SlideShare uma empresa Scribd logo
1 de 20
Baixar para ler offline
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
DOI: 10.5121/ijitmc.2016.4203 35
ON MODIFICATION OF PROPERTIES OF
P-N-JUNCTIONS DURING OVERGROWTH
E.L. Pankratov1
, E.A. Bulaeva1,2
1
Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950,
Russia
2
Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky
street, Nizhny Novgorod, 603950, Russia
ABSTRACT
In this paper we consider influence of overgrowth of doped by diffusion and ion implantation areas of hete-
rostructures on distributions of concentrations of dopants. Several conditions to increase sharpness of p-n-
junctions (single and framework bipolar transistors), which were manufactured during considered technol-
ogical process, have been determined. At the same time we analyzed influence of speed of overgrowth of
doped areas and mechanical stress in the considered heterostructure on distribution of concentrations of
dopants in the structure.
KEYWORDS
Diffusion-junction heterorectifier; implanted-junction heterorectifier; overgrowth of doped area; analytical
approach for modeling
1. INTRODUCTION
In the present time they are several approaches could be used to manufacture p-n-junctions diffu-
sion of dopants in a homogenous sample or an epitaxial layer of heterostructure, implantation of
ions of dopants in the same situations or doping during epitaxial growth [1-7]. The same ap-
proaches could be used to manufacture systems of p-n-junctions: bipolar transistors and thyris-
tors. The first and the second ways of doping are preferable in comparison with the third one be-
cause the approaches give us possibility to dope locally materials during manufacture integrated
circuits easily in comparison with epitaxial growth. Using diffusion and ion implantation in ho-
mogenous sample to manufacturing p-n-junctions leads to production fluently varying and wide
distributions of dopants. One of actual problems is increasing sharpness of p-n- junctions [5,7].
The increasing of sharpness gives us possibility to decrease switching time of p-n-junctions. In-
creasing of homogeneity of dopant distribution in enriched by the dopant area is also attracted an
interest [5]. The increasing of homogeneity gives us possibility to decrease local overheat of the
doped materials due to streaming of electrical current during operating of p-n-junction or to de-
crease depth of p-n-junction for fixed value of local overheats. One way to increase sharpness of
p-n-junction based on using near-surficial (laser or microwave) types of annealing [8-15].
Framework the types of annealing one can obtain near-surficial heating of the doped materials. In
this situation due to the Arrhenius low one can obtain increasing of dopant diffusion coefficient of
near-surficial area in comparison with volumetric dopant diffusion coefficient. The increasing of
dopant diffusion coefficient of near-surficial area leads to increasing of sharpness of p-n-junction.
The second way to increase sharpness of p-n-junction based on using high doping of materials. In
this case contribution of nonlinearity of diffusion process increases [4]. The third way to increase
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
36
sharpness of p-n-junction is using of inhomogeneity of heterostructure [16,17]. Framework the
approach we consider simplest heterostructure, which consist of substrate and epitaxial layer. One
can find increasing of sharpness of p-n-junction after annealing with appropriate annealing time
in the case, when dopant diffusion coefficient in the substrate is smaller, than in the epitaxial
layer. The fourth way to increase sharpness of p-n-junction is radiation processing of materials.
The radiation processing leads to radiation-enhanced diffusion [18]. However using radiation
processing of materials leads to necessity of annealing of radiation defects. Density of elements of
integrated circuits could be increases by using mismatch-induced stress [19]. However one could
obtain increased unsoundness of doped material (for example, to generation of dislocation of dis-
agreement) by using the approach [7].
The considered approaches gives a possibility to increase sharpness of p-n-junction with increas-
ing of homogeneity of dopant distribution in enriched by the dopant area. Using combination of
the above approaches gives us possibility to increase sharpness of p-n-junction and increasing of
homogeneity of dopant distribution in enriched area at one time.
z
D(z),
P(z)
D2
D3
0 Lz
a
fC impl(z)
fC diff(z)
P2
P3
Substrate
Epitaxial layer
Overlayer
D1
P1
Fig. 1. Substrate, epitaxial and overlayers framework heterostructure
Framework this paper we consider a substrate with known type of conductivity (n or p) and an
epitaxial layer, included into a heterostructure. The epitaxial layer have been doped by diffusion
or by ion implantation to manufacture another type of conductivity (p or n). Farther we consider
overgrowth of the epitaxial layer by an overlayer (see Fig. 1). The overlayer has type of conduc-
tivity, which coincide with type of conductivity of the substrate. In this paper we analyzed influ-
ence of overgrowth of the doped epitaxial layer on distribution of dopants in the considered hete-
rostructure.
2. METHOD OF SOLUTION
In this section we calculate spatio-temporal distribution of concentration of dopant in the consi-
dered heterostructure to solve our aim. To calculate the distribution we solved the following
boundary problem [1,20-22]
( ) ( ) ( ) ( ) +






∂
∂
∂
∂
+






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C ,
,
,
,
,
,
,
,
,
,
,
,
(1)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
37
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
S
L
t
v
S
S
W
d
t
W
y
x
C
t
z
y
x
T
k
D
y
W
d
t
W
y
x
C
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ .
Boundary and initial conditions for our case could be written as
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
C
,
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= y
L
x
y
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
−
= t
v
z
z
t
z
y
x
C
,
( ) 0
,
,
,
=
∂
∂
= z
L
x
z
t
z
y
x
C
, C(x,y,z,0)=fC(x,y,z).
In the above relations we used the function C (x,y,z,t) as the spatio-temporal distribution of con-
centration of dopant; Ω is the atomic volume; surface concentration of dopant on interface be-
tween layers of heterostructure could be determined as the following integral ( )
∫
−
z
L
t
v
z
d
t
z
y
x
C ,
,
,
(we assume, that the interface between layers of heterostructure is perpendicular to the direction
Oz); surface gradient we denote as symbol ∇S; µ(x,y,z,t) is the chemical potential (reason of ac-
counting of the chemical potential is mismatch-induced stress); the parameters D and DS are the
coefficients of volumetric and surface diffusions. One can find the surface diffusions due to mis-
match-induced stress. Diffusion coefficients depends on temperature and speed of heating and
cooling of heterostructure, properties of materials of heterostructure, spatio-temporal distributions
of concentrations of dopant and radiation defects after ion implantation. Approximations of these
dependences could be approximated by the following functions [22,23]
( ) ( )
( )
( ) ( )
( ) 







+
+






+
= 2
*
2
2
*
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
D S
L
S
S ς
ς
ξ γ
γ
. (2)
Functions DL(x,y,z,T) and DLS(x,y,z,T) described dependences of diffusion coefficients on coordi-
nate (due to presents several layers in heterostructure, manufactured by using different materials)
and temperature of annealing T (due to Arrhenius law); function P(x,y,z,T) describes dependence
of limit of solubility of dopant on coordinate and temperature; parameter γ could be integer and
depends on properties of materials of heterostructure [23]; V(x,y,z,t) is the spatio-temporal con-
centration of radiation vacancies; V*
is the equilibrium concentration of vacancies. Concentration-
al dependence of dopant diffusion coefficients has been described in details in [23].
We determine distributions of concentrations of point defects in space and time as solutions of the
following system of equations [1,20-22]
( ) ( ) ( ) ( ) ( ) ( )×
−






+






= T
z
y
x
k
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
I V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
−






+
×
∂
∂
∂
∂
(3)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
38
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
S
I
L
t
v
S
S
I
W
d
t
W
y
x
I
t
z
y
x
T
k
D
y
W
d
t
W
y
x
I
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ
( ) ( ) ( ) ( ) ( ) ( )×
−






+






= T
z
y
x
k
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )+
−






+
× t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, ,
2
∂
∂
∂
∂
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
VS
L
t
v
S
VS
W
d
t
W
y
x
V
t
z
y
x
T
k
D
y
W
d
t
W
y
x
V
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ .
Boundary and initial conditions for these equations could be written as
( ) 0
,
,
,
0
=
=
x
x
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
=
= x
L
x
x
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
0
=
=
y
y
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
=
= y
L
y
y
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
=
−
= t
v
z
z
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
=
= z
L
z
z
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
0
=
=
x
x
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
=
= x
L
x
x
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
0
=
=
y
y
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
=
= y
L
y
y
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
=
−
= t
v
z
z
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
=
= z
L
z
z
t
z
y
x
V
∂
∂
,
I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (4)
Here I(x,y,z,t) is the distribution of concentration of radiation interstitials in space and time; I*
is
the equilibrium concentration interstitials; DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T), DVS(x,y,z,T) are the
coefficients of volumetric and surface diffusion; terms V2
(x,y,z,t) and I2
(x,y,z,t) corresponds to
generation divacancies and analogous complexes of interstitials (see, for example, [22] and ap-
propriate references in this work); the functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) described
dependences of parameters of recombination of point defects and generation their complexes on
coordinate and temperature; k is the Boltzmann constant.
We calculate spatio-temporal distributions of concentrations of divacancies ΦV (x,y,z,t) and diin-
terstitials ΦI (x,y,z,t) by solution of the equations [20-22]
( ) ( ) ( ) ( ) ( ) ( )×
+





 Φ
+





 Φ
=
Φ
Φ
Φ T
z
y
x
k
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) +






∫Φ
∇
∂
∂
Ω
+





 Φ
+
×
−
Φ
Φ
z
I
I
L
t
v
I
S
S
I
W
d
t
W
y
x
t
z
y
x
T
k
D
x
z
t
z
y
x
T
z
y
x
D
z
t
z
y
x
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, µ
∂
∂
∂
∂
( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
W
d
t
W
y
x
t
z
y
x
T
k
D
y
I
I
L
t
v
I
S
IS
z
,
,
,
,
,
,
,
,
,
,
,
, 2
,
+






∫Φ
∇
∂
∂
Ω
+
−
Φ
µ (5)
( )
( )
( )
( )
( )
( )×
+





 Φ
+





 Φ
=
Φ
Φ
Φ T
z
y
x
k
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( )
( )
( ) ( ) +






∫Φ
∇
∂
∂
Ω
+





 Φ
+
×
−
Φ
Φ
z
V
V
L
t
v
V
S
S
V
W
d
t
W
y
x
t
z
y
x
T
k
D
x
z
t
z
y
x
T
z
y
x
D
z
t
z
y
x
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, µ
∂
∂
∂
∂
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
39
( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
W
d
t
W
y
x
t
z
y
x
T
k
D
y
V
V
L
t
v
V
S
S z
V
,
,
,
,
,
,
,
,
,
,
,
, 2
,
+






∫Φ
∇
∂
∂
Ω
+
−
Φ
µ .
Boundary and initial conditions could be written as
( ) 0
,
,
,
0
=
Φ
=
x
I
x
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
= x
L
x
I
x
t
z
y
x
∂
∂
,
( ) 0
,
,
,
0
=
Φ
=
y
I
y
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
= y
L
y
I
y
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
−
= t
v
z
I
z
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
= z
L
z
z
t
z
y
x
I
∂
∂
,
( ) 0
,
,
,
0
=
Φ
=
x
V
x
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
= x
L
x
x
t
z
y
x
V
∂
∂
,
( ) 0
,
,
,
0
=
Φ
=
y
V
y
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
= y
L
y
V
y
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
−
= t
v
z
V
z
t
z
y
x
∂
∂
,
( ) 0
,
,
,
=
Φ
= z
L
z
V
z
t
z
y
x
∂
∂
,
ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z). (6)
Here DΦI(x,y,z,T), DΦV(x,y,z,T), DΦIS(x,y,z,T) and DΦVS(x,y,z,T) are the coefficients of volumetric
and surface diffusion; the functions kI(x,y,z,T) and kV(x,y,z,T) described dependences of parame-
ters of decay of complexes of point defects on coordinate and temperature. One can determine
chemical potential µ in the Eq.(1) by the following relation [20]
µ=E(z)Ωσij[uij(x,y,z,t)+uji(x,y,z,t)]/2. (7)
Here E is the tension (Young) modulus;








∂
∂
+
∂
∂
=
i
j
j
i
ij
x
u
x
u
u
2
1
is the deformation tensor; σij is the
stress tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement ten-
sor ( )
t
z
y
x
u ,
,
,
r
; xi, xj are the coordinates x, y, z. The relation (3) could be transformed to the fol-
lowing form
( ) ( ) ( ) ( ) ( ) ( )





+
−








∂
∂
+
∂
∂








∂
∂
+
∂
∂
Ω
= ij
i
j
j
i
i
j
j
i
x
t
z
y
x
u
x
t
z
y
x
u
x
t
z
y
x
u
x
t
z
y
x
u
z
E
t
z
y
x δ
ε
µ 0
,
,
,
,
,
,
2
1
,
,
,
,
,
,
2
,
,
,
( )
( )
( ) ( ) ( ) ( )
[ ]





−
−






−
∂
∂
−
+ ij
k
k
ij
T
t
z
y
x
T
z
z
K
x
t
z
y
x
u
z
z
δ
β
ε
σ
δ
σ
0
0 ,
,
,
3
,
,
,
2
1
,
where σ is the Poisson coefficient; the parameter ε0=(as-aEL)/aEL describes the displacement pa-
rameter with lattice distances of the substrate and the epitaxial layer as, aEL; K is the modulus of
uniform compression; the parameter b describes the thermal expansion; we assume, that the equi-
librium temperature Tr coincides with the room temperature. Components of the displacement
vector could be described by solving the following system of equations [24]
( ) ( ) ( ) ( ) ( )
z
t
z
y
x
y
t
z
y
x
x
t
z
y
x
t
t
z
y
x
u
z xz
xy
xx
x
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
2
2
σ
σ
σ
ρ
( )
( ) ( ) ( ) ( )
z
t
z
y
x
y
t
z
y
x
x
t
z
y
x
t
t
z
y
x
u
z yz
yy
yx
y
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
2
2
σ
σ
σ
ρ
( ) ( ) ( ) ( ) ( )
z
t
z
y
x
y
t
z
y
x
x
t
z
y
x
t
t
z
y
x
u
z zz
zy
zx
z
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
2
2
σ
σ
σ
ρ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
40
where
( )
( )
[ ]
( ) ( ) ( ) ( ) ( )−
∂
∂
+








∂
∂
−
∂
∂
+
∂
∂
+
=
k
k
ij
k
k
ij
i
j
j
i
ij
x
t
z
y
x
u
z
K
x
t
z
y
x
u
x
t
z
y
x
u
x
t
z
y
x
u
z
z
E ,
,
,
,
,
,
3
,
,
,
,
,
,
1
2
δ
δ
σ
σ
( ) ( ) ( )
[ ]
r
T
t
z
y
x
T
z
K
z −
− ,
,
,
β , ρ (z) describes the density of materials of heterostructure. The ten-
sor δij describes the Kronecker symbol. Accounting relation for σij in the previous system of equa-
tions last system of equation could be written as
( ) ( ) ( ) ( )
( )
[ ]
( ) ( ) ( )
( )
[ ]
( )
+
∂
∂
∂






+
−
+
∂
∂






+
+
=
∂
∂
y
x
t
z
y
x
u
z
z
E
z
K
x
t
z
y
x
u
z
z
E
z
K
t
t
z
y
x
u
z
y
x
x
,
,
,
1
3
,
,
,
1
6
5
,
,
,
2
2
2
2
2
σ
σ
ρ
( )
( )
[ ]
( ) ( ) ( ) ( )
( )
[ ]
( ) −
∂
∂
∂






+
+
+








∂
∂
+
∂
∂
+
+
z
x
t
z
y
x
u
z
z
E
z
K
z
t
z
y
x
u
y
t
z
y
x
u
z
z
E z
z
y ,
,
,
1
3
,
,
,
,
,
,
1
2
2
2
2
2
2
σ
σ
( )
( ) ( )
( )
[ ]
( ) ( ) ( ) ( ) ( )+
∂
∂
−








∂
∂
∂
+
∂
∂
+
=
∂
∂
y
t
z
y
x
T
z
K
z
y
x
t
z
y
x
u
x
t
z
y
x
u
z
z
E
t
t
z
y
x
u
z x
y
y ,
,
,
,
,
,
,
,
,
1
2
,
,
, 2
2
2
2
2
β
σ
ρ
( )
( )
[ ]
( ) ( ) ( )
( )
[ ]
( )
( )
+
∂
∂






+
+
+
















∂
∂
+
∂
∂
+
∂
∂
+ 2
2
,
,
,
1
12
5
,
,
,
,
,
,
1
2 y
t
z
y
x
u
z
K
z
z
E
y
t
z
y
x
u
z
t
z
y
x
u
z
z
E
z
y
z
y
σ
σ
( ) ( )
( )
[ ]
( )
( )
( )
y
x
t
z
y
x
u
z
K
z
y
t
z
y
x
u
z
z
E
z
K
y
y
∂
∂
∂
+
∂
∂
∂






+
−
+
,
,
,
,
,
,
1
6
2
2
σ
(8)
( ) ( ) ( )
( )
[ ]
( ) ( ) ( ) ( )
+








∂
∂
∂
+
∂
∂
∂
+
∂
∂
+
∂
∂
+
=
∂
∂
z
y
t
z
y
x
u
z
x
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
z
z
E
t
t
z
y
x
u
z
y
x
z
z
z
,
,
,
,
,
,
,
,
,
,
,
,
1
2
,
,
,
2
2
2
2
2
2
2
2
σ
ρ
( ) ( ) ( ) ( ) ( ) ( ) ( )+
∂
∂
−
















∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
z
t
z
y
x
T
z
z
K
z
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
z
K
z
x
y
x ,
,
,
,
,
,
,
,
,
,
,
,
β
( )
( )
( ) ( ) ( ) ( )
















∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
+
∂
∂
+
z
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
z
t
z
y
x
u
z
z
E
z
z
y
x
z ,
,
,
,
,
,
,
,
,
,
,
,
6
1
6
1
σ
.
Systems of conditions for these equations could be written as
( ) 0
,
,
,
0
=
∂
∂
=
x
x
t
z
y
x
u
r
;
( ) 0
,
,
,
=
∂
∂
= x
L
x
x
t
z
y
x
u
r
;
( ) 0
,
,
,
0
=
∂
∂
=
y
y
t
z
y
x
u
r
;
( ) 0
,
,
,
=
∂
∂
= y
L
y
y
t
z
y
x
u
r
;
( ) 0
,
,
,
=
∂
∂
−
= t
v
z
z
t
z
y
x
u
r
;
( ) 0
,
,
,
=
∂
∂
= z
L
z
z
t
z
y
x
u
r
; ( ) 0
0
,
,
, u
z
y
x
u
r
r
= ; ( ) 0
,
,
, u
z
y
x
u
r
r
=
∞ .
We calculate distribution of concentration of dopant in space in time by method of averaging of
function corrections [25-30]. To use the method we re-write Eqs. (1), (3) and (5) with account
appropriate initial distributions (see Appendix). In future we replace the required concentrations
in right sides of the obtained equations on their average values α1ρ, which are not yet known. The
equations modified after the replacement and solution of these equations are presented in the Ap-
pendix.
We determined average values of the first-order approximations of the considered concentrations
by using the following standard relations [25-30]
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
41
( )
∫ ∫ ∫ ∫
Θ
=
Θ
−
0 0 0
1
1 ,
,
,
1 x y z
L L L
t
v
z
y
x
t
d
x
d
y
d
z
d
t
z
y
x
L
L
L
ρ
α ρ . (9)
Substitution of the solutions of the modified equations into the relation (9) gives a possibility to
obtain appropriate average values in the following form
( )
∫ ∫ ∫ ∫
=
Θ
−
0 0 0
1 ,
,
1 x y z
L L L
t
v
C
z
y
x
C t
d
x
d
y
d
z
d
z
y
x
f
L
L
L
α ,
( )
4
3
4
1
2
3
2
4
2
3
1
4
4
4 a
A
a
a
a
L
L
L
B
a
B
a
A
a z
y
x
I
+
−







 Θ
+
Θ
+
−
+
=
α ,
( ) 





Θ
−
−
∫ ∫ ∫ ∫
Θ
=
Θ
−
z
y
x
II
I
L L L
t
v
I
I
IV
V L
L
L
S
t
d
x
d
y
d
z
d
z
y
x
f
S
x y z
00
1
0 0 0
1
00
1 ,
,
1
α
α
α ,
( )
∫ ∫ ∫ ∫
+
Θ
+
Θ
=
Θ
−
Φ
Φ
0 0 0
20
1
1 ,
,
1 x y z
I
I
L L L
t
v
z
y
x
z
y
x
II
z
y
x
I
t
d
x
d
y
d
z
d
z
y
x
f
L
L
L
L
L
L
S
L
L
L
R
α ,
( )
∫ ∫ ∫ ∫
+
Θ
+
Θ
=
Θ
−
Φ
Φ
0 0 0
20
1
1 ,
,
1 x y z
V
V
L L L
t
v
z
y
x
z
y
x
VV
z
y
x
V
t
d
x
d
y
d
z
d
z
y
x
f
L
L
L
L
L
L
S
L
L
L
R
α .
Relations for calculations parameters Sρρij, ai, A, B, q, p are presented in the Appendix.
We used standard iterative procedure of method of averaging of function corrections to calculate
the second- and higher-order approximations of the considered concentrations [25-30]. Frame-
work the procedure to calculate approximations of the n-th order of the above concentrations we
replace the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y,z,t) and ΦV(x,y,z,t) in the Eqs. (1), (3),
(5) with account initial distributions (see Eqs. (1a), (3a), (5a) in the Appendix) on the sums of the
not yet known average values of the considered approximations and approximations of the pre-
vious order, i.e. αnρ+ρn-1(x,y,z,t). These obtained equations and their solutions, which calculated
are presented in the Appendix.
We calculate average values of the second-order approximations of required functions by using
the following standard relation [25-30]
( ) ( )
[ ]
∫ ∫ ∫ ∫ −
Θ
=
Θ
0 0 0 0
1
2
2 ,
,
,
,
,
,
1 x y z
L L L
z
y
x
t
d
x
d
y
d
z
d
t
z
y
x
t
z
y
x
L
L
L
ρ
ρ
α ρ . (10)
Substitution of the second-order approximations of concentrations of dopant into Eq.(10) leads to
the considered average values α2ρ
α2C=0, α2ΦI =0, α2ΦV =0,
( )
4
3
4
1
2
3
2
4
2
3
2
4
4
4 b
E
b
b
b
L
L
L
F
a
F
b
E
b z
y
x
V
+
−







 Θ
+
Θ
+
−
+
=
α ,
( )
00
2
01
11
02
10
01
2
00
2
2
2
2
IV
V
IV
V
I
V
V
z
y
x
V
I
VV
V
VV
V
V
I
S
S
S
S
L
L
L
S
S
S
C
α
α
α
α
+
−
−
Θ
+
+
−
−
= .
Relations for parameters bi, Cρ, F, r, s are presented in the Appendix.
Further we determine solutions of Eqs.(8). In this situation we determine approximation of dis-
placement vector. To determine the first-order approximations of the considered components
framework method of averaging of function corrections we replace the required values on their
not yet known average values α1i. The replacement leads to the following result
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
42
( ) ( ) ( ) ( ) ( )
x
t
z
y
x
T
z
z
K
t
t
z
y
x
u
z x
∂
∂
−
=
∂
∂ ,
,
,
,
,
,
2
1
2
β
ρ ,
( )
( )
( ) ( ) ( )
y
t
z
y
x
T
z
z
K
t
t
z
y
x
u
z y
∂
∂
−
=
∂
∂ ,
,
,
,
,
,
2
1
2
β
ρ ,
( ) ( ) ( ) ( ) ( )
z
t
z
y
x
T
z
z
K
t
t
z
y
x
u
z z
∂
∂
−
=
∂
∂ ,
,
,
,
,
,
2
1
2
β
ρ .
Integration of the left and right sides of the previous relations on time t gives a possibility to ob-
tain the required components to the following result
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) x
t
x u
d
d
z
y
x
T
x
z
z
z
K
d
d
z
y
x
T
x
z
z
z
K
t
z
y
x
u 0
0 0
0 0
1 ,
,
,
,
,
,
,
,
, +
∫ ∫
∂
∂
−
∫ ∫
∂
∂
=
∞ϑ
ϑ
ϑ
τ
τ
ρ
β
ϑ
τ
τ
ρ
β
,
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) y
t
y u
d
d
z
y
x
T
y
z
z
z
K
d
d
z
y
x
T
y
z
z
z
K
t
z
y
x
u 0
0 0
0 0
1 ,
,
,
,
,
,
,
,
, +
∫ ∫
∂
∂
−
∫ ∫
∂
∂
=
∞ϑ
ϑ
ϑ
τ
τ
ρ
β
ϑ
τ
τ
ρ
β
,
( ) ( ) ( )
( )
( ) ( ) ( )
( )
( ) z
t
z u
d
d
z
y
x
T
z
z
z
z
K
d
d
z
y
x
T
z
z
z
z
K
t
z
y
x
u 0
0 0
0 0
1 ,
,
,
,
,
,
,
,
, +
∫ ∫
∂
∂
−
∫ ∫
∂
∂
=
∞ϑ
ϑ
ϑ
τ
τ
ρ
β
ϑ
τ
τ
ρ
β
.
We calculate the second-order approximations of components of the displacement vector by stan-
dard replacement of the required functions in the right sides of the Eqs.(8) on the standard sums
α1i+ui(x,y,z,t) [19,26]. Equations for components of the displacement vector are presented in the
Appendix. Solutions of these equations are also presented in the Appendix.
Framework this paper all required concentrations (concentrations of dopant and radiation defects)
and components of displacement vector have been calculated as the appropriate second-order ap-
proximations by using the method of averaging of function corrections. The second-order approx-
imation gives usually enough information on quantitative behavior of spatio-temporal distribu-
tions of concentrations of dopant and radiation defects and also several quantitative results. We
check all analytical results by using numerical approaches.
3. DISCUSSION
In this section we analyzed redistribution of dopant (for the ion doping of heterostructure) with
account redistribution of radiation defects and their interaction with another defects. If growth
rate is small (v t<D1/v), than overlayer will be fully doped by dopant, which was implanted in the
epitaxial layer. Framework another limiting case it will be doped near-surface area of the overlay-
er only. If dopant diffusion coefficient in the overlayer and in the substrate are smaller, in com-
parison with the epitaxial layer, and type of conductivity of the overlayer and the substrate is dif-
ferent with type of conductivity of the epitaxial layer, than one can find a bipolar transistor. In
this case one can find higher sharpness of p-n-junctions framework the transistor in comparison
with a bipolar transistor in homogenous sample with averaged diffusion coefficient of dopant.
The increasing gives a possibility to increase switching time of p-n-junctions (both single p-n-
junctions and p-n-junctions framework their systems: bipolar transistors, thyristors et al). At the
same time one can find increasing of homogeneity of concentration of dopant (see Fig. 2). In this
situation one can decrease local overheats in doped areas during functioning of the considered
devices or to decrease dimensions of these devices for fixed tolerance for local overheats. Quali-
tatively similar results could be obtained for diffusion type of doping. One can find smaller
sharpness of left p-n-junctions in the case, when dopant diffusion coefficient of the overlayer is
larger, than in doped epitaxial layer. At the same time homogeneity of concentration of dopant in
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
43
the overlayer increases (see Fig. 3). Qualitatively similar results could be obtained for diffusion
type of doping. Further we analyzed influence of mismatch-induced stress on distribution of con-
centration
z
0.0
0.5
1.0
1.5
2.0
C(x,y,z,
Θ
)
0 Lz /4 Lz /2 3Lz /4 Lz
1
2
Fig. 2. Calculated spatial distributions of concentration of implanted dopant in homogenous sample (curve
1) and in heterostructure from Fig. 1 (curve 2) after annealing with the same continuance. Interfaces be-
tween layers of heterostructure are: a1=Lz/4 and a2=3Lz/4
z
0.00001
0.00010
0.00100
0.01000
0.10000
1.00000
C(x,y,z,
Θ
)
C(x,y,z,0)
Lz /4
0 Lz /2 3Lz /4 Lz
x0
1
2
3
4
Fig. 3. Curves 1 and 2 are the calculated spatial distributions of concentration of implanted dopant in the
system of two layers: overlayer and epitaxial layer. Curves 3 and 4 are the calculated spatial distributions of
concentration of implanted dopant in the epitaxial layer only. Increasing of number of curves corresponds
to increasing of value of relation D1/D2. Coordinates of interfaces between layers of heterostructure are:
a1=Lz/4 (between overlayer and epitaxial layer) and a2=3Lz/4 (between epitaxial layer and substrate)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
44
0.0
1.0
2.0
C(x,y,z,
Θ
)
0 Lz
1
2
3
Fig. 4. Spatial distributions of concentration of dopant in diffusion-junction rectifier after annealing with
equal continuance. Curve 1 corresponds to ε0<0. Curve 2 corresponds to ε0=0. Curve 3 corresponds to ε0>0
0.0
1.0
2.0
C(x,y,z,
Θ
)
Lz
-Lz 0
1
2
3
Fig. 5. Spatial distributions of concentration of dopant in implanted-junction rectifier after annealing with
equal continuance. Curve 1 corresponds to ε0<0. Curve 2 corresponds to ε0=0. Curve 3 corresponds to ε0>0
z
0.0
0.2
0.4
0.6
0.8
1.0
Uz 1
2
0.0 a
Fig.6. Normalized dependences of component uz of displacement vector on coordinate z for epitaxial layers
before radiation processing (curve 1) and after radiation processing (curve 2)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
45
of dopant. We obtain during the analysis, that p-n-junctions, manufactured near interface between
layers of heterostructures, have higher sharpness and higher homogeneity of concentration of do-
pant in enriched area. Existing mismatch-induced stress leads to changing of distribution of con-
centration of dopant in directions, which are parallel to the considered interface. For example, for
ε0<0 the above distribution in directions x and y became more compact (see Fig. 4). In this situa-
tion one can obtain increasing of density of elements of integrated circuits in this situation, when
the circuits were fabricated in heterostructures. For ε0>0 one can obtain opposite effect (see Fig.
5). It should be noted, that radiation processing of materials of heterostructure during ion doping
of materials gives a possibility to decrease mismatch-induced stress (see Fig. 6).
Further we analyzed influence of mismatch-induced stress on distribution of concentration of do-
pant. We obtain during the analysis, that p-n-junctions, manufactured near interface between lay-
ers of heterostructures, have higher sharpness and higher homogeneity of concentration of dopant
in enriched area. Existing mismatch-induced stress leads to changing of distribution of concentra-
tion of dopant in directions, which are parallel to the considered interface. For example, for ε0<0
the above distribution in directions x and y became more compact (see Fig. 4). For ε0>0 one can
obtain opposite effect (see Fig. 5). It should be noted, that radiation processing of materials of
heterostructure during ion doping of materials gives a possibility to decrease mismatch-induced
stress (see Fig. 6). In this situation component of displacement vector perpendicular to interface
between materials of heterostructure became smaller after radiation processing in comparison
with analogous component of displacement vector in non processed heterostructure.
4. CONCLUSIONS
In this paper we analyzed influence of overgrowth of doped by diffusion or ion implantation areas
of heterostructures on distributions of concentrations of dopants. We determine conditions to in-
crease sharpness if implanted-junction and diffusion- junction rectifiers (single rectifiers and rec-
tifiers framework bipolar transistors). At the same time we analyzed influence of overgrowth rate
of doped areas and mismatch-induced stress in the considered heterostructure on distributions of
concentrations of dopants.
ACKNOWLEDGEMENTS
This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The
Ministry of education and science of the Russian Federation and Lobachevsky State University of
Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu-
cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia
and educational fellowship for scientific research of Nizhny Novgorod State University of Archi-
tecture and Civil Engineering.
REFERENCES
[1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001).
[2] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication,
Moscow, 1991).
[3] V.G. Gusev, Yu.M. Gusev. Electronics (Higher School, Moscow, 1991).
[4] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow 1991).
[5] I.P. Stepanenko. Basis of microelectronics (Soviet Radio, Moscow 1980).
[6] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990).
[7] K.V. Shalimova. Physics of semiconductors. (Energoatomizdat, Moscow, 1985.
[8] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N.
Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing.
Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836 (2003).
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
46
[9] A.V. Dvurechensky, G.A. Kachurin, E.V. Nidaev, L.S. Smirnov. Impulse annealing of semiconductor
materials (Science, Moscow, 1982).
[10] A.F. Corballo Sanchez, G. Gonzalez de la Cruz, Yu.G. Gurevich, G.N. Logvinov. Transient heat
transport by carriers and phonons in semiconductors. Phys. Rev. B. Vol. 59 (16). P. 10630 (1999).
[11] V.I. Mazhukin, V.V. Nosov, U. Semmler. Investigation of heat and thermo-elastic fields in semicon-
ductors at pulse processing. Mathematical modelling. Vol. 12 (2), 75 (2000).
[12] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant activation in subamor-
phized silicon upon laser annealing. Appl. Phys. Lett. Vol. 89 (17), 172111 (2006).
[13] J.A. Sharp, N.E. B. Cowern, R.P. Webb, K.J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M.A.
Foad, F. Cristiano, P.F. Fazzini. Appl. Phys. Lett. Vol. 89, 192105 (2006).
[14] J.E. Epler, F.A. Ponce, F.J. Endicott, T.L. Paoli. J. Appl. Phys. Vol. 64, 3439 (1988).
[15] S.T. Sisianu, T.S. Sisianu, S.K. Railean. Semiconductors. Vol. 36, 581 (2002).
[16] E.L. Pankratov. Influence of spatial, temporal and concentrational dependence of diffusion coefficient
on dopant dynamics: Optimization of annealing time. Phys. Rev. B. Vol. 72 (7). P. 075201 (2005).
[17] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-
coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33 (2007).
[18] V.V. Kozlivsky. Modification of semiconductors by proton beams (Science, Sant- Peterburg, 2003).
[19] E.L. Pankratov. Influence of mechanical stress in a multilayer structure on spatial distribution of
dopants in implanted-junction and diffusion-junction rectifiers. Mod. Phys. Lett. B. Vol. 24 (9). P.
867 (2010).
[20] Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitaxial
thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999).
[21] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod.
Phys. Vol. 61 (2). P. 289-388 (1989).
[22] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev,
1979, in Russian).
[23] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991).
[24] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001,
in Russian).
[25] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Applied Mechanics. Vol. 1
(1). P. 23-35 (1955).
[26] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar
transistors. Analytical approaches to model technological approaches and ways of optimization of dis-
tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013).
[27] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using
radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012).
[28] E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease
surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12
(2015).
[29] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc-
tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014).
[30] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor heterostructure by
radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014).
APPENDIX
Eqs. (1), (3) and (5) with account initial distributions could be written as
( ) ( ) ( ) ( ) ( ) ( )+
+






∂
∂
∂
∂
+






∂
∂
∂
∂
+






∂
∂
∂
∂
=
∂
∂
t
z
y
x
f
z
t
z
y
x
C
D
z
y
t
z
y
x
C
D
y
x
t
z
y
x
C
D
x
t
t
z
y
x
C
C δ
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
S
L
t
v
S
S
W
d
t
W
y
x
C
t
z
y
x
T
k
D
y
W
d
t
W
y
x
C
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ (1a)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
47
( ) ( ) ( ) ( ) ( ) ( ) ( )+
+






+






= t
z
y
x
f
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( )+
−
−






+ t
z
y
x
I
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
I
T
z
y
x
D
z
I
I
V
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
,
∂
∂
∂
∂
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
IS
L
t
v
S
IS
W
d
t
W
y
x
I
t
z
y
x
T
k
D
y
W
d
t
W
y
x
I
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ (3a)
( ) ( ) ( ) ( ) ( ) ( ) ( )+
+






+






= t
z
y
x
f
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) ( ) ( )+
−
−






+ t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
z
t
z
y
x
V
T
z
y
x
D
z
V
V
V
I
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
,
∂
∂
∂
∂
( ) ( ) ( ) ( ) 





∫
∇
∂
∂
Ω
+






∫
∇
∂
∂
Ω
+
−
−
z
z L
t
v
S
VS
L
t
v
S
VS
W
d
t
W
y
x
V
t
z
y
x
T
k
D
y
W
d
t
W
y
x
V
t
z
y
x
T
k
D
x
,
,
,
,
,
,
,
,
,
,
,
, µ
µ
( ) ( ) ( ) ( ) ( ) ( )×
+





 Φ
+





 Φ
=
Φ
Φ
Φ t
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x I
I
I
I
I
δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
( ) ( ) ( ) ( ) ( ) +






∫Φ
∇
∂
∂
Ω
+





 Φ
+
×
−
Φ
Φ
Φ
z
I
I
I
L
t
v
I
S
S
I
W
d
t
W
y
x
t
z
y
x
T
k
D
x
z
t
z
y
x
T
z
y
x
D
z
z
y
x
f ,
,
,
,
,
,
,
,
,
,
,
,
,
, µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
W
d
t
W
y
x
t
z
y
x
T
k
D
y
I
I
I
L
t
v
I
S
S
z
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
+
+






∫Φ
∇
∂
∂
Ω
+
−
Φ
µ
( ) ( ) ( ) ( ) ( ) ( )×
+





 Φ
+





 Φ
=
Φ
Φ
Φ t
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x V
V
V
V
V
δ
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂ ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
(5a)
( ) ( ) ( ) ( ) ( ) +






∫Φ
∇
∂
∂
Ω
+





 Φ
+
×
−
Φ
Φ
Φ
z
V
V
V
L
t
v
V
S
S
V
W
d
t
W
y
x
t
z
y
x
T
k
D
x
z
t
z
y
x
T
z
y
x
D
z
z
y
x
f ,
,
,
,
,
,
,
,
,
,
,
,
,
, µ
∂
∂
∂
∂
( ) ( ) ( ) ( ) ( ) ( )
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
W
d
t
W
y
x
t
z
y
x
T
k
D
y
V
V
V
L
t
v
V
S
S z
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
+
+






∫Φ
∇
∂
∂
Ω
+
−
Φ
µ .
The first-order approximations of concentrations of dopant and radiation defects could by calcu-
lated by solution of the following equations
( ) ( ) ( ) +






∇
∂
∂
Ω
+






∇
∂
∂
Ω
=
∂
∂
t
z
y
x
T
k
D
z
y
t
z
y
x
T
k
D
z
x
t
t
z
y
x
C
S
S
C
S
S
C ,
,
,
,
,
,
,
,
,
1
1
1
µ
α
µ
α
( ) ( )
t
z
y
x
fC δ
,
,
+ (1b)
( ) ( ) ( ) ( ) ( )−
+






∇
∂
∂
Ω
+






∇
∂
∂
Ω
= t
z
y
x
f
t
z
y
x
T
k
D
z
y
t
z
y
x
T
k
D
x
z
t
t
z
y
x
I
I
S
IS
I
S
IS
I δ
µ
α
µ
α
∂
∂
,
,
,
,
,
,
,
,
,
,
,
1
1
1
( ) ( )
T
z
y
x
k
T
z
y
x
k V
I
V
I
I
I
I ,
,
,
,
,
, ,
1
1
,
2
1 α
α
α −
− (3b)
( ) ( ) ( ) ( ) ( )−
+






∇
∂
∂
Ω
+






∇
∂
∂
Ω
= t
z
y
x
f
t
z
y
x
T
k
D
z
y
t
z
y
x
T
k
D
x
z
t
t
z
y
x
V
V
S
VS
V
S
VS
V δ
µ
α
µ
α
∂
∂
,
,
,
,
,
,
,
,
,
,
,
1
1
1
( ) ( )
T
z
y
x
k
T
z
y
x
k V
I
V
I
V
V
V ,
,
,
,
,
, ,
1
1
,
2
1 α
α
α −
−
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
48
( ) ( ) ( ) ( ) ( ) ( ) ( )+
+
+
=
Φ
Φ t
z
y
x
f
t
z
y
x
I
T
z
y
x
k
t
z
y
x
I
T
z
y
x
k
t
t
z
y
x
I
I
I
I
I
δ
∂
∂
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
1
( ) ( )





∇
∂
∂
Ω
+






∇
∂
∂
Ω
+
Φ
Φ
Φ
Φ t
z
y
x
T
k
D
y
z
t
z
y
x
T
k
D
x
z S
S
S
S I
I
I
I
,
,
,
,
,
, 1
1 µ
α
µ
α (5b)
( ) ( ) ( ) ( ) ( ) ( ) ( )+
+
+
=
Φ
Φ t
z
y
x
f
t
z
y
x
V
T
z
y
x
k
t
z
y
x
V
T
z
y
x
k
t
t
z
y
x
V
V
V
V
V
δ
∂
∂
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 2
,
1
( ) ( )





∇
∂
∂
Ω
+






∇
∂
∂
Ω
+
Φ
Φ
Φ
Φ t
z
y
x
T
k
D
y
z
t
z
y
x
T
k
D
x
z S
S
S
S V
V
V
V
,
,
,
,
,
, 1
1 µ
α
µ
α
The first-order approximations of the considered concentrations in the following form
( ) ( )
( )
( ) ( )
( )
∫ ×








+
+






+
∇
∂
∂
=
t
C
S
S
C
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
z
y
x
x
t
z
y
x
C
0
2
*
2
2
*
1
1
1
1
1
,
,
,
,
,
,
1
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
α
ξ
τ
µ
α γ
γ
( ) ( ) ( ) ( )
( )
∫ ×








+
+
∇
∂
∂
Ω
+



Ω
×
t
S
C
L
S
V
z
y
x
V
V
z
y
x
V
z
y
x
y
d
T
k
z
T
z
y
x
D
0
2
*
2
2
*
1
1
1
,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
τ
µ
α
τ
( )
( )
( )
z
y
x
f
d
T
z
y
x
P
T
k
z
T
z
y
x
D C
C
S
L
S ,
,
,
,
,
1
,
,
, 1
+






+
× τ
α
ξ
γ
γ
(1c)
( ) ( ) ( ) ( )−
+
∫ ∇
∂
∂
Ω
+
∫ ∇
∂
∂
Ω
= z
y
x
f
d
z
y
x
T
k
D
y
z
d
z
y
x
T
k
D
x
z
t
z
y
x
I I
t
S
IS
I
t
S
IS
I ,
,
,
,
,
,
,
,
,
,
,
0
1
0
1
1 τ
τ
µ
α
τ
τ
µ
α
( ) ( )
∫
−
∫
−
t
V
I
V
I
t
I
I
I d
T
z
y
x
k
d
T
z
y
x
k
0
,
1
1
0
,
2
1 ,
,
,
,
,
, τ
α
α
τ
α (3c)
( ) ( ) ( ) ( )−
+
∫ ∇
∂
∂
Ω
+
∫ ∇
∂
∂
Ω
= z
y
x
f
d
z
y
x
T
k
D
y
z
d
z
y
x
T
k
D
x
z
t
z
y
x
V V
t
S
IS
V
t
S
IS
V ,
,
,
,
,
,
,
,
,
,
,
0
1
1
0
1
1
1 τ
τ
µ
α
τ
τ
µ
α
( ) ( )
∫
−
∫
−
t
V
I
V
I
t
V
V
V d
T
z
y
x
k
d
T
z
y
x
k
0
,
1
1
0
,
2
1 ,
,
,
,
,
, τ
α
α
τ
α
( ) ( ) ( ) +
∫ ∇
∂
∂
Ω
+
∫ ∇
∂
∂
Ω
=
Φ
Φ
Φ
Φ
Φ
t
S
S
t
S
S
I d
z
y
x
T
k
D
x
z
d
z
y
x
T
k
D
x
z
t
z
y
x I
I
I
I
0
1
0
1
1 ,
,
,
,
,
,
,
,
, τ
τ
µ
α
τ
τ
µ
α
( ) ( ) ( ) ( ) ( )
∫
+
∫
+
+ Φ
t
I
I
t
I d
z
y
x
I
T
z
y
x
k
d
z
y
x
I
T
z
y
x
k
z
y
x
f I
0
2
,
0
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ (5c)
( ) ( ) ( ) +
∫ ∇
∂
∂
Ω
+
∫ ∇
∂
∂
Ω
=
Φ
Φ
Φ
Φ
Φ
t
S
S
t
S
S
V d
z
y
x
T
k
D
x
z
d
z
y
x
T
k
D
x
z
t
z
y
x V
V
V
V
0
1
0
1
1 ,
,
,
,
,
,
,
,
, τ
τ
µ
α
τ
τ
µ
α
( ) ( ) ( ) ( ) ( )
∫
+
∫
+
+ Φ
t
V
V
t
V d
z
y
x
V
T
z
y
x
k
d
z
y
x
V
T
z
y
x
k
z
y
x
f V
0
2
,
0
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ .
Relations for calculations parameters Sρρij, ai, A, B, q, p could be written as
( ) ( ) ( ) ( )
∫ ∫ ∫ ∫
−
Θ
=
Θ
−
0 0 0
1
1
, ,
,
,
,
,
,
,
,
,
x y z
L L L
t
v
j
i
ij t
d
x
d
y
d
z
d
t
z
y
x
V
t
z
y
x
I
T
z
y
x
k
t
S ρ
ρ
ρρ , ( )×
−
= 00
00
2
00
4 VV
II
IV S
S
S
a
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
49
00
II
S
× , 00
00
2
00
00
00
3 VV
II
IV
II
IV S
S
S
S
S
a −
+
= , ( ) ×
∫ ∫ ∫ ∫
+
Θ
=
Θ
−
0 0 0
2
2
2
00
2 ,
,
2
x y z
L L L
t
v
I
z
y
x
IV t
d
x
d
y
d
z
d
z
y
x
f
L
L
L
S
a
( ) ( ) ×
Θ
−
∫ ∫ ∫ ∫
−
∫ ∫ ∫ ∫
+
×
Θ
−
Θ
−
2
0 0 0
2
00
0 0 0
2
00
00
00
00 ,
,
,
, x
L L L
t
v
I
IV
L L L
t
v
V
IV
IV
II
VV L
t
d
x
d
y
d
z
d
z
y
x
f
S
t
d
x
d
y
d
z
d
z
y
x
f
S
S
S
S
x y z
x y z
00
2
2
VV
z
y S
L
L
× , ( )
∫ ∫ ∫ ∫
=
Θ
−
0 0 0
00
1 ,
,
x y z
L L L
t
v
I
IV t
d
x
d
y
d
z
d
z
y
x
f
S
a , +
+
+
−
−
+
= 3 3
2
3 3
2
q
p
q
q
p
q
B
4
2
6a
a
Θ
+ , ( )
2
0 0 0
00
0 ,
, 





∫ ∫ ∫ ∫
=
Θ
−
x y z
L L L
t
v
I
VV t
d
x
d
y
d
z
d
z
y
x
f
S
a ,
2
1
4
2
2
4
2
3
2
8
4 







+
Θ
−
Θ
= y
a
a
a
a
A , ×
Θ
= 2
4
2
3
24a
a
q
2
4
2
1
4
2
2
2
3
4
3
2
3
4
2
3
2
2
2
4
0
2
4
3
1
0
8
54
4
8
4
a
a
L
L
L
a
a
a
a
a
a
a
a
a
a
L
L
L
a z
y
x
z
y
x
Θ
−
Θ
−








Θ
−
Θ
Θ
−








Θ
−
× , −
Θ
= 2
4
4
0
2
12
4
a
a
a
p
( ) 2
4
4
2
3
1
2
36
2
3 a
a
a
a
a
L
L
L z
y
x +
Θ
Θ
− , ( ) ( ) ( )
∫ ∫ ∫ ∫
−
Θ
=
Θ
−
0 0 0
1 ,
,
,
,
,
,
x y z
L L L
t
v
i
I
i t
d
x
d
y
d
z
d
t
z
y
x
I
T
z
y
x
k
t
Rρ .
Equations for the second-order approximations of concentrations of dopant and radiation defects
could be written as
( ) ( ) ( )
[ ]
( )
( ) ( )
( )




×








+
+









 +
+
∂
∂
=
∂
∂
2
*
2
2
*
1
1
2
2 ,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
,
V
t
z
y
x
V
V
t
z
y
x
V
T
z
y
x
P
t
z
y
x
C
T
z
y
x
D
x
t
t
z
y
x
C C
L ς
ς
α
ξ γ
γ
( ) ( ) ( )
( )
( )
[ ]
( )
( )




×
∂
∂









 +
+








+
+
∂
∂
+




∂
∂
×
y
t
z
y
x
C
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V
y
x
t
z
y
x
C C ,
,
,
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
, 1
1
2
2
*
2
2
*
1
1
γ
γ
α
ξ
ς
ς
( )) ( ) ( )
( )
( )
[ ]
( )




×









 +
+








+
+
∂
∂
+
×
T
z
y
x
P
t
z
y
x
C
V
t
z
y
x
V
V
t
z
y
x
V
z
T
z
y
x
D C
L
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
, 1
2
2
*
2
2
*
1 γ
γ
α
ξ
ς
ς
( ) ( ) ( ) ( )
[ ] +






∫ +
∇
∂
∂
Ω
+




∂
∂
×
−
z
L
t
v
C
S
S
L W
d
t
W
y
x
C
t
z
y
x
T
k
D
x
z
t
z
y
x
C
T
z
y
x
D ,
,
,
,
,
,
,
,
,
,
,
, 2
2
1
α
µ
( ) ( )
[ ] ( ) ( )
t
z
y
x
f
W
d
t
W
y
x
C
t
z
y
x
T
k
D
y
C
L
t
v
C
S
S
z
δ
α
µ ,
,
,
,
,
,
,
, 2
2 +






∫ +
∇
∂
∂
Ω
+
−
(1d)
( ) ( ) ( ) ( ) ( ) ( )×
−






+






= T
z
y
x
k
y
t
z
y
x
I
T
z
y
x
D
y
x
t
z
y
x
I
T
z
y
x
D
x
t
t
z
y
x
I
V
I
I
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
+
−






+
+
+
×
2
1
1
1
1
1
1
1 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, t
z
y
x
I
z
t
z
y
x
I
T
z
y
x
D
z
t
z
y
x
V
t
z
y
x
I I
I
V
I α
∂
∂
∂
∂
α
α
( ) ( ) ( )
[ ] +






∫ +
∇
∂
∂
Ω
+
×
−
z
L
t
v
I
S
IS
I
I W
d
t
W
y
x
I
t
z
y
x
T
k
D
x
T
z
y
x
k ,
,
,
,
,
,
,
,
, 1
2
, α
µ
( ) ( )
[ ]






∫ +
∇
∂
∂
Ω
+
−
z
L
t
v
I
S
IS
W
d
t
W
y
x
I
t
z
y
x
T
k
D
y
,
,
,
,
,
, 1
2
α
µ (3d)
( ) ( ) ( ) ( ) ( ) ( )×
−






+






= T
z
y
x
k
y
t
z
y
x
V
T
z
y
x
D
y
x
t
z
y
x
V
T
z
y
x
D
x
t
t
z
y
x
V
V
I
V
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( )
[ ] ( )
[ ] ( ) ( ) ( )
[ ] ×
+
−






+
+
+
×
2
1
1
1
1
1
1
1 ,
,
,
,
,
,
,
,
,
,
,
,
,
,
, t
z
y
x
V
z
t
z
y
x
V
T
z
y
x
D
z
t
z
y
x
V
t
z
y
x
I V
V
V
I α
∂
∂
∂
∂
α
α
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
50
( ) ( ) ( )
[ ] +






∫ +
∇
∂
∂
Ω
+
×
−
z
L
t
v
V
S
VS
V
V W
d
t
W
y
x
V
t
z
y
x
T
k
D
x
T
z
y
x
k ,
,
,
,
,
,
,
,
, 1
2
, α
µ
( ) ( )
[ ]






∫ +
∇
∂
∂
Ω
+
−
z
L
t
v
V
S
VS
W
d
t
W
y
x
V
t
z
y
x
T
k
D
y
,
,
,
,
,
, 1
2
α
µ
( ) ( ) ( ) ( ) ( ) ( )×
+





 Φ
+





 Φ
=
Φ
Φ
Φ T
z
y
x
k
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
I
I
I
I
I
I
I
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( )
[ ] ( ) ( )+
+






∫ Φ
+
∇
∂
∂
Ω
+
× Φ
−
Φ
Φ
t
z
y
x
f
W
d
t
W
y
x
t
z
y
x
T
k
D
x
t
z
y
x
I I
z
I
I
L
t
v
I
S
S
δ
α
µ ,
,
,
,
,
,
,
,
,
,
, 1
2
2
( ) ( )
[ ] ( ) ( ) +





 Φ
+






∫ Φ
+
∇
∂
∂
Ω
+ Φ
−
Φ
Φ
z
t
z
y
x
T
z
y
x
D
z
W
d
t
W
y
x
t
z
y
x
T
k
D
y
I
L
t
v
I
S
S
I
z
I
I
∂
∂
∂
∂
α
µ
,
,
,
,
,
,
,
,
,
,
,
, 1
1
2
( ) ( )
t
z
y
x
I
T
z
y
x
kI ,
,
,
,
,
,
+ (5d)
( )
( )
( )
( )
( )
( ) ×
+





 Φ
+





 Φ
=
Φ
Φ
Φ T
z
y
x
k
y
t
z
y
x
T
z
y
x
D
y
x
t
z
y
x
T
z
y
x
D
x
t
t
z
y
x
V
V
V
V
V
V
V
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
1
1
2
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
( ) ( ) ( )
[ ] ( ) ( )+
+






∫ Φ
+
∇
∂
∂
Ω
+
× Φ
−
Φ
Φ
t
z
y
x
f
W
d
t
W
y
x
t
z
y
x
T
k
D
x
t
z
y
x
V V
z
V
V
L
t
v
V
S
S
δ
α
µ ,
,
,
,
,
,
,
,
,
,
, 1
2
2
( ) ( )
[ ] ( ) ( )
+





 Φ
+






∫ Φ
+
∇
∂
∂
Ω
+ Φ
−
Φ
Φ
z
t
z
y
x
T
z
y
x
D
z
W
d
t
W
y
x
t
z
y
x
T
k
D
y
V
L
t
v
V
S
S
V
z
V
V
∂
∂
∂
∂
α
µ
,
,
,
,
,
,
,
,
,
,
,
, 1
1
2
( ) ( )
t
z
y
x
V
T
z
y
x
kV ,
,
,
,
,
,
+ .
The second-order approximations of concentrations of dopant and radiation defects could be writ-
ten as
( ) ( ) ( )
[ ]
( )
( ) ( )
( )
∫ ×








+
+









 +
+
∂
∂
=
t
C
L
V
z
y
x
V
V
z
y
x
V
T
z
y
x
P
z
y
x
C
T
z
y
x
D
x
t
z
y
x
C
0
2
*
2
2
*
1
1
2
2
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
,
,
,
τ
ς
τ
ς
τ
α
ξ γ
γ
( ) ( ) ( )
( )
( )
[ ]
( )
∫ ×





 +
+








+
+
∂
∂
+
∂
∂
×
t
C
T
z
y
x
P
z
y
x
C
V
z
y
x
V
V
z
y
x
V
y
d
x
z
y
x
C
0
1
2
2
*
2
2
*
1
1
,
,
,
,
,
,
1
,
,
,
,
,
,
1
,
,
,
γ
γ
τ
α
ξ
τ
ς
τ
ς
τ
τ
( ) ( ) ( ) ( ) ( )
( )
∫ ×








+
+
∂
∂
+
∂
∂
×
t
L
L
V
z
y
x
V
V
z
y
x
V
T
z
y
x
D
z
d
y
z
y
x
C
T
z
y
x
D
0
2
*
2
2
*
1
1 ,
,
,
,
,
,
1
,
,
,
,
,
,
,
,
,
τ
ς
τ
ς
τ
τ
( ) ( )
[ ]
( )
( )
[ ] ×
∫ ∫ +
∂
∂
Ω
+





 +
+
∂
∂
×
−
t L
v
C
S
C
z
W
d
W
y
x
C
T
k
D
x
d
T
z
y
x
P
z
y
x
C
z
z
y
x
C
0
1
2
1
2
1
,
,
,
,
,
,
,
,
,
1
,
,
,
τ
γ
γ
ϑ
α
τ
τ
α
ξ
τ
( ) ( ) ( )
[ ] +
∫ ∫ +
∇
∂
∂
Ω
+
∇
×
−
t L
v
C
S
S
S d
d
W
d
W
y
x
C
z
y
x
T
k
D
y
d
d
z
y
x
z
0
1
2 ,
,
,
,
,
,
,
,
, τ
ϑ
ϑ
α
τ
µ
τ
ϑ
τ
µ
τ
( )
z
y
x
fC ,
,
+ (1e)
( ) ( ) ( ) ( ) ( ) +
∫
+
∫
=
t
I
t
I d
y
z
y
x
I
T
z
y
x
D
y
d
x
z
y
x
I
T
z
y
x
D
x
t
z
y
x
I
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( )
[ ] ( )+
+
∫ +
−
∫
+ z
y
x
f
d
z
y
x
I
T
z
y
x
k
d
z
z
y
x
I
T
z
y
x
D
z
I
t
I
I
I
t
I ,
,
,
,
,
,
,
,
,
,
,
,
,
,
0
2
1
2
,
0
1
τ
τ
α
τ
∂
τ
∂
∂
∂
( ) ( )
[ ] ( )×
∫ ∇
∂
∂
Ω
+
∫ ∫ +
∇
∂
∂
Ω
+
−
t
S
IS
t L
v
I
S
IS
z
y
x
T
k
D
y
d
d
W
d
W
y
x
I
z
y
x
T
k
D
x
z
0
0
1
2 ,
,
,
,
,
,
,
,
, τ
µ
τ
ϑ
ϑ
α
τ
µ
τ
( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ +
+
−
∫ +
×
−
t
V
I
V
I
L
v
I d
z
y
x
V
z
y
x
I
T
z
y
x
k
d
d
W
d
W
y
x
I
z
0
1
2
1
2
,
1
2 ,
,
,
,
,
,
,
,
,
,
,
, τ
τ
α
τ
α
τ
ϑ
ϑ
α
τ
(3e)
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
51
( ) ( ) ( ) ( ) ( ) +
∫
+
∫
=
t
V
t
V d
y
z
y
x
V
T
z
y
x
D
y
d
x
z
y
x
V
T
z
y
x
D
x
t
z
y
x
V
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( )
[ ] ( )+
+
∫ +
−
∫
+ z
y
x
f
d
z
y
x
V
T
z
y
x
k
d
z
z
y
x
V
T
z
y
x
D
z
V
t
V
V
V
t
V ,
,
,
,
,
,
,
,
,
,
,
,
,
,
0
2
1
2
,
0
1
τ
τ
α
τ
∂
τ
∂
∂
∂
( ) ( )
[ ] ( )×
∫ ∇
∂
∂
Ω
+
∫ ∫ +
∇
∂
∂
Ω
+
−
t
S
VS
t L
v
V
S
VS
z
y
x
T
k
D
y
d
d
W
d
W
y
x
V
z
y
x
T
k
D
x
z
0
0
1
2 ,
,
,
,
,
,
,
,
, τ
µ
τ
ϑ
ϑ
α
τ
µ
τ
( )
[ ] ( ) ( )
[ ] ( )
[ ]
∫ +
+
−
∫ +
×
−
t
V
I
V
I
L
v
I d
z
y
x
V
z
y
x
I
T
z
y
x
k
d
d
W
d
W
y
x
V
z
0
1
2
1
2
,
1
2 ,
,
,
,
,
,
,
,
,
,
,
, τ
τ
α
τ
α
τ
ϑ
ϑ
α
τ
( ) ( ) ( ) ( ) ( ) +
∫
Φ
+
∫
Φ
=
Φ Φ
Φ
t
I
t
I
I d
y
z
y
x
T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x I
I
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( )
[ ] ×
∫ ∫ Φ
+
∇
∂
∂
Ω
+
∫
Φ
+
−
Φ
Φ
t L
v
I
S
t
I
z
I
I
W
d
W
y
x
z
y
x
x
d
z
z
y
x
T
z
y
x
D
z 0
1
2
0
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
τ
α
τ
µ
τ
∂
τ
∂
∂
∂
( ) ( )
[ ] ( )+
+
∫ ∫ Φ
+
∇
∂
∂
Ω
+
× Φ
−
Φ
Φ
Φ
z
y
x
f
d
d
W
d
W
y
x
z
y
x
T
k
D
y
d
T
k
D
I
z
I
I
I
t L
v
I
S
S
S
,
,
,
,
,
,
,
,
0
1
2 τ
ϑ
ϑ
α
τ
µ
τ
τ
( ) ( ) ( ) ( )
∫
+
∫
+
t
I
t
I
I d
z
y
x
I
T
z
y
x
k
d
z
y
x
I
T
z
y
x
k
0
0
2
, ,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ (5e)
( ) ( ) ( ) ( ) ( ) +
∫
Φ
+
∫
Φ
=
Φ Φ
Φ
t
V
t
V
V d
y
z
y
x
T
z
y
x
D
y
d
x
z
y
x
T
z
y
x
D
x
t
z
y
x V
V
0
1
0
1
2
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, τ
∂
τ
∂
∂
∂
τ
∂
τ
∂
∂
∂
( ) ( ) ( ) ( )
[ ] ×
∫ ∫ Φ
+
∇
∂
∂
Ω
+
∫
Φ
+
−
Φ
Φ
t L
v
V
S
t
V
z
V
V
W
d
W
y
x
z
y
x
x
d
z
z
y
x
T
z
y
x
D
z 0
1
2
0
1
,
,
,
,
,
,
,
,
,
,
,
,
τ
τ
α
τ
µ
τ
∂
τ
∂
∂
∂
( ) ( )
[ ] ( )+
+
∫ ∫ Φ
+
∇
∂
∂
Ω
+
× Φ
−
Φ
Φ
Φ
z
y
x
f
d
d
W
d
W
y
x
z
y
x
T
k
D
y
d
T
k
D
V
z
V
V
V
t L
v
V
S
S
S
,
,
,
,
,
,
,
,
0
1
2 τ
ϑ
ϑ
α
τ
µ
τ
τ
( ) ( ) ( ) ( )
∫
+
∫
+
t
V
t
V
V d
z
y
x
V
T
z
y
x
k
d
z
y
x
V
T
z
y
x
k
0
0
2
, ,
,
,
,
,
,
,
,
,
,
,
, τ
τ
τ
τ .
Parameters bi, Cρ, F, r, s have been determined by the following relations
00
2
00
00
2
00
4
1
1
II
VV
z
y
x
V
V
IV
z
y
x
S
S
L
L
L
S
S
L
L
L
b
Θ
−
Θ
= , ( ) +
Θ
Θ
+
+
−
=
z
y
x
VV
II
z
y
x
IV
VV
L
L
L
S
S
L
L
L
S
S
b 00
00
10
01
3 2
( ) ( ) 3
3
3
3
10
2
00
10
01
2
00
01
10
01
00
00
2
2
z
y
x
IV
IV
z
y
x
IV
VV
z
y
x
IV
z
y
x
IV
II
IV
z
y
x
VV
IV
L
L
L
S
S
L
L
L
S
S
L
L
L
S
L
L
L
S
S
S
L
L
L
S
S
Θ
−
Θ
+
+
Θ
+
Θ
+
+
+
Θ
+ ,
( ) ( ) ( )×
+
+
Θ
Θ
+
+
−
Θ
−
+
+
Θ
= 01
10
01
2
10
01
11
02
00
00
2 2
2 IV
II
z
y
x
x
IV
IV
VV
z
y
x
V
IV
VV
z
y
x
VV
II
S
S
L
L
L
L
S
S
S
L
L
L
C
S
S
L
L
L
S
S
b
( )( ) ×
Θ
−
+
Θ
+
+
+
+
+
Θ
Θ
+
×
z
y
x
IV
IV
z
y
x
VV
IV
II
IV
z
y
x
z
y
x
IV
z
y
VV
L
L
L
S
S
L
L
L
S
S
S
S
L
L
L
L
L
L
S
L
L
S 2
00
10
01
01
10
01
00
00
2
2
2
( ) 01
00
10
2
2
2
2
2
00
11
02
2
IV
z
y
x
IV
IV
z
y
x
IV
I
IV
VV
V S
L
L
L
S
S
L
L
L
S
C
S
S
C
Θ
−
Θ
+
−
−
× , ( ×
Θ
+
Θ
+
+
= x
IV
z
y
x
V
VV
IV
II L
S
L
L
L
C
S
S
S
b 10
02
11
00
1
) ( ) ×
Θ
−
−
−
Θ
+
+
Θ
+
+
Θ
+
+
×
z
y
x
IV
VV
V
z
y
x
IV
VV
z
y
x
IV
II
z
y
x
IV
VV
z
y
L
L
L
S
S
C
L
L
L
S
S
L
L
L
S
S
L
L
L
S
S
L
L 11
02
10
01
01
10
01
01 2
2
2
( )
z
y
x
IV
IV
IV
IV
I
z
y
x
II
IV
IV
L
L
L
S
S
S
S
C
L
L
L
S
S
S
Θ
−
+
Θ
+
+
×
2
01
10
01
00
10
01
00 2
2
3 ,
( )
×
−
Θ
+
= 01
2
02
00
00
0 IV
z
y
x
VV
IV
II S
L
L
L
S
S
S
b
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
52
( ) ( )×
+
+
Θ
Θ
−
−
−
+
+
Θ
Θ
−
−
× 01
10
11
02
01
10
11
02
2
2 IV
II
z
y
x
z
y
x
IV
VV
V
IV
II
z
y
x
z
y
x
IV
VV
V
S
S
L
L
L
L
L
L
S
S
C
S
S
L
L
L
L
L
L
S
S
C
( )
01
10
11
02
01
2
01
01 2
2 IV
II
z
y
x
z
y
x
IV
VV
V
IV
IV
I
IV S
S
L
L
L
L
L
L
S
S
C
S
S
C
S +
+
Θ
Θ
−
−
−
+
× , +
Θ
=
z
y
x
V
I
IV
I
L
L
L
S
C 1
1
00
α
α
z
y
x
IV
z
y
x
II
II
z
y
x
II
I
L
L
L
S
L
L
L
S
S
L
L
L
S
Θ
−
Θ
−
Θ
+ 11
20
20
00
2
1
α
, 11
02
00
2
1
00
1
1 IV
VV
VV
V
IV
V
I
V S
S
S
S
C −
−
+
= α
α
α ,
4
2
2
4
2
3
2
4
8
a
a
a
a
y
E Θ
−
Θ
+
= ,
2
4
2
1
4
2
2
2
3
4
3
2
3
4
2
3
2
2
2
4
2
0
4
3
1
0
2
4
2
3
8
54
4
8
4
24 b
b
L
L
L
b
b
b
b
b
b
b
b
b
b
L
L
L
b
b
b
r z
y
x
z
y
x
Θ
−
Θ
−








Θ
−
Θ
Θ
−








Θ
−
Θ
= , ( −
Θ
= 4
0
2
4
2
4
12
b
b
b
s
) 4
2
3
1 18b
b
b
b
L
L
L z
y
x Θ
−
Θ
− , 3 3
2
3 3
2
4
2
6
r
s
r
r
s
r
a
a
F +
+
−
−
+
+
Θ
= .
Equations for components of the displacement vector could be presented in the form
( ) ( ) ( ) ( )
( )
[ ]
( ) ( ) ( )
( )
[ ]
( )
+
∂
∂
∂






+
−
+
∂
∂






+
+
=
∂
∂
y
x
t
z
y
x
u
z
z
E
z
K
x
t
z
y
x
u
z
z
E
z
K
t
t
z
y
x
u
z
y
x
x
,
,
,
1
3
,
,
,
1
6
5
,
,
, 1
2
2
1
2
2
2
2
σ
σ
ρ
( )
( )
[ ]
( ) ( ) ( ) ( )
( )
[ ]
( )
−
∂
∂
∂






+
+
+








∂
∂
+
∂
∂
+
+
z
x
t
z
y
x
u
z
z
E
z
K
z
t
z
y
x
u
y
t
z
y
x
u
z
z
E z
z
y ,
,
,
1
3
,
,
,
,
,
,
1
2
1
2
2
1
2
2
1
2
σ
σ
( ) ( ) ( )
x
t
z
y
x
T
z
z
K
∂
∂
−
,
,
,
β
( )
( ) ( )
( )
[ ]
( ) ( ) ( ) ( ) ( )+
∂
∂
−








∂
∂
∂
+
∂
∂
+
=
∂
∂
y
t
z
y
x
T
z
z
K
y
x
t
z
y
x
u
x
t
z
y
x
u
z
z
E
t
t
z
y
x
u
z x
y
y ,
,
,
,
,
,
,
,
,
1
2
,
,
, 1
2
2
1
2
2
2
2
β
σ
ρ
( )
( )
[ ]
( ) ( ) ( ) ( )
( )
[ ]
( ) +






+
+
∂
∂
+
















∂
∂
+
∂
∂
+
∂
∂
+ z
K
z
z
E
y
t
z
y
x
u
y
t
z
y
x
u
z
t
z
y
x
u
z
z
E
z
y
z
y
σ
σ 1
12
5
,
,
,
,
,
,
,
,
,
1
2 2
1
2
1
1
( ) ( )
( )
[ ]
( )
( )
( )
y
x
t
z
y
x
u
z
K
z
y
t
z
y
x
u
z
z
E
z
K
y
y
∂
∂
∂
+
∂
∂
∂






+
−
+
,
,
,
,
,
,
1
6
1
2
1
2
σ
( ) ( ) ( ) ( ) ( ) ( )
×








∂
∂
∂
+
∂
∂
∂
+
∂
∂
+
∂
∂
=
∂
∂
z
y
t
z
y
x
u
z
x
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
t
t
z
y
x
u
z
y
x
z
z
z
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 1
2
1
2
2
1
2
2
1
2
2
2
2
ρ
( )
( )
[ ]
( ) ( ) ( ) ( ) ( )
( )
[ ]



×
+
∂
∂
+
















∂
∂
+
∂
∂
+
∂
∂
∂
∂
+
+
×
z
z
E
z
z
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
z
K
z
z
z
E x
y
x
σ
σ 1
6
,
,
,
,
,
,
,
,
,
1
2
1
1
1
( ) ( ) ( ) ( ) ( ) ( ) ( )
z
t
z
y
x
T
z
z
K
z
t
z
y
x
u
y
t
z
y
x
u
x
t
z
y
x
u
z
t
z
y
x
u z
y
x
z
∂
∂
−











∂
∂
−
∂
∂
−
∂
∂
−
∂
∂
×
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
6 1
1
1
1
β .
Integration of the left and the right sides of the above equations on time t leads to final relations
for components of displacement vector
( )
( )
( ) ( )
( )
[ ]
( )
( )
( ) ( )
( )
[ ]
×






+
−
+
∫ ∫
∂
∂






+
+
=
z
z
E
z
K
z
d
d
z
y
x
u
x
z
z
E
z
K
z
t
z
y
x
u
t
x
x
σ
ρ
ϑ
τ
τ
σ
ρ
ϑ
1
3
1
,
,
,
1
6
5
1
,
,
,
0 0
1
2
2
2
( ) ( ) ( ) ×






∫ ∫
∂
∂
+
∫ ∫
∂
∂
+
∫ ∫
∂
∂
∂
×
t
z
t
y
t
y d
d
z
y
x
u
z
d
d
z
y
x
u
y
d
d
z
y
x
u
y
x 0 0
1
2
2
0 0
1
2
2
0 0
1
2
,
,
,
,
,
,
,
,
,
ϑ
ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
ϑ
τ
τ
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
53
( )
( ) ( )
[ ] ( )
( ) ( ) ( )
( )
[ ]
( ) ( )
( )
×
−






+
+
∫ ∫
∂
∂
∂
+
+
×
z
z
z
K
z
z
E
z
K
d
d
z
y
x
u
z
x
z
z
z
z
E t
z
ρ
β
σ
ϑ
τ
τ
ρ
σ
ρ
ϑ
1
3
,
,
,
1
1
2 0 0
1
2
( )
( )
( ) ( )
( )
[ ]
( )
( )
×
−
∫ ∫
∂
∂






+
+
−
∫ ∫
∂
∂
×
∞
z
d
d
z
y
x
u
x
z
z
E
z
K
z
d
d
z
y
x
T
x
x
t
ρ
ϑ
τ
τ
σ
ρ
ϑ
τ
τ
ϑ
ϑ 1
,
,
,
1
6
5
1
,
,
,
0 0
1
2
2
0 0
( ) ( )
( )
[ ]
( )
( )
( )



+
∫ ∫
∂
∂
−
∫ ∫
∂
∂
∂






+
−
×
∞
∞
0 0
1
2
2
0 0
1
2
,
,
,
2
1
,
,
,
1
3
ϑ
ϑ
ϑ
τ
τ
ρ
ϑ
τ
τ
σ
d
d
z
y
x
u
y
z
d
d
z
y
x
u
y
x
z
z
E
z
K y
y
( ) ( )
( )
( ) ( )
( )
[ ]
( ) ×
∫ ∫
∂
∂
∂






+
+
−
+



∫ ∫
∂
∂
+
∞
∞
0 0
1
2
0 0
1
2
2
,
,
,
1
3
1
,
,
,
ϑ
ϑ
ϑ
τ
τ
σ
σ
ϑ
τ
τ d
d
z
y
x
u
z
x
z
z
E
z
K
z
z
E
d
d
z
y
x
u
z
z
z
( )
( ) ( )
( )
( )
∫ ∫
∂
∂
+
+
×
∞
0 0
0 ,
,
,
1 ϑ
ϑ
τ
τ
ρ
β
ρ
d
d
z
y
x
T
x
z
z
z
K
u
z
x
( ) ( )
( ) ( )
[ ]
( ) ( ) +






∫ ∫
∂
∂
∂
+
∫ ∫
∂
∂
+
=
t
x
t
x
y d
d
z
y
x
u
y
x
d
d
z
y
x
u
x
z
z
z
E
t
z
y
x
u
0 0
1
2
0 0
1
2
2
2 ,
,
,
,
,
,
1
2
,
,
,
ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
σ
ρ
( )
( )
( )
( )
( ) ( ) ( )
( )
[ ]
+






+
+
∫ ∫
∂
∂
+
∫ ∫
∂
∂
∂
+
z
z
E
z
K
d
d
z
y
x
u
y
z
d
d
z
y
x
u
y
x
z
z
K t
x
t
y
σ
ϑ
τ
τ
ρ
ϑ
τ
τ
ρ
ϑ
ϑ
1
12
5
,
,
,
1
,
,
,
0 0
1
2
2
0 0
1
2
( )
( )
[ ] ( )
( )
( )
( ) ( ) −












∫ ∫
∂
∂
+
∫ ∫
∂
∂
+
∂
∂
+



+
+
t
z
t
y d
d
z
y
x
u
y
d
d
z
y
x
u
z
z
z
E
z
z
z
z
E
0 0
1
0 0
1 ,
,
,
,
,
,
1
2
1
1
12
5 ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
σ
ρ
σ
( ) ( )
( )
( )
( )
( ) ( ) ( )
( )
[ ]
−






+
−
∫ ∫
∂
∂
∂
+
∫ ∫
−
z
z
E
z
K
d
d
z
y
x
u
z
y
z
d
d
z
y
x
T
z
z
z
K
t
y
t
σ
ϑ
τ
τ
ρ
ϑ
τ
τ
ρ
β ϑ
ϑ
1
6
,
,
,
1
,
,
,
0 0
1
2
0 0
( )
( ) ( )
[ ]
( ) ( ) ( ) ( )
( )
×
−






∫ ∫
∂
∂
∂
+
∫ ∫
∂
∂
+
−
∞
∞
z
z
z
K
d
d
z
y
x
u
y
x
d
d
z
y
x
u
x
z
z
z
E
x
x
ρ
β
ϑ
τ
τ
ϑ
τ
τ
σ
ρ
ϑ
ϑ
0 0
1
2
0 0
1
2
2
,
,
,
,
,
,
1
2
( ) ( )
( )
( )
( )
( ) ×
∫ ∫
∂
∂
−
∫ ∫
∂
∂
∂
−
∫ ∫
×
∞
∞
∞
0 0
1
2
2
0 0
1
2
0 0
,
,
,
1
,
,
,
,
,
,
ϑ
ϑ
ϑ
ϑ
τ
τ
ρ
ϑ
τ
τ
ρ
ϑ
τ
τ d
d
z
y
x
u
y
z
d
d
z
y
x
u
y
x
z
z
K
d
d
z
y
x
T x
y
( ) ( )
( )
[ ]
( )
( )
( ) ( ) ×












∫ ∫
∂
∂
+
∫ ∫
∂
∂
+
∂
∂
−






+
+
×
∞
∞
0 0
1
0 0
1 ,
,
,
,
,
,
1
1
12
5 ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
σ
σ
d
d
z
y
x
u
y
d
d
z
y
x
u
z
z
z
E
z
z
z
E
z
K z
y
( ) ( )
( ) ( )
( )
[ ]
( ) y
y u
d
d
z
y
x
u
z
y
z
z
E
z
K
z
z
0
0 0
1
2
,
,
,
1
6
1
2
1
+
∫ ∫
∂
∂
∂






+
−
−
×
∞ϑ
ϑ
τ
τ
σ
ρ
ρ
( ) ( )
( ) ( )
[ ]
( ) ( )



+
∫ ∫
∂
∂
+
∫ ∫
∂
∂
+
=
∞
∞
0 0
1
2
2
0 0
1
2
2
,
,
,
,
,
,
1
2
,
,
,
ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
σ
ρ
d
d
z
y
x
u
y
d
d
z
y
x
u
x
z
z
z
E
t
z
y
x
u z
z
z
( ) ( ) ( )






+
∫ ∫
∂
∂
∂
∂
+



∫ ∫
∂
∂
∂
+
∫ ∫
∂
∂
∂
+
∞
∞
∞
0 0
1
0 0
1
2
0 0
1
2
,
,
,
,
,
,
,
,
,
ϑ
ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
ϑ
τ
τ d
d
z
y
x
u
x
z
d
d
z
y
x
u
z
y
d
d
z
y
x
u
z
x
x
y
x
( ) ( ) ( )
( ) ( )
( )
( )



×
+
∂
∂
+






∫ ∫
∂
∂
+
∫ ∫
∂
∂
+
∞
∞
z
z
E
z
z
z
z
K
d
d
z
y
x
u
z
d
d
z
y
x
u
y
x
x
σ
ρ
ρ
ϑ
τ
τ
ϑ
τ
τ
ϑ
ϑ
1
6
1
1
,
,
,
,
,
,
0 0
1
0 0
1
( ) ( ) ( )



−
∫ ∫
∂
∂
−
∫ ∫
∂
∂
−
∫ ∫
∂
∂
×
∞
∞
∞
0 0
1
0 0
1
0 0
1 ,
,
,
,
,
,
,
,
,
6
ϑ
ϑ
ϑ
ϑ
τ
τ
ϑ
τ
τ
ϑ
τ
τ d
d
z
y
x
u
y
d
d
z
y
x
u
x
d
d
z
y
x
u
z
y
x
z
( ) ( ) ( )
( )
( ) z
z u
d
d
z
y
x
T
z
z
z
z
K
d
d
z
y
x
u
z
0
0 0
0 0
1 ,
,
,
,
,
, +
∫ ∫
∂
∂
−






∫ ∫
∂
∂
−
∞
∞ ϑ
ϑ
ϑ
τ
τ
ρ
β
ϑ
τ
τ .
International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016
54
AUTHORS
Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary
school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University:
from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra-
diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio-
physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro-
structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo-
rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical
Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of
Nizhny Novgorod State University. He has 155 published papers in area of his researches.
Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of
village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school
“Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec-
ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she
is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in
the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny
Novgorod State University. She has 105 published papers in area of her researches.

Mais conteúdo relacionado

Semelhante a On Modification of Properties of P-N-Junctions During Overgrowth

ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sourcesmsejjournal
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...msejjournal
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...msejjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ijoejournal
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...ijfcstjournal
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...antjjournal
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...antjjournal
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...ijrap
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSZac Darcy
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersZac Darcy
 
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled LogicAn Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logicijrap
 
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled LogicAn Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logicijrap
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...antjjournal
 

Semelhante a On Modification of Properties of P-N-Junctions During Overgrowth (20)

ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
 
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several SourcesOn Decreasing of Dimensions of Field-Effect Transistors with Several Sources
On Decreasing of Dimensions of Field-Effect Transistors with Several Sources
 
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
DEPENDENCE OF CHARGE CARRIERS MOBILITY IN THE P-N-HETEROJUNCTIONS ON COMPOSIT...
 
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
Dependence of Charge Carriers Mobility in the P-N-Heterojunctions on Composit...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD-EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...Optimization of technological process to decrease dimensions of circuits xor ...
Optimization of technological process to decrease dimensions of circuits xor ...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
ON OPTIMIZATION OF MANUFACTURING OF FIELD EFFECT HETEROTRANSISTORS FRAMEWORK ...
 
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
On Optimization of Manufacturing of Field-Effect Heterotransistors Frame-work...
 
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
ON OPTIMIZATION OF MANUFACTURING OF MULTICHANNEL HETEROTRANSISTORS TO INCREAS...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
An Approach to Optimize Regimes of Manufacturing of Complementary Horizontal ...
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction RectifiersInfluence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
Influence of Overlayers on Depth of Implanted-Heterojunction Rectifiers
 
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled LogicAn Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
 
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled LogicAn Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
An Approach to Model Optimization of Man-Ufacturing of Emitter-Coupled Logic
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
ON MODEL OF MANUFACTURING OF A BAND-PASS FILTER TO INCREASE INTEGRATION RATE ...
 

Último

CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfBalamuruganV28
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfChristianCDAM
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 

Último (20)

CS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdfCS 3251 Programming in c all unit notes pdf
CS 3251 Programming in c all unit notes pdf
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
Ch10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdfCh10-Global Supply Chain - Cadena de Suministro.pdf
Ch10-Global Supply Chain - Cadena de Suministro.pdf
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfImmutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 

On Modification of Properties of P-N-Junctions During Overgrowth

  • 1. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 DOI: 10.5121/ijitmc.2016.4203 35 ON MODIFICATION OF PROPERTIES OF P-N-JUNCTIONS DURING OVERGROWTH E.L. Pankratov1 , E.A. Bulaeva1,2 1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia 2 Nizhny Novgorod State University of Architecture and Civil Engineering, 65 Il'insky street, Nizhny Novgorod, 603950, Russia ABSTRACT In this paper we consider influence of overgrowth of doped by diffusion and ion implantation areas of hete- rostructures on distributions of concentrations of dopants. Several conditions to increase sharpness of p-n- junctions (single and framework bipolar transistors), which were manufactured during considered technol- ogical process, have been determined. At the same time we analyzed influence of speed of overgrowth of doped areas and mechanical stress in the considered heterostructure on distribution of concentrations of dopants in the structure. KEYWORDS Diffusion-junction heterorectifier; implanted-junction heterorectifier; overgrowth of doped area; analytical approach for modeling 1. INTRODUCTION In the present time they are several approaches could be used to manufacture p-n-junctions diffu- sion of dopants in a homogenous sample or an epitaxial layer of heterostructure, implantation of ions of dopants in the same situations or doping during epitaxial growth [1-7]. The same ap- proaches could be used to manufacture systems of p-n-junctions: bipolar transistors and thyris- tors. The first and the second ways of doping are preferable in comparison with the third one be- cause the approaches give us possibility to dope locally materials during manufacture integrated circuits easily in comparison with epitaxial growth. Using diffusion and ion implantation in ho- mogenous sample to manufacturing p-n-junctions leads to production fluently varying and wide distributions of dopants. One of actual problems is increasing sharpness of p-n- junctions [5,7]. The increasing of sharpness gives us possibility to decrease switching time of p-n-junctions. In- creasing of homogeneity of dopant distribution in enriched by the dopant area is also attracted an interest [5]. The increasing of homogeneity gives us possibility to decrease local overheat of the doped materials due to streaming of electrical current during operating of p-n-junction or to de- crease depth of p-n-junction for fixed value of local overheats. One way to increase sharpness of p-n-junction based on using near-surficial (laser or microwave) types of annealing [8-15]. Framework the types of annealing one can obtain near-surficial heating of the doped materials. In this situation due to the Arrhenius low one can obtain increasing of dopant diffusion coefficient of near-surficial area in comparison with volumetric dopant diffusion coefficient. The increasing of dopant diffusion coefficient of near-surficial area leads to increasing of sharpness of p-n-junction. The second way to increase sharpness of p-n-junction based on using high doping of materials. In this case contribution of nonlinearity of diffusion process increases [4]. The third way to increase
  • 2. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 36 sharpness of p-n-junction is using of inhomogeneity of heterostructure [16,17]. Framework the approach we consider simplest heterostructure, which consist of substrate and epitaxial layer. One can find increasing of sharpness of p-n-junction after annealing with appropriate annealing time in the case, when dopant diffusion coefficient in the substrate is smaller, than in the epitaxial layer. The fourth way to increase sharpness of p-n-junction is radiation processing of materials. The radiation processing leads to radiation-enhanced diffusion [18]. However using radiation processing of materials leads to necessity of annealing of radiation defects. Density of elements of integrated circuits could be increases by using mismatch-induced stress [19]. However one could obtain increased unsoundness of doped material (for example, to generation of dislocation of dis- agreement) by using the approach [7]. The considered approaches gives a possibility to increase sharpness of p-n-junction with increas- ing of homogeneity of dopant distribution in enriched by the dopant area. Using combination of the above approaches gives us possibility to increase sharpness of p-n-junction and increasing of homogeneity of dopant distribution in enriched area at one time. z D(z), P(z) D2 D3 0 Lz a fC impl(z) fC diff(z) P2 P3 Substrate Epitaxial layer Overlayer D1 P1 Fig. 1. Substrate, epitaxial and overlayers framework heterostructure Framework this paper we consider a substrate with known type of conductivity (n or p) and an epitaxial layer, included into a heterostructure. The epitaxial layer have been doped by diffusion or by ion implantation to manufacture another type of conductivity (p or n). Farther we consider overgrowth of the epitaxial layer by an overlayer (see Fig. 1). The overlayer has type of conduc- tivity, which coincide with type of conductivity of the substrate. In this paper we analyzed influ- ence of overgrowth of the doped epitaxial layer on distribution of dopants in the considered hete- rostructure. 2. METHOD OF SOLUTION In this section we calculate spatio-temporal distribution of concentration of dopant in the consi- dered heterostructure to solve our aim. To calculate the distribution we solved the following boundary problem [1,20-22] ( ) ( ) ( ) ( ) +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C , , , , , , , , , , , , (1)
  • 3. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 37 ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S S L t v S S W d t W y x C t z y x T k D y W d t W y x C t z y x T k D x , , , , , , , , , , , , µ µ . Boundary and initial conditions for our case could be written as ( ) 0 , , , 0 = ∂ ∂ = x x t z y x C , ( ) 0 , , , = ∂ ∂ = x L x x t z y x C , ( ) 0 , , , 0 = ∂ ∂ = y y t z y x C , ( ) 0 , , , = ∂ ∂ = y L x y t z y x C , ( ) 0 , , , = ∂ ∂ − = t v z z t z y x C , ( ) 0 , , , = ∂ ∂ = z L x z t z y x C , C(x,y,z,0)=fC(x,y,z). In the above relations we used the function C (x,y,z,t) as the spatio-temporal distribution of con- centration of dopant; Ω is the atomic volume; surface concentration of dopant on interface be- tween layers of heterostructure could be determined as the following integral ( ) ∫ − z L t v z d t z y x C , , , (we assume, that the interface between layers of heterostructure is perpendicular to the direction Oz); surface gradient we denote as symbol ∇S; µ(x,y,z,t) is the chemical potential (reason of ac- counting of the chemical potential is mismatch-induced stress); the parameters D and DS are the coefficients of volumetric and surface diffusions. One can find the surface diffusions due to mis- match-induced stress. Diffusion coefficients depends on temperature and speed of heating and cooling of heterostructure, properties of materials of heterostructure, spatio-temporal distributions of concentrations of dopant and radiation defects after ion implantation. Approximations of these dependences could be approximated by the following functions [22,23] ( ) ( ) ( ) ( ) ( ) ( )         + +       + = 2 * 2 2 * 1 , , , , , , 1 , , , , , , 1 , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D D S L S S ς ς ξ γ γ . (2) Functions DL(x,y,z,T) and DLS(x,y,z,T) described dependences of diffusion coefficients on coordi- nate (due to presents several layers in heterostructure, manufactured by using different materials) and temperature of annealing T (due to Arrhenius law); function P(x,y,z,T) describes dependence of limit of solubility of dopant on coordinate and temperature; parameter γ could be integer and depends on properties of materials of heterostructure [23]; V(x,y,z,t) is the spatio-temporal con- centration of radiation vacancies; V* is the equilibrium concentration of vacancies. Concentration- al dependence of dopant diffusion coefficients has been described in details in [23]. We determine distributions of concentrations of point defects in space and time as solutions of the following system of equations [1,20-22] ( ) ( ) ( ) ( ) ( ) ( )× −       +       = T z y x k y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I I I , , , , , , , , , , , , , , , , , , , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) t z y x V t z y x I T z y x k z t z y x I T z y x D z t z y x I V I I , , , , , , , , , , , , , , , , , , , 2 −       + × ∂ ∂ ∂ ∂ (3)
  • 4. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 38 ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S S I L t v S S I W d t W y x I t z y x T k D y W d t W y x I t z y x T k D x , , , , , , , , , , , , µ µ ( ) ( ) ( ) ( ) ( ) ( )× −       +       = T z y x k y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V V V , , , , , , , , , , , , , , , , , , , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( )+ −       + × t z y x V t z y x I T z y x k z t z y x V T z y x D z t z y x V V I V , , , , , , , , , , , , , , , , , , , 2 ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S VS L t v S VS W d t W y x V t z y x T k D y W d t W y x V t z y x T k D x , , , , , , , , , , , , µ µ . Boundary and initial conditions for these equations could be written as ( ) 0 , , , 0 = = x x t z y x I ∂ ∂ , ( ) 0 , , , = = x L x x t z y x I ∂ ∂ , ( ) 0 , , , 0 = = y y t z y x I ∂ ∂ , ( ) 0 , , , = = y L y y t z y x I ∂ ∂ , ( ) 0 , , , = − = t v z z t z y x I ∂ ∂ , ( ) 0 , , , = = z L z z t z y x I ∂ ∂ , ( ) 0 , , , 0 = = x x t z y x V ∂ ∂ , ( ) 0 , , , = = x L x x t z y x V ∂ ∂ , ( ) 0 , , , 0 = = y y t z y x V ∂ ∂ , ( ) 0 , , , = = y L y y t z y x V ∂ ∂ , ( ) 0 , , , = − = t v z z t z y x V ∂ ∂ , ( ) 0 , , , = = z L z z t z y x V ∂ ∂ , I(x,y,z,0)=fI(x,y,z), V(x,y,z,0)=fV(x,y,z). (4) Here I(x,y,z,t) is the distribution of concentration of radiation interstitials in space and time; I* is the equilibrium concentration interstitials; DI(x,y,z,T), DV(x,y,z,T), DIS(x,y,z,T), DVS(x,y,z,T) are the coefficients of volumetric and surface diffusion; terms V2 (x,y,z,t) and I2 (x,y,z,t) corresponds to generation divacancies and analogous complexes of interstitials (see, for example, [22] and ap- propriate references in this work); the functions kI,V(x,y,z,T), kI,I(x,y,z,T) and kV,V(x,y,z,T) described dependences of parameters of recombination of point defects and generation their complexes on coordinate and temperature; k is the Boltzmann constant. We calculate spatio-temporal distributions of concentrations of divacancies ΦV (x,y,z,t) and diin- terstitials ΦI (x,y,z,t) by solution of the equations [20-22] ( ) ( ) ( ) ( ) ( ) ( )× +       Φ +       Φ = Φ Φ Φ T z y x k y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I I , , , , , , , , , , , , , , , , , , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) +       ∫Φ ∇ ∂ ∂ Ω +       Φ + × − Φ Φ z I I L t v I S S I W d t W y x t z y x T k D x z t z y x T z y x D z t z y x I , , , , , , , , , , , , , , , µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) t z y x I T z y x k W d t W y x t z y x T k D y I I L t v I S IS z , , , , , , , , , , , , 2 , +       ∫Φ ∇ ∂ ∂ Ω + − Φ µ (5) ( ) ( ) ( ) ( ) ( ) ( )× +       Φ +       Φ = Φ Φ Φ T z y x k y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V V , , , , , , , , , , , , , , , , , , ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) +       ∫Φ ∇ ∂ ∂ Ω +       Φ + × − Φ Φ z V V L t v V S S V W d t W y x t z y x T k D x z t z y x T z y x D z t z y x V , , , , , , , , , , , , , , , µ ∂ ∂ ∂ ∂
  • 5. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 39 ( ) ( ) ( ) ( ) t z y x V T z y x k W d t W y x t z y x T k D y V V L t v V S S z V , , , , , , , , , , , , 2 , +       ∫Φ ∇ ∂ ∂ Ω + − Φ µ . Boundary and initial conditions could be written as ( ) 0 , , , 0 = Φ = x I x t z y x ∂ ∂ , ( ) 0 , , , = Φ = x L x I x t z y x ∂ ∂ , ( ) 0 , , , 0 = Φ = y I y t z y x ∂ ∂ , ( ) 0 , , , = Φ = y L y I y t z y x ∂ ∂ , ( ) 0 , , , = Φ − = t v z I z t z y x ∂ ∂ , ( ) 0 , , , = = z L z z t z y x I ∂ ∂ , ( ) 0 , , , 0 = Φ = x V x t z y x ∂ ∂ , ( ) 0 , , , = = x L x x t z y x V ∂ ∂ , ( ) 0 , , , 0 = Φ = y V y t z y x ∂ ∂ , ( ) 0 , , , = Φ = y L y V y t z y x ∂ ∂ , ( ) 0 , , , = Φ − = t v z V z t z y x ∂ ∂ , ( ) 0 , , , = Φ = z L z V z t z y x ∂ ∂ , ΦI(x,y,z,0)=fΦI(x,y,z), ΦV(x,y,z,0)=fΦV(x,y,z). (6) Here DΦI(x,y,z,T), DΦV(x,y,z,T), DΦIS(x,y,z,T) and DΦVS(x,y,z,T) are the coefficients of volumetric and surface diffusion; the functions kI(x,y,z,T) and kV(x,y,z,T) described dependences of parame- ters of decay of complexes of point defects on coordinate and temperature. One can determine chemical potential µ in the Eq.(1) by the following relation [20] µ=E(z)Ωσij[uij(x,y,z,t)+uji(x,y,z,t)]/2. (7) Here E is the tension (Young) modulus;         ∂ ∂ + ∂ ∂ = i j j i ij x u x u u 2 1 is the deformation tensor; σij is the stress tensor; ui, uj are the components ux(x,y,z,t), uy(x,y,z,t) and uz(x,y,z,t) of the displacement ten- sor ( ) t z y x u , , , r ; xi, xj are the coordinates x, y, z. The relation (3) could be transformed to the fol- lowing form ( ) ( ) ( ) ( ) ( ) ( )      + −         ∂ ∂ + ∂ ∂         ∂ ∂ + ∂ ∂ Ω = ij i j j i i j j i x t z y x u x t z y x u x t z y x u x t z y x u z E t z y x δ ε µ 0 , , , , , , 2 1 , , , , , , 2 , , , ( ) ( ) ( ) ( ) ( ) ( ) [ ]      − −       − ∂ ∂ − + ij k k ij T t z y x T z z K x t z y x u z z δ β ε σ δ σ 0 0 , , , 3 , , , 2 1 , where σ is the Poisson coefficient; the parameter ε0=(as-aEL)/aEL describes the displacement pa- rameter with lattice distances of the substrate and the epitaxial layer as, aEL; K is the modulus of uniform compression; the parameter b describes the thermal expansion; we assume, that the equi- librium temperature Tr coincides with the room temperature. Components of the displacement vector could be described by solving the following system of equations [24] ( ) ( ) ( ) ( ) ( ) z t z y x y t z y x x t z y x t t z y x u z xz xy xx x ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ , , , , , , , , , , , , 2 2 σ σ σ ρ ( ) ( ) ( ) ( ) ( ) z t z y x y t z y x x t z y x t t z y x u z yz yy yx y ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ , , , , , , , , , , , , 2 2 σ σ σ ρ ( ) ( ) ( ) ( ) ( ) z t z y x y t z y x x t z y x t t z y x u z zz zy zx z ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ , , , , , , , , , , , , 2 2 σ σ σ ρ
  • 6. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 40 where ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )− ∂ ∂ +         ∂ ∂ − ∂ ∂ + ∂ ∂ + = k k ij k k ij i j j i ij x t z y x u z K x t z y x u x t z y x u x t z y x u z z E , , , , , , 3 , , , , , , 1 2 δ δ σ σ ( ) ( ) ( ) [ ] r T t z y x T z K z − − , , , β , ρ (z) describes the density of materials of heterostructure. The ten- sor δij describes the Kronecker symbol. Accounting relation for σij in the previous system of equa- tions last system of equation could be written as ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) + ∂ ∂ ∂       + − + ∂ ∂       + + = ∂ ∂ y x t z y x u z z E z K x t z y x u z z E z K t t z y x u z y x x , , , 1 3 , , , 1 6 5 , , , 2 2 2 2 2 σ σ ρ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) − ∂ ∂ ∂       + + +         ∂ ∂ + ∂ ∂ + + z x t z y x u z z E z K z t z y x u y t z y x u z z E z z y , , , 1 3 , , , , , , 1 2 2 2 2 2 2 σ σ ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )+ ∂ ∂ −         ∂ ∂ ∂ + ∂ ∂ + = ∂ ∂ y t z y x T z K z y x t z y x u x t z y x u z z E t t z y x u z x y y , , , , , , , , , 1 2 , , , 2 2 2 2 2 β σ ρ ( ) ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) + ∂ ∂       + + +                 ∂ ∂ + ∂ ∂ + ∂ ∂ + 2 2 , , , 1 12 5 , , , , , , 1 2 y t z y x u z K z z E y t z y x u z t z y x u z z E z y z y σ σ ( ) ( ) ( ) [ ] ( ) ( ) ( ) y x t z y x u z K z y t z y x u z z E z K y y ∂ ∂ ∂ + ∂ ∂ ∂       + − + , , , , , , 1 6 2 2 σ (8) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) +         ∂ ∂ ∂ + ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ + = ∂ ∂ z y t z y x u z x t z y x u y t z y x u x t z y x u z z E t t z y x u z y x z z z , , , , , , , , , , , , 1 2 , , , 2 2 2 2 2 2 2 2 σ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( )+ ∂ ∂ −                 ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + z t z y x T z z K z t z y x u y t z y x u x t z y x u z K z x y x , , , , , , , , , , , , β ( ) ( ) ( ) ( ) ( ) ( )                 ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂ + z t z y x u y t z y x u x t z y x u z t z y x u z z E z z y x z , , , , , , , , , , , , 6 1 6 1 σ . Systems of conditions for these equations could be written as ( ) 0 , , , 0 = ∂ ∂ = x x t z y x u r ; ( ) 0 , , , = ∂ ∂ = x L x x t z y x u r ; ( ) 0 , , , 0 = ∂ ∂ = y y t z y x u r ; ( ) 0 , , , = ∂ ∂ = y L y y t z y x u r ; ( ) 0 , , , = ∂ ∂ − = t v z z t z y x u r ; ( ) 0 , , , = ∂ ∂ = z L z z t z y x u r ; ( ) 0 0 , , , u z y x u r r = ; ( ) 0 , , , u z y x u r r = ∞ . We calculate distribution of concentration of dopant in space in time by method of averaging of function corrections [25-30]. To use the method we re-write Eqs. (1), (3) and (5) with account appropriate initial distributions (see Appendix). In future we replace the required concentrations in right sides of the obtained equations on their average values α1ρ, which are not yet known. The equations modified after the replacement and solution of these equations are presented in the Ap- pendix. We determined average values of the first-order approximations of the considered concentrations by using the following standard relations [25-30]
  • 7. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 41 ( ) ∫ ∫ ∫ ∫ Θ = Θ − 0 0 0 1 1 , , , 1 x y z L L L t v z y x t d x d y d z d t z y x L L L ρ α ρ . (9) Substitution of the solutions of the modified equations into the relation (9) gives a possibility to obtain appropriate average values in the following form ( ) ∫ ∫ ∫ ∫ = Θ − 0 0 0 1 , , 1 x y z L L L t v C z y x C t d x d y d z d z y x f L L L α , ( ) 4 3 4 1 2 3 2 4 2 3 1 4 4 4 a A a a a L L L B a B a A a z y x I + −         Θ + Θ + − + = α , ( )       Θ − − ∫ ∫ ∫ ∫ Θ = Θ − z y x II I L L L t v I I IV V L L L S t d x d y d z d z y x f S x y z 00 1 0 0 0 1 00 1 , , 1 α α α , ( ) ∫ ∫ ∫ ∫ + Θ + Θ = Θ − Φ Φ 0 0 0 20 1 1 , , 1 x y z I I L L L t v z y x z y x II z y x I t d x d y d z d z y x f L L L L L L S L L L R α , ( ) ∫ ∫ ∫ ∫ + Θ + Θ = Θ − Φ Φ 0 0 0 20 1 1 , , 1 x y z V V L L L t v z y x z y x VV z y x V t d x d y d z d z y x f L L L L L L S L L L R α . Relations for calculations parameters Sρρij, ai, A, B, q, p are presented in the Appendix. We used standard iterative procedure of method of averaging of function corrections to calculate the second- and higher-order approximations of the considered concentrations [25-30]. Frame- work the procedure to calculate approximations of the n-th order of the above concentrations we replace the functions C(x,y,z,t), I(x,y,z,t), V(x,y,z,t), ΦI(x,y,z,t) and ΦV(x,y,z,t) in the Eqs. (1), (3), (5) with account initial distributions (see Eqs. (1a), (3a), (5a) in the Appendix) on the sums of the not yet known average values of the considered approximations and approximations of the pre- vious order, i.e. αnρ+ρn-1(x,y,z,t). These obtained equations and their solutions, which calculated are presented in the Appendix. We calculate average values of the second-order approximations of required functions by using the following standard relation [25-30] ( ) ( ) [ ] ∫ ∫ ∫ ∫ − Θ = Θ 0 0 0 0 1 2 2 , , , , , , 1 x y z L L L z y x t d x d y d z d t z y x t z y x L L L ρ ρ α ρ . (10) Substitution of the second-order approximations of concentrations of dopant into Eq.(10) leads to the considered average values α2ρ α2C=0, α2ΦI =0, α2ΦV =0, ( ) 4 3 4 1 2 3 2 4 2 3 2 4 4 4 b E b b b L L L F a F b E b z y x V + −         Θ + Θ + − + = α , ( ) 00 2 01 11 02 10 01 2 00 2 2 2 2 IV V IV V I V V z y x V I VV V VV V V I S S S S L L L S S S C α α α α + − − Θ + + − − = . Relations for parameters bi, Cρ, F, r, s are presented in the Appendix. Further we determine solutions of Eqs.(8). In this situation we determine approximation of dis- placement vector. To determine the first-order approximations of the considered components framework method of averaging of function corrections we replace the required values on their not yet known average values α1i. The replacement leads to the following result
  • 8. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 42 ( ) ( ) ( ) ( ) ( ) x t z y x T z z K t t z y x u z x ∂ ∂ − = ∂ ∂ , , , , , , 2 1 2 β ρ , ( ) ( ) ( ) ( ) ( ) y t z y x T z z K t t z y x u z y ∂ ∂ − = ∂ ∂ , , , , , , 2 1 2 β ρ , ( ) ( ) ( ) ( ) ( ) z t z y x T z z K t t z y x u z z ∂ ∂ − = ∂ ∂ , , , , , , 2 1 2 β ρ . Integration of the left and right sides of the previous relations on time t gives a possibility to ob- tain the required components to the following result ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x t x u d d z y x T x z z z K d d z y x T x z z z K t z y x u 0 0 0 0 0 1 , , , , , , , , , + ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ = ∞ϑ ϑ ϑ τ τ ρ β ϑ τ τ ρ β , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) y t y u d d z y x T y z z z K d d z y x T y z z z K t z y x u 0 0 0 0 0 1 , , , , , , , , , + ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ = ∞ϑ ϑ ϑ τ τ ρ β ϑ τ τ ρ β , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) z t z u d d z y x T z z z z K d d z y x T z z z z K t z y x u 0 0 0 0 0 1 , , , , , , , , , + ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ = ∞ϑ ϑ ϑ τ τ ρ β ϑ τ τ ρ β . We calculate the second-order approximations of components of the displacement vector by stan- dard replacement of the required functions in the right sides of the Eqs.(8) on the standard sums α1i+ui(x,y,z,t) [19,26]. Equations for components of the displacement vector are presented in the Appendix. Solutions of these equations are also presented in the Appendix. Framework this paper all required concentrations (concentrations of dopant and radiation defects) and components of displacement vector have been calculated as the appropriate second-order ap- proximations by using the method of averaging of function corrections. The second-order approx- imation gives usually enough information on quantitative behavior of spatio-temporal distribu- tions of concentrations of dopant and radiation defects and also several quantitative results. We check all analytical results by using numerical approaches. 3. DISCUSSION In this section we analyzed redistribution of dopant (for the ion doping of heterostructure) with account redistribution of radiation defects and their interaction with another defects. If growth rate is small (v t<D1/v), than overlayer will be fully doped by dopant, which was implanted in the epitaxial layer. Framework another limiting case it will be doped near-surface area of the overlay- er only. If dopant diffusion coefficient in the overlayer and in the substrate are smaller, in com- parison with the epitaxial layer, and type of conductivity of the overlayer and the substrate is dif- ferent with type of conductivity of the epitaxial layer, than one can find a bipolar transistor. In this case one can find higher sharpness of p-n-junctions framework the transistor in comparison with a bipolar transistor in homogenous sample with averaged diffusion coefficient of dopant. The increasing gives a possibility to increase switching time of p-n-junctions (both single p-n- junctions and p-n-junctions framework their systems: bipolar transistors, thyristors et al). At the same time one can find increasing of homogeneity of concentration of dopant (see Fig. 2). In this situation one can decrease local overheats in doped areas during functioning of the considered devices or to decrease dimensions of these devices for fixed tolerance for local overheats. Quali- tatively similar results could be obtained for diffusion type of doping. One can find smaller sharpness of left p-n-junctions in the case, when dopant diffusion coefficient of the overlayer is larger, than in doped epitaxial layer. At the same time homogeneity of concentration of dopant in
  • 9. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 43 the overlayer increases (see Fig. 3). Qualitatively similar results could be obtained for diffusion type of doping. Further we analyzed influence of mismatch-induced stress on distribution of con- centration z 0.0 0.5 1.0 1.5 2.0 C(x,y,z, Θ ) 0 Lz /4 Lz /2 3Lz /4 Lz 1 2 Fig. 2. Calculated spatial distributions of concentration of implanted dopant in homogenous sample (curve 1) and in heterostructure from Fig. 1 (curve 2) after annealing with the same continuance. Interfaces be- tween layers of heterostructure are: a1=Lz/4 and a2=3Lz/4 z 0.00001 0.00010 0.00100 0.01000 0.10000 1.00000 C(x,y,z, Θ ) C(x,y,z,0) Lz /4 0 Lz /2 3Lz /4 Lz x0 1 2 3 4 Fig. 3. Curves 1 and 2 are the calculated spatial distributions of concentration of implanted dopant in the system of two layers: overlayer and epitaxial layer. Curves 3 and 4 are the calculated spatial distributions of concentration of implanted dopant in the epitaxial layer only. Increasing of number of curves corresponds to increasing of value of relation D1/D2. Coordinates of interfaces between layers of heterostructure are: a1=Lz/4 (between overlayer and epitaxial layer) and a2=3Lz/4 (between epitaxial layer and substrate)
  • 10. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 44 0.0 1.0 2.0 C(x,y,z, Θ ) 0 Lz 1 2 3 Fig. 4. Spatial distributions of concentration of dopant in diffusion-junction rectifier after annealing with equal continuance. Curve 1 corresponds to ε0<0. Curve 2 corresponds to ε0=0. Curve 3 corresponds to ε0>0 0.0 1.0 2.0 C(x,y,z, Θ ) Lz -Lz 0 1 2 3 Fig. 5. Spatial distributions of concentration of dopant in implanted-junction rectifier after annealing with equal continuance. Curve 1 corresponds to ε0<0. Curve 2 corresponds to ε0=0. Curve 3 corresponds to ε0>0 z 0.0 0.2 0.4 0.6 0.8 1.0 Uz 1 2 0.0 a Fig.6. Normalized dependences of component uz of displacement vector on coordinate z for epitaxial layers before radiation processing (curve 1) and after radiation processing (curve 2)
  • 11. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 45 of dopant. We obtain during the analysis, that p-n-junctions, manufactured near interface between layers of heterostructures, have higher sharpness and higher homogeneity of concentration of do- pant in enriched area. Existing mismatch-induced stress leads to changing of distribution of con- centration of dopant in directions, which are parallel to the considered interface. For example, for ε0<0 the above distribution in directions x and y became more compact (see Fig. 4). In this situa- tion one can obtain increasing of density of elements of integrated circuits in this situation, when the circuits were fabricated in heterostructures. For ε0>0 one can obtain opposite effect (see Fig. 5). It should be noted, that radiation processing of materials of heterostructure during ion doping of materials gives a possibility to decrease mismatch-induced stress (see Fig. 6). Further we analyzed influence of mismatch-induced stress on distribution of concentration of do- pant. We obtain during the analysis, that p-n-junctions, manufactured near interface between lay- ers of heterostructures, have higher sharpness and higher homogeneity of concentration of dopant in enriched area. Existing mismatch-induced stress leads to changing of distribution of concentra- tion of dopant in directions, which are parallel to the considered interface. For example, for ε0<0 the above distribution in directions x and y became more compact (see Fig. 4). For ε0>0 one can obtain opposite effect (see Fig. 5). It should be noted, that radiation processing of materials of heterostructure during ion doping of materials gives a possibility to decrease mismatch-induced stress (see Fig. 6). In this situation component of displacement vector perpendicular to interface between materials of heterostructure became smaller after radiation processing in comparison with analogous component of displacement vector in non processed heterostructure. 4. CONCLUSIONS In this paper we analyzed influence of overgrowth of doped by diffusion or ion implantation areas of heterostructures on distributions of concentrations of dopants. We determine conditions to in- crease sharpness if implanted-junction and diffusion- junction rectifiers (single rectifiers and rec- tifiers framework bipolar transistors). At the same time we analyzed influence of overgrowth rate of doped areas and mismatch-induced stress in the considered heterostructure on distributions of concentrations of dopants. ACKNOWLEDGEMENTS This work is supported by the agreement of August 27, 2013 № 02.В.49.21.0003 between The Ministry of education and science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod, educational fellowship for scientific research of Government of Russian, edu- cational fellowship for scientific research of Government of Nizhny Novgorod region of Russia and educational fellowship for scientific research of Nizhny Novgorod State University of Archi- tecture and Civil Engineering. REFERENCES [1] V.I. Lachin, N.S. Savelov. Electronics (Phoenix, Rostov-na-Donu, 2001). [2] N.A. Avaev, Yu.E. Naumov, V.T. Frolkin. Basis of microelectronics (Radio and communication, Moscow, 1991). [3] V.G. Gusev, Yu.M. Gusev. Electronics (Higher School, Moscow, 1991). [4] Z.Yu. Gotra. Technology of microelectronic devices (Radio and communication, Moscow 1991). [5] I.P. Stepanenko. Basis of microelectronics (Soviet Radio, Moscow 1980). [6] A.G. Alexenko, I.I. Shagurin. Microcircuitry (Radio and communication, Moscow, 1990). [7] K.V. Shalimova. Physics of semiconductors. (Energoatomizdat, Moscow, 1985. [8] Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. Vol. 43 (3). P. 836 (2003).
  • 12. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 46 [9] A.V. Dvurechensky, G.A. Kachurin, E.V. Nidaev, L.S. Smirnov. Impulse annealing of semiconductor materials (Science, Moscow, 1982). [10] A.F. Corballo Sanchez, G. Gonzalez de la Cruz, Yu.G. Gurevich, G.N. Logvinov. Transient heat transport by carriers and phonons in semiconductors. Phys. Rev. B. Vol. 59 (16). P. 10630 (1999). [11] V.I. Mazhukin, V.V. Nosov, U. Semmler. Investigation of heat and thermo-elastic fields in semicon- ductors at pulse processing. Mathematical modelling. Vol. 12 (2), 75 (2000). [12] K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant activation in subamor- phized silicon upon laser annealing. Appl. Phys. Lett. Vol. 89 (17), 172111 (2006). [13] J.A. Sharp, N.E. B. Cowern, R.P. Webb, K.J. Kirkby, D. Giubertoni, S. Genarro, M. Bersani, M.A. Foad, F. Cristiano, P.F. Fazzini. Appl. Phys. Lett. Vol. 89, 192105 (2006). [14] J.E. Epler, F.A. Ponce, F.J. Endicott, T.L. Paoli. J. Appl. Phys. Vol. 64, 3439 (1988). [15] S.T. Sisianu, T.S. Sisianu, S.K. Railean. Semiconductors. Vol. 36, 581 (2002). [16] E.L. Pankratov. Influence of spatial, temporal and concentrational dependence of diffusion coefficient on dopant dynamics: Optimization of annealing time. Phys. Rev. B. Vol. 72 (7). P. 075201 (2005). [17] E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion- coefficient nonuniformity. Russian Microelectronics. Vol. 36 (1). P. 33 (2007). [18] V.V. Kozlivsky. Modification of semiconductors by proton beams (Science, Sant- Peterburg, 2003). [19] E.L. Pankratov. Influence of mechanical stress in a multilayer structure on spatial distribution of dopants in implanted-junction and diffusion-junction rectifiers. Mod. Phys. Lett. B. Vol. 24 (9). P. 867 (2010). [20] Y.W. Zhang, A.F. Bower. Numerical simulations of island formation in a coherent strained epitaxial thin film system. Journal of the Mechanics and Physics of Solids. Vol. 47 (11). P. 2273-2297 (1999). [21] P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. Vol. 61 (2). P. 289-388 (1989). [22] V.L. Vinetskiy, G.A. Kholodar', Radiative physics of semiconductors. ("Naukova Dumka", Kiev, 1979, in Russian). [23] Z.Yu. Gotra, Technology of microelectronic devices (Radio and communication, Moscow, 1991). [24] L.D. Landau, E.M. Lefshits. Theoretical physics. 7 (Theory of elasticity) (Physmatlit, Moscow, 2001, in Russian). [25] Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Applied Mechanics. Vol. 1 (1). P. 23-35 (1955). [26] E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of dis- tributions of dopants. Reviews in Theoretical Science. Vol. 1 (1). P. 58-82 (2013). [27] E.L. Pankratov, E.A. Bulaeva. Increasing of sharpness of diffusion-junction heterorectifier by using radiation processing. Int. J. Nanoscience. Vol. 11 (5). P. 1250028-1-1250028-8 (2012). [28] E.L. Pankratov, E.A. Bulaeva. Optimization of manufacturing of emitter-coupled logic to decrease surface of chip. International Journal of Modern Physics B. Vol. 29 (5). P. 1550023-1-1550023-12 (2015). [29] E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film struc- tures. On the method of optimization. Int. J. Micro-Nano Scale Transp. Vol. 4 (1). P. 17-31 (2014). [30] E.L. Pankratov, E.A. Bulaeva. Decreasing of mechanical stress in a semiconductor heterostructure by radiation processing. J. Comp. Theor. Nanoscience. Vol. 11 (1). P. 91-101 (2014). APPENDIX Eqs. (1), (3) and (5) with account initial distributions could be written as ( ) ( ) ( ) ( ) ( ) ( )+ +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ +       ∂ ∂ ∂ ∂ = ∂ ∂ t z y x f z t z y x C D z y t z y x C D y x t z y x C D x t t z y x C C δ , , , , , , , , , , , , , , ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S S L t v S S W d t W y x C t z y x T k D y W d t W y x C t z y x T k D x , , , , , , , , , , , , µ µ (1a)
  • 13. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 47 ( ) ( ) ( ) ( ) ( ) ( ) ( )+ +       +       = t z y x f y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I I I I δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( )+ − −       + t z y x I T z y x k t z y x V t z y x I T z y x k z t z y x I T z y x D z I I V I I , , , , , , , , , , , , , , , , , , , , , 2 , , ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S IS L t v S IS W d t W y x I t z y x T k D y W d t W y x I t z y x T k D x , , , , , , , , , , , , µ µ (3a) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ +       +       = t z y x f y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V V V δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) ( ) ( )+ − −       + t z y x V T z y x k t z y x V t z y x I T z y x k z t z y x V T z y x D z V V V I V , , , , , , , , , , , , , , , , , , , , , 2 , , ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( )       ∫ ∇ ∂ ∂ Ω +       ∫ ∇ ∂ ∂ Ω + − − z z L t v S VS L t v S VS W d t W y x V t z y x T k D y W d t W y x V t z y x T k D x , , , , , , , , , , , , µ µ ( ) ( ) ( ) ( ) ( ) ( )× +       Φ +       Φ = Φ Φ Φ t y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , ( ) ( ) ( ) ( ) ( ) +       ∫Φ ∇ ∂ ∂ Ω +       Φ + × − Φ Φ Φ z I I I L t v I S S I W d t W y x t z y x T k D x z t z y x T z y x D z z y x f , , , , , , , , , , , , , , µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) t z y x I T z y x k t z y x I T z y x k W d t W y x t z y x T k D y I I I L t v I S S z I , , , , , , , , , , , , , , , , , , 2 , + +       ∫Φ ∇ ∂ ∂ Ω + − Φ µ ( ) ( ) ( ) ( ) ( ) ( )× +       Φ +       Φ = Φ Φ Φ t y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ , , , , , , , , , , , , , , , (5a) ( ) ( ) ( ) ( ) ( ) +       ∫Φ ∇ ∂ ∂ Ω +       Φ + × − Φ Φ Φ z V V V L t v V S S V W d t W y x t z y x T k D x z t z y x T z y x D z z y x f , , , , , , , , , , , , , , µ ∂ ∂ ∂ ∂ ( ) ( ) ( ) ( ) ( ) ( ) t z y x V T z y x k t z y x V T z y x k W d t W y x t z y x T k D y V V V L t v V S S z V , , , , , , , , , , , , , , , , , , 2 , + +       ∫Φ ∇ ∂ ∂ Ω + − Φ µ . The first-order approximations of concentrations of dopant and radiation defects could by calcu- lated by solution of the following equations ( ) ( ) ( ) +       ∇ ∂ ∂ Ω +       ∇ ∂ ∂ Ω = ∂ ∂ t z y x T k D z y t z y x T k D z x t t z y x C S S C S S C , , , , , , , , , 1 1 1 µ α µ α ( ) ( ) t z y x fC δ , , + (1b) ( ) ( ) ( ) ( ) ( )− +       ∇ ∂ ∂ Ω +       ∇ ∂ ∂ Ω = t z y x f t z y x T k D z y t z y x T k D x z t t z y x I I S IS I S IS I δ µ α µ α ∂ ∂ , , , , , , , , , , , 1 1 1 ( ) ( ) T z y x k T z y x k V I V I I I I , , , , , , , 1 1 , 2 1 α α α − − (3b) ( ) ( ) ( ) ( ) ( )− +       ∇ ∂ ∂ Ω +       ∇ ∂ ∂ Ω = t z y x f t z y x T k D z y t z y x T k D x z t t z y x V V S VS V S VS V δ µ α µ α ∂ ∂ , , , , , , , , , , , 1 1 1 ( ) ( ) T z y x k T z y x k V I V I V V V , , , , , , , 1 1 , 2 1 α α α − −
  • 14. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 48 ( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + = Φ Φ t z y x f t z y x I T z y x k t z y x I T z y x k t t z y x I I I I I δ ∂ ∂ , , , , , , , , , , , , , , , , , 2 , 1 ( ) ( )      ∇ ∂ ∂ Ω +       ∇ ∂ ∂ Ω + Φ Φ Φ Φ t z y x T k D y z t z y x T k D x z S S S S I I I I , , , , , , 1 1 µ α µ α (5b) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + = Φ Φ t z y x f t z y x V T z y x k t z y x V T z y x k t t z y x V V V V V δ ∂ ∂ , , , , , , , , , , , , , , , , , 2 , 1 ( ) ( )      ∇ ∂ ∂ Ω +       ∇ ∂ ∂ Ω + Φ Φ Φ Φ t z y x T k D y z t z y x T k D x z S S S S V V V V , , , , , , 1 1 µ α µ α The first-order approximations of the considered concentrations in the following form ( ) ( ) ( ) ( ) ( ) ( ) ∫ ×         + +       + ∇ ∂ ∂ = t C S S C V z y x V V z y x V T z y x P z y x x t z y x C 0 2 * 2 2 * 1 1 1 1 1 , , , , , , 1 , , , 1 , , , , , , τ ς τ ς α ξ τ µ α γ γ ( ) ( ) ( ) ( ) ( ) ∫ ×         + + ∇ ∂ ∂ Ω +    Ω × t S C L S V z y x V V z y x V z y x y d T k z T z y x D 0 2 * 2 2 * 1 1 1 , , , , , , 1 , , , , , , τ ς τ ς τ µ α τ ( ) ( ) ( ) z y x f d T z y x P T k z T z y x D C C S L S , , , , , 1 , , , 1 +       + × τ α ξ γ γ (1c) ( ) ( ) ( ) ( )− + ∫ ∇ ∂ ∂ Ω + ∫ ∇ ∂ ∂ Ω = z y x f d z y x T k D y z d z y x T k D x z t z y x I I t S IS I t S IS I , , , , , , , , , , , 0 1 0 1 1 τ τ µ α τ τ µ α ( ) ( ) ∫ − ∫ − t V I V I t I I I d T z y x k d T z y x k 0 , 1 1 0 , 2 1 , , , , , , τ α α τ α (3c) ( ) ( ) ( ) ( )− + ∫ ∇ ∂ ∂ Ω + ∫ ∇ ∂ ∂ Ω = z y x f d z y x T k D y z d z y x T k D x z t z y x V V t S IS V t S IS V , , , , , , , , , , , 0 1 1 0 1 1 1 τ τ µ α τ τ µ α ( ) ( ) ∫ − ∫ − t V I V I t V V V d T z y x k d T z y x k 0 , 1 1 0 , 2 1 , , , , , , τ α α τ α ( ) ( ) ( ) + ∫ ∇ ∂ ∂ Ω + ∫ ∇ ∂ ∂ Ω = Φ Φ Φ Φ Φ t S S t S S I d z y x T k D x z d z y x T k D x z t z y x I I I I 0 1 0 1 1 , , , , , , , , , τ τ µ α τ τ µ α ( ) ( ) ( ) ( ) ( ) ∫ + ∫ + + Φ t I I t I d z y x I T z y x k d z y x I T z y x k z y x f I 0 2 , 0 , , , , , , , , , , , , , , τ τ τ τ (5c) ( ) ( ) ( ) + ∫ ∇ ∂ ∂ Ω + ∫ ∇ ∂ ∂ Ω = Φ Φ Φ Φ Φ t S S t S S V d z y x T k D x z d z y x T k D x z t z y x V V V V 0 1 0 1 1 , , , , , , , , , τ τ µ α τ τ µ α ( ) ( ) ( ) ( ) ( ) ∫ + ∫ + + Φ t V V t V d z y x V T z y x k d z y x V T z y x k z y x f V 0 2 , 0 , , , , , , , , , , , , , , τ τ τ τ . Relations for calculations parameters Sρρij, ai, A, B, q, p could be written as ( ) ( ) ( ) ( ) ∫ ∫ ∫ ∫ − Θ = Θ − 0 0 0 1 1 , , , , , , , , , , x y z L L L t v j i ij t d x d y d z d t z y x V t z y x I T z y x k t S ρ ρ ρρ , ( )× − = 00 00 2 00 4 VV II IV S S S a
  • 15. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 49 00 II S × , 00 00 2 00 00 00 3 VV II IV II IV S S S S S a − + = , ( ) × ∫ ∫ ∫ ∫ + Θ = Θ − 0 0 0 2 2 2 00 2 , , 2 x y z L L L t v I z y x IV t d x d y d z d z y x f L L L S a ( ) ( ) × Θ − ∫ ∫ ∫ ∫ − ∫ ∫ ∫ ∫ + × Θ − Θ − 2 0 0 0 2 00 0 0 0 2 00 00 00 00 , , , , x L L L t v I IV L L L t v V IV IV II VV L t d x d y d z d z y x f S t d x d y d z d z y x f S S S S x y z x y z 00 2 2 VV z y S L L × , ( ) ∫ ∫ ∫ ∫ = Θ − 0 0 0 00 1 , , x y z L L L t v I IV t d x d y d z d z y x f S a , + + + − − + = 3 3 2 3 3 2 q p q q p q B 4 2 6a a Θ + , ( ) 2 0 0 0 00 0 , ,       ∫ ∫ ∫ ∫ = Θ − x y z L L L t v I VV t d x d y d z d z y x f S a , 2 1 4 2 2 4 2 3 2 8 4         + Θ − Θ = y a a a a A , × Θ = 2 4 2 3 24a a q 2 4 2 1 4 2 2 2 3 4 3 2 3 4 2 3 2 2 2 4 0 2 4 3 1 0 8 54 4 8 4 a a L L L a a a a a a a a a a L L L a z y x z y x Θ − Θ −         Θ − Θ Θ −         Θ − × , − Θ = 2 4 4 0 2 12 4 a a a p ( ) 2 4 4 2 3 1 2 36 2 3 a a a a a L L L z y x + Θ Θ − , ( ) ( ) ( ) ∫ ∫ ∫ ∫ − Θ = Θ − 0 0 0 1 , , , , , , x y z L L L t v i I i t d x d y d z d t z y x I T z y x k t Rρ . Equations for the second-order approximations of concentrations of dopant and radiation defects could be written as ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( )     ×         + +           + + ∂ ∂ = ∂ ∂ 2 * 2 2 * 1 1 2 2 , , , , , , 1 , , , , , , 1 , , , , , , V t z y x V V t z y x V T z y x P t z y x C T z y x D x t t z y x C C L ς ς α ξ γ γ ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )     × ∂ ∂           + +         + + ∂ ∂ +     ∂ ∂ × y t z y x C T z y x P t z y x C V t z y x V V t z y x V y x t z y x C C , , , , , , , , , 1 , , , , , , 1 , , , 1 1 2 2 * 2 2 * 1 1 γ γ α ξ ς ς ( )) ( ) ( ) ( ) ( ) [ ] ( )     ×           + +         + + ∂ ∂ + × T z y x P t z y x C V t z y x V V t z y x V z T z y x D C L , , , , , , 1 , , , , , , 1 , , , 1 2 2 * 2 2 * 1 γ γ α ξ ς ς ( ) ( ) ( ) ( ) [ ] +       ∫ + ∇ ∂ ∂ Ω +     ∂ ∂ × − z L t v C S S L W d t W y x C t z y x T k D x z t z y x C T z y x D , , , , , , , , , , , , 2 2 1 α µ ( ) ( ) [ ] ( ) ( ) t z y x f W d t W y x C t z y x T k D y C L t v C S S z δ α µ , , , , , , , , 2 2 +       ∫ + ∇ ∂ ∂ Ω + − (1d) ( ) ( ) ( ) ( ) ( ) ( )× −       +       = T z y x k y t z y x I T z y x D y x t z y x I T z y x D x t t z y x I V I I I , , , , , , , , , , , , , , , , , , , 1 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × + −       + + + × 2 1 1 1 1 1 1 1 , , , , , , , , , , , , , , , t z y x I z t z y x I T z y x D z t z y x V t z y x I I I V I α ∂ ∂ ∂ ∂ α α ( ) ( ) ( ) [ ] +       ∫ + ∇ ∂ ∂ Ω + × − z L t v I S IS I I W d t W y x I t z y x T k D x T z y x k , , , , , , , , , 1 2 , α µ ( ) ( ) [ ]       ∫ + ∇ ∂ ∂ Ω + − z L t v I S IS W d t W y x I t z y x T k D y , , , , , , 1 2 α µ (3d) ( ) ( ) ( ) ( ) ( ) ( )× −       +       = T z y x k y t z y x V T z y x D y x t z y x V T z y x D x t t z y x V V I V V , , , , , , , , , , , , , , , , , , , 1 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) [ ] ( ) [ ] ( ) ( ) ( ) [ ] × + −       + + + × 2 1 1 1 1 1 1 1 , , , , , , , , , , , , , , , t z y x V z t z y x V T z y x D z t z y x V t z y x I V V V I α ∂ ∂ ∂ ∂ α α
  • 16. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 50 ( ) ( ) ( ) [ ] +       ∫ + ∇ ∂ ∂ Ω + × − z L t v V S VS V V W d t W y x V t z y x T k D x T z y x k , , , , , , , , , 1 2 , α µ ( ) ( ) [ ]       ∫ + ∇ ∂ ∂ Ω + − z L t v V S VS W d t W y x V t z y x T k D y , , , , , , 1 2 α µ ( ) ( ) ( ) ( ) ( ) ( )× +       Φ +       Φ = Φ Φ Φ T z y x k y t z y x T z y x D y x t z y x T z y x D x t t z y x I I I I I I I , , , , , , , , , , , , , , , , , , , 1 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) [ ] ( ) ( )+ +       ∫ Φ + ∇ ∂ ∂ Ω + × Φ − Φ Φ t z y x f W d t W y x t z y x T k D x t z y x I I z I I L t v I S S δ α µ , , , , , , , , , , , 1 2 2 ( ) ( ) [ ] ( ) ( ) +       Φ +       ∫ Φ + ∇ ∂ ∂ Ω + Φ − Φ Φ z t z y x T z y x D z W d t W y x t z y x T k D y I L t v I S S I z I I ∂ ∂ ∂ ∂ α µ , , , , , , , , , , , , 1 1 2 ( ) ( ) t z y x I T z y x kI , , , , , , + (5d) ( ) ( ) ( ) ( ) ( ) ( ) × +       Φ +       Φ = Φ Φ Φ T z y x k y t z y x T z y x D y x t z y x T z y x D x t t z y x V V V V V V V , , , , , , , , , , , , , , , , , , , 1 1 2 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ( ) ( ) ( ) [ ] ( ) ( )+ +       ∫ Φ + ∇ ∂ ∂ Ω + × Φ − Φ Φ t z y x f W d t W y x t z y x T k D x t z y x V V z V V L t v V S S δ α µ , , , , , , , , , , , 1 2 2 ( ) ( ) [ ] ( ) ( ) +       Φ +       ∫ Φ + ∇ ∂ ∂ Ω + Φ − Φ Φ z t z y x T z y x D z W d t W y x t z y x T k D y V L t v V S S V z V V ∂ ∂ ∂ ∂ α µ , , , , , , , , , , , , 1 1 2 ( ) ( ) t z y x V T z y x kV , , , , , , + . The second-order approximations of concentrations of dopant and radiation defects could be writ- ten as ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ∫ ×         + +           + + ∂ ∂ = t C L V z y x V V z y x V T z y x P z y x C T z y x D x t z y x C 0 2 * 2 2 * 1 1 2 2 , , , , , , 1 , , , , , , 1 , , , , , , τ ς τ ς τ α ξ γ γ ( ) ( ) ( ) ( ) ( ) [ ] ( ) ∫ ×       + +         + + ∂ ∂ + ∂ ∂ × t C T z y x P z y x C V z y x V V z y x V y d x z y x C 0 1 2 2 * 2 2 * 1 1 , , , , , , 1 , , , , , , 1 , , , γ γ τ α ξ τ ς τ ς τ τ ( ) ( ) ( ) ( ) ( ) ( ) ∫ ×         + + ∂ ∂ + ∂ ∂ × t L L V z y x V V z y x V T z y x D z d y z y x C T z y x D 0 2 * 2 2 * 1 1 , , , , , , 1 , , , , , , , , , τ ς τ ς τ τ ( ) ( ) [ ] ( ) ( ) [ ] × ∫ ∫ + ∂ ∂ Ω +       + + ∂ ∂ × − t L v C S C z W d W y x C T k D x d T z y x P z y x C z z y x C 0 1 2 1 2 1 , , , , , , , , , 1 , , , τ γ γ ϑ α τ τ α ξ τ ( ) ( ) ( ) [ ] + ∫ ∫ + ∇ ∂ ∂ Ω + ∇ × − t L v C S S S d d W d W y x C z y x T k D y d d z y x z 0 1 2 , , , , , , , , , τ ϑ ϑ α τ µ τ ϑ τ µ τ ( ) z y x fC , , + (1e) ( ) ( ) ( ) ( ) ( ) + ∫ + ∫ = t I t I d y z y x I T z y x D y d x z y x I T z y x D x t z y x I 0 1 0 1 2 , , , , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) [ ] ( )+ + ∫ + − ∫ + z y x f d z y x I T z y x k d z z y x I T z y x D z I t I I I t I , , , , , , , , , , , , , , 0 2 1 2 , 0 1 τ τ α τ ∂ τ ∂ ∂ ∂ ( ) ( ) [ ] ( )× ∫ ∇ ∂ ∂ Ω + ∫ ∫ + ∇ ∂ ∂ Ω + − t S IS t L v I S IS z y x T k D y d d W d W y x I z y x T k D x z 0 0 1 2 , , , , , , , , , τ µ τ ϑ ϑ α τ µ τ ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ + + − ∫ + × − t V I V I L v I d z y x V z y x I T z y x k d d W d W y x I z 0 1 2 1 2 , 1 2 , , , , , , , , , , , , τ τ α τ α τ ϑ ϑ α τ (3e)
  • 17. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 51 ( ) ( ) ( ) ( ) ( ) + ∫ + ∫ = t V t V d y z y x V T z y x D y d x z y x V T z y x D x t z y x V 0 1 0 1 2 , , , , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) [ ] ( )+ + ∫ + − ∫ + z y x f d z y x V T z y x k d z z y x V T z y x D z V t V V V t V , , , , , , , , , , , , , , 0 2 1 2 , 0 1 τ τ α τ ∂ τ ∂ ∂ ∂ ( ) ( ) [ ] ( )× ∫ ∇ ∂ ∂ Ω + ∫ ∫ + ∇ ∂ ∂ Ω + − t S VS t L v V S VS z y x T k D y d d W d W y x V z y x T k D x z 0 0 1 2 , , , , , , , , , τ µ τ ϑ ϑ α τ µ τ ( ) [ ] ( ) ( ) [ ] ( ) [ ] ∫ + + − ∫ + × − t V I V I L v I d z y x V z y x I T z y x k d d W d W y x V z 0 1 2 1 2 , 1 2 , , , , , , , , , , , , τ τ α τ α τ ϑ ϑ α τ ( ) ( ) ( ) ( ) ( ) + ∫ Φ + ∫ Φ = Φ Φ Φ t I t I I d y z y x T z y x D y d x z y x T z y x D x t z y x I I 0 1 0 1 2 , , , , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) [ ] × ∫ ∫ Φ + ∇ ∂ ∂ Ω + ∫ Φ + − Φ Φ t L v I S t I z I I W d W y x z y x x d z z y x T z y x D z 0 1 2 0 1 , , , , , , , , , , , , τ τ α τ µ τ ∂ τ ∂ ∂ ∂ ( ) ( ) [ ] ( )+ + ∫ ∫ Φ + ∇ ∂ ∂ Ω + × Φ − Φ Φ Φ z y x f d d W d W y x z y x T k D y d T k D I z I I I t L v I S S S , , , , , , , , 0 1 2 τ ϑ ϑ α τ µ τ τ ( ) ( ) ( ) ( ) ∫ + ∫ + t I t I I d z y x I T z y x k d z y x I T z y x k 0 0 2 , , , , , , , , , , , , , τ τ τ τ (5e) ( ) ( ) ( ) ( ) ( ) + ∫ Φ + ∫ Φ = Φ Φ Φ t V t V V d y z y x T z y x D y d x z y x T z y x D x t z y x V V 0 1 0 1 2 , , , , , , , , , , , , , , , τ ∂ τ ∂ ∂ ∂ τ ∂ τ ∂ ∂ ∂ ( ) ( ) ( ) ( ) [ ] × ∫ ∫ Φ + ∇ ∂ ∂ Ω + ∫ Φ + − Φ Φ t L v V S t V z V V W d W y x z y x x d z z y x T z y x D z 0 1 2 0 1 , , , , , , , , , , , , τ τ α τ µ τ ∂ τ ∂ ∂ ∂ ( ) ( ) [ ] ( )+ + ∫ ∫ Φ + ∇ ∂ ∂ Ω + × Φ − Φ Φ Φ z y x f d d W d W y x z y x T k D y d T k D V z V V V t L v V S S S , , , , , , , , 0 1 2 τ ϑ ϑ α τ µ τ τ ( ) ( ) ( ) ( ) ∫ + ∫ + t V t V V d z y x V T z y x k d z y x V T z y x k 0 0 2 , , , , , , , , , , , , , τ τ τ τ . Parameters bi, Cρ, F, r, s have been determined by the following relations 00 2 00 00 2 00 4 1 1 II VV z y x V V IV z y x S S L L L S S L L L b Θ − Θ = , ( ) + Θ Θ + + − = z y x VV II z y x IV VV L L L S S L L L S S b 00 00 10 01 3 2 ( ) ( ) 3 3 3 3 10 2 00 10 01 2 00 01 10 01 00 00 2 2 z y x IV IV z y x IV VV z y x IV z y x IV II IV z y x VV IV L L L S S L L L S S L L L S L L L S S S L L L S S Θ − Θ + + Θ + Θ + + + Θ + , ( ) ( ) ( )× + + Θ Θ + + − Θ − + + Θ = 01 10 01 2 10 01 11 02 00 00 2 2 2 IV II z y x x IV IV VV z y x V IV VV z y x VV II S S L L L L S S S L L L C S S L L L S S b ( )( ) × Θ − + Θ + + + + + Θ Θ + × z y x IV IV z y x VV IV II IV z y x z y x IV z y VV L L L S S L L L S S S S L L L L L L S L L S 2 00 10 01 01 10 01 00 00 2 2 2 ( ) 01 00 10 2 2 2 2 2 00 11 02 2 IV z y x IV IV z y x IV I IV VV V S L L L S S L L L S C S S C Θ − Θ + − − × , ( × Θ + Θ + + = x IV z y x V VV IV II L S L L L C S S S b 10 02 11 00 1 ) ( ) × Θ − − − Θ + + Θ + + Θ + + × z y x IV VV V z y x IV VV z y x IV II z y x IV VV z y L L L S S C L L L S S L L L S S L L L S S L L 11 02 10 01 01 10 01 01 2 2 2 ( ) z y x IV IV IV IV I z y x II IV IV L L L S S S S C L L L S S S Θ − + Θ + + × 2 01 10 01 00 10 01 00 2 2 3 , ( ) × − Θ + = 01 2 02 00 00 0 IV z y x VV IV II S L L L S S S b
  • 18. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 52 ( ) ( )× + + Θ Θ − − − + + Θ Θ − − × 01 10 11 02 01 10 11 02 2 2 IV II z y x z y x IV VV V IV II z y x z y x IV VV V S S L L L L L L S S C S S L L L L L L S S C ( ) 01 10 11 02 01 2 01 01 2 2 IV II z y x z y x IV VV V IV IV I IV S S L L L L L L S S C S S C S + + Θ Θ − − − + × , + Θ = z y x V I IV I L L L S C 1 1 00 α α z y x IV z y x II II z y x II I L L L S L L L S S L L L S Θ − Θ − Θ + 11 20 20 00 2 1 α , 11 02 00 2 1 00 1 1 IV VV VV V IV V I V S S S S C − − + = α α α , 4 2 2 4 2 3 2 4 8 a a a a y E Θ − Θ + = , 2 4 2 1 4 2 2 2 3 4 3 2 3 4 2 3 2 2 2 4 2 0 4 3 1 0 2 4 2 3 8 54 4 8 4 24 b b L L L b b b b b b b b b b L L L b b b r z y x z y x Θ − Θ −         Θ − Θ Θ −         Θ − Θ = , ( − Θ = 4 0 2 4 2 4 12 b b b s ) 4 2 3 1 18b b b b L L L z y x Θ − Θ − , 3 3 2 3 3 2 4 2 6 r s r r s r a a F + + − − + + Θ = . Equations for components of the displacement vector could be presented in the form ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) [ ] ( ) + ∂ ∂ ∂       + − + ∂ ∂       + + = ∂ ∂ y x t z y x u z z E z K x t z y x u z z E z K t t z y x u z y x x , , , 1 3 , , , 1 6 5 , , , 1 2 2 1 2 2 2 2 σ σ ρ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) − ∂ ∂ ∂       + + +         ∂ ∂ + ∂ ∂ + + z x t z y x u z z E z K z t z y x u y t z y x u z z E z z y , , , 1 3 , , , , , , 1 2 1 2 2 1 2 2 1 2 σ σ ( ) ( ) ( ) x t z y x T z z K ∂ ∂ − , , , β ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( )+ ∂ ∂ −         ∂ ∂ ∂ + ∂ ∂ + = ∂ ∂ y t z y x T z z K y x t z y x u x t z y x u z z E t t z y x u z x y y , , , , , , , , , 1 2 , , , 1 2 2 1 2 2 2 2 β σ ρ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) +       + + ∂ ∂ +                 ∂ ∂ + ∂ ∂ + ∂ ∂ + z K z z E y t z y x u y t z y x u z t z y x u z z E z y z y σ σ 1 12 5 , , , , , , , , , 1 2 2 1 2 1 1 ( ) ( ) ( ) [ ] ( ) ( ) ( ) y x t z y x u z K z y t z y x u z z E z K y y ∂ ∂ ∂ + ∂ ∂ ∂       + − + , , , , , , 1 6 1 2 1 2 σ ( ) ( ) ( ) ( ) ( ) ( ) ×         ∂ ∂ ∂ + ∂ ∂ ∂ + ∂ ∂ + ∂ ∂ = ∂ ∂ z y t z y x u z x t z y x u y t z y x u x t z y x u t t z y x u z y x z z z , , , , , , , , , , , , , , , 1 2 1 2 2 1 2 2 1 2 2 2 2 ρ ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) [ ]    × + ∂ ∂ +                 ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ∂ + + × z z E z z t z y x u y t z y x u x t z y x u z K z z z E x y x σ σ 1 6 , , , , , , , , , 1 2 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) z t z y x T z z K z t z y x u y t z y x u x t z y x u z t z y x u z y x z ∂ ∂ −            ∂ ∂ − ∂ ∂ − ∂ ∂ − ∂ ∂ × , , , , , , , , , , , , , , , 6 1 1 1 1 β . Integration of the left and the right sides of the above equations on time t leads to final relations for components of displacement vector ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ×       + − + ∫ ∫ ∂ ∂       + + = z z E z K z d d z y x u x z z E z K z t z y x u t x x σ ρ ϑ τ τ σ ρ ϑ 1 3 1 , , , 1 6 5 1 , , , 0 0 1 2 2 2 ( ) ( ) ( ) ×       ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ ∂ × t z t y t y d d z y x u z d d z y x u y d d z y x u y x 0 0 1 2 2 0 0 1 2 2 0 0 1 2 , , , , , , , , , ϑ ϑ ϑ ϑ τ τ ϑ τ τ ϑ τ τ
  • 19. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 53 ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) × −       + + ∫ ∫ ∂ ∂ ∂ + + × z z z K z z E z K d d z y x u z x z z z z E t z ρ β σ ϑ τ τ ρ σ ρ ϑ 1 3 , , , 1 1 2 0 0 1 2 ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) × − ∫ ∫ ∂ ∂       + + − ∫ ∫ ∂ ∂ × ∞ z d d z y x u x z z E z K z d d z y x T x x t ρ ϑ τ τ σ ρ ϑ τ τ ϑ ϑ 1 , , , 1 6 5 1 , , , 0 0 1 2 2 0 0 ( ) ( ) ( ) [ ] ( ) ( ) ( )    + ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ ∂       + − × ∞ ∞ 0 0 1 2 2 0 0 1 2 , , , 2 1 , , , 1 3 ϑ ϑ ϑ τ τ ρ ϑ τ τ σ d d z y x u y z d d z y x u y x z z E z K y y ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) × ∫ ∫ ∂ ∂ ∂       + + − +    ∫ ∫ ∂ ∂ + ∞ ∞ 0 0 1 2 0 0 1 2 2 , , , 1 3 1 , , , ϑ ϑ ϑ τ τ σ σ ϑ τ τ d d z y x u z x z z E z K z z E d d z y x u z z z ( ) ( ) ( ) ( ) ( ) ∫ ∫ ∂ ∂ + + × ∞ 0 0 0 , , , 1 ϑ ϑ τ τ ρ β ρ d d z y x T x z z z K u z x ( ) ( ) ( ) ( ) [ ] ( ) ( ) +       ∫ ∫ ∂ ∂ ∂ + ∫ ∫ ∂ ∂ + = t x t x y d d z y x u y x d d z y x u x z z z E t z y x u 0 0 1 2 0 0 1 2 2 2 , , , , , , 1 2 , , , ϑ ϑ ϑ τ τ ϑ τ τ σ ρ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] +       + + ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ ∂ + z z E z K d d z y x u y z d d z y x u y x z z K t x t y σ ϑ τ τ ρ ϑ τ τ ρ ϑ ϑ 1 12 5 , , , 1 , , , 0 0 1 2 2 0 0 1 2 ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) −             ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ + ∂ ∂ +    + + t z t y d d z y x u y d d z y x u z z z E z z z z E 0 0 1 0 0 1 , , , , , , 1 2 1 1 12 5 ϑ ϑ ϑ τ τ ϑ τ τ σ ρ σ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] −       + − ∫ ∫ ∂ ∂ ∂ + ∫ ∫ − z z E z K d d z y x u z y z d d z y x T z z z K t y t σ ϑ τ τ ρ ϑ τ τ ρ β ϑ ϑ 1 6 , , , 1 , , , 0 0 1 2 0 0 ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) × −       ∫ ∫ ∂ ∂ ∂ + ∫ ∫ ∂ ∂ + − ∞ ∞ z z z K d d z y x u y x d d z y x u x z z z E x x ρ β ϑ τ τ ϑ τ τ σ ρ ϑ ϑ 0 0 1 2 0 0 1 2 2 , , , , , , 1 2 ( ) ( ) ( ) ( ) ( ) ( ) × ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ ∂ − ∫ ∫ × ∞ ∞ ∞ 0 0 1 2 2 0 0 1 2 0 0 , , , 1 , , , , , , ϑ ϑ ϑ ϑ τ τ ρ ϑ τ τ ρ ϑ τ τ d d z y x u y z d d z y x u y x z z K d d z y x T x y ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ×             ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ + ∂ ∂ −       + + × ∞ ∞ 0 0 1 0 0 1 , , , , , , 1 1 12 5 ϑ ϑ ϑ τ τ ϑ τ τ σ σ d d z y x u y d d z y x u z z z E z z z E z K z y ( ) ( ) ( ) ( ) ( ) [ ] ( ) y y u d d z y x u z y z z E z K z z 0 0 0 1 2 , , , 1 6 1 2 1 + ∫ ∫ ∂ ∂ ∂       + − − × ∞ϑ ϑ τ τ σ ρ ρ ( ) ( ) ( ) ( ) [ ] ( ) ( )    + ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ + = ∞ ∞ 0 0 1 2 2 0 0 1 2 2 , , , , , , 1 2 , , , ϑ ϑ ϑ τ τ ϑ τ τ σ ρ d d z y x u y d d z y x u x z z z E t z y x u z z z ( ) ( ) ( )       + ∫ ∫ ∂ ∂ ∂ ∂ +    ∫ ∫ ∂ ∂ ∂ + ∫ ∫ ∂ ∂ ∂ + ∞ ∞ ∞ 0 0 1 0 0 1 2 0 0 1 2 , , , , , , , , , ϑ ϑ ϑ ϑ τ τ ϑ τ τ ϑ τ τ d d z y x u x z d d z y x u z y d d z y x u z x x y x ( ) ( ) ( ) ( ) ( ) ( ) ( )    × + ∂ ∂ +       ∫ ∫ ∂ ∂ + ∫ ∫ ∂ ∂ + ∞ ∞ z z E z z z z K d d z y x u z d d z y x u y x x σ ρ ρ ϑ τ τ ϑ τ τ ϑ ϑ 1 6 1 1 , , , , , , 0 0 1 0 0 1 ( ) ( ) ( )    − ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ − ∫ ∫ ∂ ∂ × ∞ ∞ ∞ 0 0 1 0 0 1 0 0 1 , , , , , , , , , 6 ϑ ϑ ϑ ϑ τ τ ϑ τ τ ϑ τ τ d d z y x u y d d z y x u x d d z y x u z y x z ( ) ( ) ( ) ( ) ( ) z z u d d z y x T z z z z K d d z y x u z 0 0 0 0 0 1 , , , , , , + ∫ ∫ ∂ ∂ −       ∫ ∫ ∂ ∂ − ∞ ∞ ϑ ϑ ϑ τ τ ρ β ϑ τ τ .
  • 20. International Journal of Information Technology, Modeling and Computing (IJITMC) Vol. 4, No.2, May 2016 54 AUTHORS Pankratov Evgeny Leonidovich was born at 1977. From 1985 to 1995 he was educated in a secondary school in Nizhny Novgorod. From 1995 to 2004 he was educated in Nizhny Novgorod State University: from 1995 to 1999 it was bachelor course in Radiophysics, from 1999 to 2001 it was master course in Ra- diophysics with specialization in Statistical Radiophysics, from 2001 to 2004 it was PhD course in Radio- physics. From 2004 to 2008 E.L. Pankratov was a leading technologist in Institute for Physics of Micro- structures. From 2008 to 2012 E.L. Pankratov was a senior lecture/Associate Professor of Nizhny Novgo- rod State University of Architecture and Civil Engineering. 2012-2015 Full Doctor course in Radiophysical Department of Nizhny Novgorod State University. Since 2015 E.L. Pankratov is an Associate Professor of Nizhny Novgorod State University. He has 155 published papers in area of his researches. Bulaeva Elena Alexeevna was born at 1991. From 1997 to 2007 she was educated in secondary school of village Kochunovo of Nizhny Novgorod region. From 2007 to 2009 she was educated in boarding school “Center for gifted children”. From 2009 she is a student of Nizhny Novgorod State University of Architec- ture and Civil Engineering (spatiality “Assessment and management of real estate”). At the same time she is a student of courses “Translator in the field of professional communication” and “Design (interior art)” in the University. Since 2014 E.A. Bulaeva is in a PhD program in Radiophysical Department of Nizhny Novgorod State University. She has 105 published papers in area of her researches.