries can help address. The first is the
unreliability of electrical supplies. In these countries, outages average from two to 70 hours per
month. That is bad enough for private citizens, but it really throws sand in the works of industry,
which accounts for 43 percent of power in developing economies. In a recent World Bank survey, 55
percent of firms in the Middle East and North Africa, 54 percent in South Asia, and 49 percent in sub-
Saharan Africa said that the lack of access to reliable electric power hurt their ability to do business.
Almost all large companies in developing economies invest in backup power, but the millions of small
firms that cannot afford to do so are at the mercy of erratic electric supplies. Batteries in the electric
system that would supply power when generators fail, allowing businesses to continue operating,
could have an annual economic impact of $25 billion to $100 billion by 2025.
The second challenge in less developed economies is bringing electricity to remote locations and other
areas beyond the reach of the electrical grid. Only 63 percent of rural populations in developing
economies have access to electricity, which severely limits their chances at development and their
access to critical services. Based on current population projections, more than one billion people
worldwide could be without electricity in 2025. The value of providing access to electricity through
batteries in remote areas alone could amount to anywhere from $2 billion to $50 billion annually by
2025. That estimate assumes only 60 kilowatt hours of electricity per month per household, which
would be enough for lighting, some television, cell-phone charging, a radio, and a fan. Nevertheless,
with improved batteries and solar chargers -- a kit that can be leased at very low prices -- millions of
the world’s poorest people can get at least a toehold in the global economy.
Even more intriguing than automobiles and energy use in developing countries is what is known as
grid storage -- using batteries on the electrical grid to store energy. Grid storage can be used in several
ways to improve the reliability, quality, and affordability of electricity. An even bigger benefit could
come from integrating power from renewable energy sources into the power supply. Today, even if a
local electric company is fully committed to using green energy, it would have a hard time doing so
because wind and solar power are intermittent: When the wind does not blow and the sun does not
shine, windmills and solar panels do not produce. With battery storage, electricity from those sources
can be stored and used whenever it is needed. Battery storage not only can accommodate electricity
generated on wind and solar farms but also from rooftop solar panels used on thousands of homes and
office buildings.
Battery storage would allow utilities to accept excess electricity from these sources whenever it arrives
and expend it whenever needed. Battery storage could also allow consumers --wealthy ones, at least --
to store their own excess energy and live off the grid. Given concerns over the security of the electric
supply, the military and large industrial users might adopt renewables and battery storage to go off
the grid as well.
Even now, battery storage can improve the economics of electricity production and distribution
around the world. Today, electric companies are forced to build excess capacity so that they can meet
peak demand, which only may occur a few days a year when temperatures soar and air-conditioning
goes full blast for days on end. With battery storage, electricity generated at times of low demand and
low cost can be tapped during periods of highest demand and prices. How quickly utilities adopt
battery storage as a way to deal with peak loads is an open question. Based on the current price of
natural gas, especially in North America, utilities might find it cheaper to build and run extra gas-fired
plants for peak hours. Even so, we estimate that the economic impact of using energy storage for peak
load shifting would be between $10 billion and $25 billion annually in 2025.
Finally, battery storage can help utilities improve the quality of electricity. When there are sudden
spikes or drops in demand on the electric grid, the load on the system can go out of balance, causing
the voltage to drop. To head off these fluctuations, which can wreak havoc with industrial equipment
and electronics, utilities set aside one to four percent of additional generating capacity that can be
ramped up as needed to regulate the volatility. If battery storage replaced the entire four percent
reserve capacity, the potential economic impact could be $25 billion to $35 billion annually in 2025,
net of storage costs.
Capturing the potential economic value of advanced batteries will depend on clearing technical,
economic, and regulatory obstacles. For example, before the full benefits of the new silicon anodes can
be realized, scientists will need to eliminate the tendency of these components to crack. To capture a
larger percent of global auto sales, hybrid vehicles might have to hit an even lower cost of ownership
than we predict, since most of the growth in global auto sales between now and 2025 will occur in
developing economies. Finally, to realize the benefits available from grid storage and peak load
shifting, utility regulations would have to evolve. If regulators continue to insist, as they do today, that
utilities must have an extra four percent of capacity in reserve to meet peak demand, utilities have no
incentive to invest in storage for peak load shifting. Assuming these challenges can be met, the good
old battery will earn its place among the great technologies of our time.
(This article was published in foreignaffairs.com)

More Related Content

Recently uploaded

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Recently uploaded (20)

Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​Elevate Developer Efficiency & build GenAI Application with Amazon Q​
Elevate Developer Efficiency & build GenAI Application with Amazon Q​
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 

Featured

How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
ThinkNow
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Featured (20)

Product Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage EngineeringsProduct Design Trends in 2024 | Teenage Engineerings
Product Design Trends in 2024 | Teenage Engineerings
 
How Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental HealthHow Race, Age and Gender Shape Attitudes Towards Mental Health
How Race, Age and Gender Shape Attitudes Towards Mental Health
 
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdfAI Trends in Creative Operations 2024 by Artwork Flow.pdf
AI Trends in Creative Operations 2024 by Artwork Flow.pdf
 
Skeleton Culture Code
Skeleton Culture CodeSkeleton Culture Code
Skeleton Culture Code
 
PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 

Better batteries better world

  • 1. Better Batteries, Better World Why Improved Energy Storage Will Matter More than Fracking and Renewable Energy By James Manyika and Michael Chui Believe it or not, the electric storage battery -- a technology that has been around since the eighteenth century -- could change the economic course of the twenty-first century. Thanks to breakthroughs on the horizon, batteries qualify as one of 12 disruptive technologies that the McKinsey Global Institute has identified as part of a recent report on innovations that will change the way the world works. Each game-changing technology could affect hundreds of millions of people, create hundreds of billions of dollars a year in economic value, and reconfigure large sectors of the global economy. Advanced batteries, for their part, have the potential to shape global demand for fossil fuels, increase the use of renewables in the electric grid, bring reliable electric power to businesses in developing economies, and extend electricity -- and therefore access to the modern world -- to millions of the world’s poorest. All told, energy storage could have as much as $635 billion a year in economic impact, which is a measurement of the value created by the use of a technology as well as the revenue that it generates for the companies that produce it. Value to users includes improved performance, better costs, greater convenience, time savings, and other benefits. The total value that we estimate could be created annually in 2025 by energy storage -- mostly achieved through fuel savings -- is almost equivalent to the GDP of Saudi Arabia and more than the potential estimated impact for such high-profile developments as 3-D printing, hydraulic fracturing, and renewable energy. Not bad for a technology that has been evolving for more than 200 years and can be found anywhere in both developing and advanced economies.
  • 2. By definition, energy storage is any system or technology that allows you to generate energy at one time and use it at another. One of the most common forms of energy storage is pumped hydroelectric storage (PHES), which involves pumping water uphill into a reservoir and releasing it later to flow through a turbine and generate more electricity. Hydro companies use electricity to pump the water uphill when the cost of electricity is low and generate more power from the water when rates are high. Another common form of energy storage, of course, is your average battery. In our work, we focused on the battery because that technology, unlike PHES, is undergoing a rapid evolution that could shake up the entire industry. In the next ten to 15 years, advances in the components that go into batteries could double storage capacity, reduce costs, and extend the lives of rechargeable batteries, making it more practical for consumers to use stored energy in more places. The advances that enable these performance gains include new types of cathodes (the positive terminal in a battery cell) that eliminate dead zones and boost performance. They also include new kinds of anodes (negative terminals) made of silicon that could increase cell capacity by 30 percent over today’s graphite components. Further out, there may be additional advances through the introduction of nanomaterials that have exceptional powers of conductivity. Most of the economic gains from better batteries would come through their use in electric-powered motor vehicles. With advances in storage capacity, falling costs for components, and more efficient battery manufacturing, fully electric and partially electric (hybrid and plug-in hybrid) cars could become more attractive to consumers. Today, the total cost of ownership over five years for a compact hybrid is estimated by automotive sites such as Edmunds.com to be around 39 percent higher than for a comparable internal-combustion model. By 2025, the total cost of owning a hybrid or a conventional car could be about equal, assuming gasoline prices of $2.85 a gallon or higher. With equal cost of ownership, the share of hybrids in annual global auto sales could rise from about three percent today to anywhere from 20 to 40 percent in 2025. The total value of using less (or no) fossil fuels in these partially or fully electric vehicles could be as much as $415 billion a year in 2025. In developing economies, battery storage could have a huge impact on economic growth. Developing economies suffer from two problems that better batteries can help address. The first is the unreliability of electrical supplies. In these countries, outages average from two to 70 hours per month. That is bad enough for private citizens, but it really throws sand in the works of industry, which accounts for 43 percent of power in developing economies. In a recent World Bank survey, 55 percent of firms in the Middle East and North Africa, 54 percent in South Asia, and 49 percent in sub- Saharan Africa said that the lack of access to reliable electric power hurt their ability to do business. Almost all large companies in developing economies invest in backup power, but the millions of small firms that cannot afford to do so are at the mercy of erratic electric supplies. Batteries in the electric system that would supply power when generators fail, allowing businesses to continue operating, could have an annual economic impact of $25 billion to $100 billion by 2025. The second challenge in less developed economies is bringing electricity to remote locations and other areas beyond the reach of the electrical grid. Only 63 percent of rural populations in developing economies have access to electricity, which severely limits their chances at development and their access to critical services. Based on current population projections, more than one billion people
  • 3. worldwide could be without electricity in 2025. The value of providing access to electricity through batteries in remote areas alone could amount to anywhere from $2 billion to $50 billion annually by 2025. That estimate assumes only 60 kilowatt hours of electricity per month per household, which would be enough for lighting, some television, cell-phone charging, a radio, and a fan. Nevertheless, with improved batteries and solar chargers -- a kit that can be leased at very low prices -- millions of the world’s poorest people can get at least a toehold in the global economy. Even more intriguing than automobiles and energy use in developing countries is what is known as grid storage -- using batteries on the electrical grid to store energy. Grid storage can be used in several ways to improve the reliability, quality, and affordability of electricity. An even bigger benefit could come from integrating power from renewable energy sources into the power supply. Today, even if a local electric company is fully committed to using green energy, it would have a hard time doing so because wind and solar power are intermittent: When the wind does not blow and the sun does not shine, windmills and solar panels do not produce. With battery storage, electricity from those sources can be stored and used whenever it is needed. Battery storage not only can accommodate electricity generated on wind and solar farms but also from rooftop solar panels used on thousands of homes and office buildings. Battery storage would allow utilities to accept excess electricity from these sources whenever it arrives and expend it whenever needed. Battery storage could also allow consumers --wealthy ones, at least -- to store their own excess energy and live off the grid. Given concerns over the security of the electric supply, the military and large industrial users might adopt renewables and battery storage to go off the grid as well. Even now, battery storage can improve the economics of electricity production and distribution around the world. Today, electric companies are forced to build excess capacity so that they can meet peak demand, which only may occur a few days a year when temperatures soar and air-conditioning goes full blast for days on end. With battery storage, electricity generated at times of low demand and low cost can be tapped during periods of highest demand and prices. How quickly utilities adopt battery storage as a way to deal with peak loads is an open question. Based on the current price of natural gas, especially in North America, utilities might find it cheaper to build and run extra gas-fired plants for peak hours. Even so, we estimate that the economic impact of using energy storage for peak load shifting would be between $10 billion and $25 billion annually in 2025. Finally, battery storage can help utilities improve the quality of electricity. When there are sudden spikes or drops in demand on the electric grid, the load on the system can go out of balance, causing the voltage to drop. To head off these fluctuations, which can wreak havoc with industrial equipment and electronics, utilities set aside one to four percent of additional generating capacity that can be ramped up as needed to regulate the volatility. If battery storage replaced the entire four percent reserve capacity, the potential economic impact could be $25 billion to $35 billion annually in 2025, net of storage costs. Capturing the potential economic value of advanced batteries will depend on clearing technical, economic, and regulatory obstacles. For example, before the full benefits of the new silicon anodes can be realized, scientists will need to eliminate the tendency of these components to crack. To capture a
  • 4. larger percent of global auto sales, hybrid vehicles might have to hit an even lower cost of ownership than we predict, since most of the growth in global auto sales between now and 2025 will occur in developing economies. Finally, to realize the benefits available from grid storage and peak load shifting, utility regulations would have to evolve. If regulators continue to insist, as they do today, that utilities must have an extra four percent of capacity in reserve to meet peak demand, utilities have no incentive to invest in storage for peak load shifting. Assuming these challenges can be met, the good old battery will earn its place among the great technologies of our time. (This article was published in foreignaffairs.com)