SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
101
DETERMINATION OF PHYSICO-CHEMICAL PROPERTIES OF
CASTOR BIODIESEL: A POTENTIAL ALTERNATE TO
CONVENTIONAL DIESEL
R.SRUTHI*1
, K. RAVI KUMAR2
, G. SHIRISHA3
1
Asst Prof., Department of Petroleum Engineering, AHCET, Chevella,
Ranga Reddy – 515002(A.P.), India.
2
Asst Prof., Department of Mechanical Engineering, AHCET, Chevella,
Ranga Reddy – 515002(A.P.), India.
3
Asst Prof., Department of Mechanical Engineering, AHCET, Chevella,
Ranga Reddy – 515002(A.P.), India
ABSTRACT:
Depletion of world’s crude oil reserves, increasing crude oil prices, negative effects of
mineral and synthetic oils on man. Biodiesel is receiving increased attention as an alternative, non-
toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net green house
gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such
as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant
resources has created a great importance in several countries. Vegetable oil after tansesterification
being used as bio diesel. Considering the cost and demand of the edible oil is bearable, so it may be
preferred for the preparation of bio diesel in India.
In the present study castor oil was exctracted from seeds through soxhlet extraction, fatty acid
methylesters was synthesized with methanol, KOH as a base catalyst. Product was confirmed with
1HNMR spectra, physico-chemical properties were determined for oil and its methylesters to compare
the properties. Physico-chemical properties demonstrate that methylesters are exhibiting improved
and excellent properties than its oil for bio-diesel purpose. Thermo-oxidative stability and cold flow
properties were also found, which is showing satisfactory results. From this study it was concluded
that castor oil can be used as a potential alternate to conventional diesel...
1. INTRODUCTION
Gradual depletion of world fossil reserves and emissions of green house gasses are leading to
energy insecurity and ecological imbalance in future. Biodiesel derived from renewable resources i.e
vegetable oils seems to be a resolution as it is ecofriendly in nature.
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN
ENGINEERING AND TECHNOLOGY (IJARET)
ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 4, Issue 3, April 2013, pp. 101-107
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2013): 5.8376 (Calculated by GISI)
www.jifactor.com
IJARET
© I A E M E
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
102
Biodiesel can be defined as basically monoalkyl esters of fatty acids produced from animal fats or
vegetable oils by transesterification or other methods with small chain alcohols, using different kinds
of catalysts [1]. Currently, more than 95% biodiesel are produced from edible oil feedstock, due to
this there is a huge imbalance in the human nutrition chain versus fuel [2]. This will make biodiesel
economically unfeasible as compared to petroleum-derived fuels [3,4]. To avoid these situations, non-
edible oil seeds need to be used for commercial production of biodiesel. Many researchers have
initiated work on the use of low cost non-edible oils as alternative feedstock for biodiesel production
[5,6,7]. Among non-edible oil feedstock, seeds of castor proved to be a one of the highly promising
reliable source having high seed oil content. Castor oil is non-edible due to presence of toxic phorbol
esters and curcin [9].
Therefore, in the present paper efforts has been made to extract the oil from castor seeds,
synthesis of its fatty acid methylesters, determination of physico-chemical properties (fuel properties)
and thermo-oxidative stability analysis of castor for exploration of potential biodiesel sources.
2. MATERIALS AND METHODS
2.1. Materials
Castor seeds were separated from the fruit mechanically and cleaned manually to remove all
foreign material. The cleaned seeds were dried at 60O
C temperature. Pure standards of FAME was
purchased from M/s Sigma Aldrich. All other chemicals and reagents (methanol, ethanol, n- hexane,
potassium hydroxide, and phenolphthalein indicator were analytical reagent grade and purchased from
M/s Merck.
2.2. Extraction procedure of Castor oil
Castor oil was extracted in soxhlet apparatus using n-hexane as per the standard AOCS
(American Oil Chemical Society) procedure for 8 h. The extract was concentrated in rota vapor, the
residual oil was cooled and weighed. The physico-chemical properties of the oil were determined.
2.3. Transesterification of Castor oil
Due to low acid value of the oil direct transesterification procedure was followed.
Transesterification reaction was carried out in 250 ml three necked glass vessels (3 mm thick) sealed
tightly and fitted with condenser at the top. The reaction glass vessel was placed on the hot plate
magnetic stirrer. Methyl esters of Castor seed oil were prepared by refluxing the oil at 60O
C
employing a 1:6 molar ratio of oil to methanol for one and half hour with 1 wt% KOH as catalyst and
the mixture was stirred using a magnetic stirrer at 400 rpm [10]. After completion of the reaction, the
mixture was cooled to room temperature and poured in a separating funnel, leading to separation of
two phases. The bottom glycerol layer was discarded and the top ester layer was washed gently
several times with warmed water to remove the catalyst, glycerol, and soap. A pH meter was used to
check the complete removal of the catalyst. The washed methyl ester was further purified under
vacuum on a rotary evaporator.
2.4. 1
H NMR spectroscopy
1H NMR spectrum of Castor oil and the fatty acid methyl esters was obtained on 500 MHz
NMR spectrometer. Samples were dissolved in 400 ml deuterated chloroform (CdCl3) and transferred
to the 5-mm NMR tube. The deuterated chloroform chemical shift peak at 7.26 ppm was taken as
internal reference. Typical parameters used were: spectral width: 4800 Hz; time domain data points:
32 K; flip angle: 90O
; relaxation delay: 5 s; spectrum size: 32 K points; and line broadening for
exponential window function: 0.3 Hz.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
103
2.5. Thermogravimetric analysis (TGA)
The thermogravimetric profile of castor oil and its methyl esters was obtained using
Thermogravimetric Analyzer at the heating rate of 10 O
C/min in both nitrogen and air atmosphere.
The sample size was kept almost same 5 to 6 mg throughout the study.
3. RESULTS AND DISCUSSION
3.1. Physiochemical characterization of castor oil
The physico-chemical characteristics of oil was estimated as per the ASTM standard methods.
Initially, the specific gravity of the oil sample was determined using the standard method mentioned
above. Specific gravity of castor oil was found to be 0.875, which is within acceptable range of
standard ASTM specifications. Similarly, viscosity of oil sample was measured using a standard
protocol. Viscosity of the oil increases with increase in molecular weight and decreases with increase
in unsaturation level and temperature [19]. The kinematic viscosity of the oil at (40 O
C) was found to
be 75.40 cst respectively, which is much higher as compared to conventional diesel . These high
viscosity oils cannot be used directly in engine. High viscosity causes injector fouling and other
engine operational problems. Therefore, before application in diesel engine, processing is required to
reduce the viscosity of the oil. The flash point of the oil was found to be 314. The result shows that
the flash point of oil sample is much higher as compared to conventional diesel. Similarly, the fire
point of oil was found at 333 O
C which is much higher than diesel. Refractive index is the degree of
the deflection of a beam light that occurs when it passes from one medium to the other. The refractive
index value increases with the degree of unsaturation. Refractive index was found to be 1.46.
Moisture content of oils was determined using Karl fisher titrator. Moisture content is a qualitative
parameter of oil, which influences the storage life of fuel. High moisture content may serve as a
medium for microbial growth. Microbial growth in the oil may leads to damage of tank and emulsion
formation [20]. Besides this, it initiates oxidation of oil which effects longetivity of engines and
reduced shelf life of the oil. The moisture content of the oil was found to be 0.33 which are within
acceptable range of standard values. The flow characteristic of oil was observed under low
temperature. The pour point of 7 O
C was observed. The calorific value for the oil was measured in an
oxygen bomb colorimeter. The data obtained from experiment for castor oil showed high calorific
value in the range of 35.46 MJ/Kg. The acid value of the oil determines the process of
transesterfication i.e. either one step or two step process [21]. The acid value of the castor oil was
measured to check the free fatty acid content in the oil sample, and it was found to be 3.23 mg/KOH.
As per the values reported in the literature FFA content of castor oil varies in the range of 4 to
40 which is far beyond the capacity of conversion to biodiesel via single step alkali catalyzed
transesterification. But in the present study FFA content of oil was found to be very less. So, single
step alkali catalyzed reaction was performed for conversion of oil in to biodiesel. This single step
transesterification yields substantially higher conversion rate and decreased the reagent use and
reaction time as compared to two step transesterification process. The high FFA content increases the
formation of fatty acids salts (soap) and conversion rate decreased which cause problem in separation
of glycerol at washing step.
3.2. Characterization and evaluation of synthesized methyl esters
The fuel properties of methyl esters of castor oil was determined using the standard protocol.
During the study it was observed that the specific gravity which influences the fuel atomization [21]
was reduced after methanolysis. The obtained values for methyl esters castor oil was within the
acceptable range of ASTM standards . As described above the viscosity which is the major problem in
the oil samples for engine operation was substantially decreased after transesterification. The
decreased value of the viscosity was found to be 12 cst. The values are almost within the acceptable
range of ASTM standards . Similarly, flash and fire point values were also found to be reduced after
transesterification and the obtained Values are in the range of 185 and 190 O
C respectively.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
104
Fig.1 1
H NMR spectrum of castor oil and methyl ester
Since, flash point and fire point values are depends on viscosity, therefore, decrease in the
viscosity values after transesterification might be one of the cause for reduction. Acid value is another
measure of qualitative character of biodiesel. As per the ASTM standard, acid value of transesterified
product should not be more than 0.5 mg KOH/g. The acid values of the methyl esters of the castor oil
sample in the present study was found to be 0.46 mg KOH/g, which is below the maximum limits of
the standards . Similarly, the moisture content of the prepared methyl esters samples was determined
using Karl fisher titrator. After transesterification the moisture content of methyl esters was found to
be 0.25% , which is well below the maximum acceptable limits. Cold flow properties such pour point
of methyl ester was found to be improved after transesterification. Pour point of methyl esters was
measured as 2 O
C. But these values are still much higher than the conventional diesel. The heating
value is one of the essential properties for evaluation of biodiesel, which provides the suitability of
fuels as alternative to diesel fuels [25]. Calorific value for methyl esters was obtained as 41.36 MJ/Kg.
The result shows that calorific value of methyl esters is higher than the corresponding oils . All these
properties combined together have shown that castor oil could act as the potential candidates for
biodiesel production.
3.3. 1
H NMR spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor the
transesterification reaction. In case of 1H NMR spectra of methyl esters, signal appears in the region
at 3.7 ppm which indicates the presence methylic esters group [27]. The characteristic peak of
methoxy protons was observed as a singlet at 3.65 ppm and this signal was attributed to methyl esters,
which was absent in the oil. In case of 1H NMR spectra of oil, multiple peaks were observed in the
region 4.11-4.115, 4.266-4.306 ppm and 5.30-5.34 ppm, due to oxymethylic hydrogen that are
characteristic of triglycerides. 1H NMR spectrum of castor methyl esters, the strong singlet peak at
3.659 ppm is indicative of conversion of parent oil to methyl esters. So, from the NMR spectrum of
oil and methyl esters, it could be verified that castor oil conversion into biodiesel was successfully
completed.
3.4. Thermal stability of castor oil and methyl esters
Thermal stability of castor oil and its methyl esters was determined from onset temperature of
thermal decomposition under nitrogen atmosphere. The curve shows three consecutive stages of
thermal decomposition of the oil samples. The first phase of decomposition start at 310-315 O
C and
second phase extended up to 470 O
C which leads to rapid weight loss. The final stage of
decomposition, where pyrolyzed product of second phase fully decomposed extended from 470 to 700
O
C. In the first stage evaporation starts at 240-280 O
C, extended up to 540 O
C where rapid weight loss
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
105
was occurred. Final decomposition occurred between 540 and 700 O
C. TGA analysis of methyl esters
samples was carried out under similar condition.
Fig.2- TGA profile of castor oil and methyl esters under nitrogen environment
From the TGA curves of the oil samples and methyl esters it was observed that, the process of
degradation of castor methyl esters initiates and completed within a temperature range inferior to the
respective oil sample. Molecular tension produced by bulky triglycerides molecule in the oil sample
which could be the reason for thermal stability of oil [28]. Besides this, high viscosity might be the
reason for slow degradation process [15]. The poor volatility and high viscosity of the oils are the
major challenges to run modern diesel engines with plant oils. The onset temperature for volatilization
and distillation was calculated from respective TGA curves of castor oil and methyl esters. The result
shows that onset temperature of thermal degradation of methyl esters was lower as compared to oil
sample. In case of oil sample weight loss was negligible below 300 O
C. But after that rapid
degradation was observed at 310 O
C compared to its methyl esters at 120 O
C. During this study it was
observed that for oil sample 50% weight loss was occurred at around 420 O
C , while in case of methyl
esters it was around at 280 O
C. All the volatile components of the oil which accounted for almost 90%
weight were decomposed at around 440 O
C, whereas in case of respective methyl ester 90% weight
loss was observed at 295 O
C. The remaining 10% was pyrolysis product which is highly viscous
liquids, under goes secondary decomposition. The temperature for secondary decomposition extended
up to 470-530O
C for oil and 320-380 O
C for methyl esters. The residue was completely burnt out after
heating up to 700 O
C for both oil and methyl esters. The above data confirms that oil is more thermally
stable and less volatile as compared to methyl esters. Further it is also confirmed that methyl esters
shows close proximity with conventional diesel.
3.5. Oxidative stability of Castor oil and methyl esters
Oxidative stability is the quality indicative parameter for methyl esters. It is defined as the
resistance of the oil against oxidation.
Fig.3- TGA profile of castor oil and methyl esters under oxygen environment
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
106
The consequence of lipid oxidation results in decreasing the shelf life of the oil. The oxidation
of long chain methyl esters initially results in accumulation of hydro peroxides. Then gradually it
polymerizes forming insoluble sediments that plugged filters, fouled injectors and interfered with
engine operation [15]. To measure the oxidative stability of the oil as well as methyl esters TGA
analysis was performed in air atmosphere under same conditions. During the analysis it was observed
that the onset temperature of oxidative degradation for oil sample was 230 O
C, whereas, in case of
methyl esters it was 120 O
C. That is mainly because methyl esters are less viscous than oil. This low
viscosity increases the contact between oxygen and ester molecules resulting higher oxygen diffusion
[29]. The vegetable oil contains naturally occurring antioxidants such as tocopherols, sterols and
tocotrienols, but the purification process destroys these natural antioxidants and hence becomes prone
to oxidation [30]. The oxidative stability of methyl ester can be improved either by using synthetic
antioxidants which are available in market or vegetable oil based antioxidant additives. So, further
research and development on castor oil based biodiesel will make it more attractive to replace fossil
fuels.
4. CONCLUSIONS
Current investigation on the oil content and fuel properties of castor oil provides valuable
information on potential resources for biodiesel production. Physicochemical characterization of oil
and methyl esters established the suitability of the biodiesel to use in diesel engine. The castor oil
used in the present study showed low level of FFA, therefore single step alkali catalyzed
transesterification was found to be sufficient for biodiesel production. From the study it can be
concluded that castor oil can be used for large scale propagation and cost-effective biodiesel
production. However, more extensive and experimental study needs to be carried out to investigate
combustion, emission characteristics and its performance on Engine. Therefore, we still need to focus
on the process design, and kinetics of castor oil transesterification in a batch reactor and analysis in
biodiesel- fueled engine to establish castor biodiesel as successful alternative fuel.
REFERENCES
[1]Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc
2006;83:823e33.
[2] Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. nonedible oil vs. waste edible oil as
biodiesel feedstock. Energy 2008;33:1646e53.
[3] Wang Y, Ou SY, Liu PZ, Tang SZ. Comparison of two different processes to synthesize biodiesel
by waste cooking oil. J Mol Catal A Chem 2006;252:107e12.
[4] Zhang Y, Dube MA, Mclean DD, Kates M. Biodiesel production from waste cooking oil: 2.
Economic assessment and sensitivity analysis. Bioresour Technol 2003;90:229e40.
[5] Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J. Characteristic and composition of
Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res
2009;29(3):396e403.
[6] Karmee SK, Chadha A. Preparation of biodiesel fromcrude oil of Pongamia pinnata. Bioresour
Technol 2005;96(13):1425e9.
[7] Bora DK, Nath R. Use of Nahar oil methyl ester (NOME) in CI engines. J Sci Ind Res
2007;6:256e8.
[8] Chitra P, Venkatachalam P, Sampathrajan A. Optimisation of experimental conditions for
biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil. Energy Sust Dev
2005;9:13e8.
[9] Ahmed WA, Salimon J. Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur
J Sci Res 2009;31(3):429e36.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN
0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME
107
[10] Darnoko D, Cheryan. Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem
Soc 2000;77(12):1263e7.
[11] Knothe G, Steidely KR. Kinematic viscosity of biodiesel fuel and related compound. Influence of
compound structure and comparison to petrodiesel fuel component. Fuel 2005;84: 1059e65.
[12] Knothe G, Bagby MO, Ryan TW. Precombustion of fatty acids and esters of biodiesel. A
possible explanation for differing cetane numbers. JAOCS 1998;75(8):1007e13.
[13] RamadhasAS, Jayaraj S,MuraleedharanC.Biodieselproduction from high FFA rubber seed oil.
Fuel 2005;84:335e40.
[14] Cormick MC, Graboski RL, Alleman TL, Herring AM. Impact of biodiesel source materials and
chemical structure onemissions of criteria pollutants from heavy e duty engine. Environ Sci Technol
2011;35:1741e2.
[15] Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of
biofuels. Plant J 2008;54: 593e607.
[16] Gunstone FD. Rapeseed and canola oil: production, processing, properties and uses. London:
Blackwell Publishing Ltd; 2004.
[17] Augustus GD, Jayablan M, Seiler GJ. Evaluation and bioinduction of energy components of
Jatropha curcas. Biomass Bioenergy 2002;23:161e4.
[18] Rao PV. Experimental investigations on the influence of properties of Jatropha biodiesel on
performance,combustion, and emission characteristics of a DI-CI engine. World Academy of Science,
Engineering and Technology; 2011. p. 75.
[19] Nourredini H, Teoh BC, Clements LD. Viscosities of vegetable oils and fattyacids. J Am Oil
Chem Soc 1992;69:1184e8.
[20] Monteiroa MR, Ambrozina ARP, Morais Liaob LM, Ferreira AG. Critical review on analytical
methods for biodiesel characterization. Talanta 2008;77:593e605.
[21] T. Pushparaj, S. Ramabalan, “Influence Of Cnsl Biodiesel With Ethanol Additive On Diesel
Engine Performance And Exhaust Emission” International Journal Of Mechanical Engineering &
Technology (IJMET) Volume 3, Issue 2, 2012, pp. 665 - 674, ISSN PRINT : 0976 – 6340, ISSN
ONLINE : 0976 – 6359.
[22] S.H. Choi, Y.T. Oh and J. Azjargal, “Lard Biodiesel Engine Performance and Emissions
Characteristics With Egr Method” International Journal Of Mechanical Engineering & Technology
(IJMET) Volume 3, Issue 2, 2012, pp. 397 - 409, ISSN PRINT: 0976 – 6340, ISSN ONLINE: 0976 –
6359.

More Related Content

What's hot

Performance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blendsPerformance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blends
IAEME Publication
 
Final_Project_Report-_10BEM0088__67__10bme0016
Final_Project_Report-_10BEM0088__67__10bme0016Final_Project_Report-_10BEM0088__67__10bme0016
Final_Project_Report-_10BEM0088__67__10bme0016
Nishant Singh
 
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
IJAEMSJORNAL
 
30120140506009 2
30120140506009 230120140506009 2
30120140506009 2
IAEME Publication
 

What's hot (17)

Performance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blendsPerformance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blends
 
Final_Project_Report-_10BEM0088__67__10bme0016
Final_Project_Report-_10BEM0088__67__10bme0016Final_Project_Report-_10BEM0088__67__10bme0016
Final_Project_Report-_10BEM0088__67__10bme0016
 
125882919 crude-oil
125882919 crude-oil125882919 crude-oil
125882919 crude-oil
 
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
Statistical Modeling and Optimization of Biodiesel Production from Azadiracht...
 
Instrumental method of analysis Oil and Fat(Unit 7 b)
Instrumental method of analysis Oil and Fat(Unit 7 b)Instrumental method of analysis Oil and Fat(Unit 7 b)
Instrumental method of analysis Oil and Fat(Unit 7 b)
 
Biodiesel from Waste Chicken Fats by Base Tranesterification Using Microwave ...
Biodiesel from Waste Chicken Fats by Base Tranesterification Using Microwave ...Biodiesel from Waste Chicken Fats by Base Tranesterification Using Microwave ...
Biodiesel from Waste Chicken Fats by Base Tranesterification Using Microwave ...
 
30120140506009 2
30120140506009 230120140506009 2
30120140506009 2
 
Mh3422062209
Mh3422062209Mh3422062209
Mh3422062209
 
Petrochemical Analysis
Petrochemical AnalysisPetrochemical Analysis
Petrochemical Analysis
 
QUALITY CONTROL OF PETROLEUM PRODUCTS
QUALITY CONTROL OF PETROLEUM PRODUCTSQUALITY CONTROL OF PETROLEUM PRODUCTS
QUALITY CONTROL OF PETROLEUM PRODUCTS
 
Production of bio-diesel from Jatropha seeds
Production of bio-diesel from Jatropha seedsProduction of bio-diesel from Jatropha seeds
Production of bio-diesel from Jatropha seeds
 
Optimization of Biodiesel Production from Jatropha Oil using Response Surface...
Optimization of Biodiesel Production from Jatropha Oil using Response Surface...Optimization of Biodiesel Production from Jatropha Oil using Response Surface...
Optimization of Biodiesel Production from Jatropha Oil using Response Surface...
 
IRJET- Parameter Design for Optimum Percentage Yield for Bio-Diesel from ...
IRJET-  	  Parameter Design for Optimum Percentage Yield for Bio-Diesel from ...IRJET-  	  Parameter Design for Optimum Percentage Yield for Bio-Diesel from ...
IRJET- Parameter Design for Optimum Percentage Yield for Bio-Diesel from ...
 
Analysis of oil and Fat(Unit 7)
Analysis of oil and Fat(Unit 7)Analysis of oil and Fat(Unit 7)
Analysis of oil and Fat(Unit 7)
 
G0211036043
G0211036043G0211036043
G0211036043
 
Optimization, kinetic degradation and quality characterization of oil extract...
Optimization, kinetic degradation and quality characterization of oil extract...Optimization, kinetic degradation and quality characterization of oil extract...
Optimization, kinetic degradation and quality characterization of oil extract...
 
Production of 1 tetradecene at 100 tons per year
Production of 1 tetradecene at 100 tons per yearProduction of 1 tetradecene at 100 tons per year
Production of 1 tetradecene at 100 tons per year
 

Viewers also liked

Measurement of tact necessary to prevent industrial disputes leading to loss ...
Measurement of tact necessary to prevent industrial disputes leading to loss ...Measurement of tact necessary to prevent industrial disputes leading to loss ...
Measurement of tact necessary to prevent industrial disputes leading to loss ...
IAEME Publication
 
ODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCHODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCH
IAEME Publication
 

Viewers also liked (6)

Measurement of tact necessary to prevent industrial disputes leading to loss ...
Measurement of tact necessary to prevent industrial disputes leading to loss ...Measurement of tact necessary to prevent industrial disputes leading to loss ...
Measurement of tact necessary to prevent industrial disputes leading to loss ...
 
PHYSICO-CHEMICAL CHARACTERIZATION AND PRODUCT DEVELOPMENT FROM BANANA GERMPLA...
PHYSICO-CHEMICAL CHARACTERIZATION AND PRODUCT DEVELOPMENT FROM BANANA GERMPLA...PHYSICO-CHEMICAL CHARACTERIZATION AND PRODUCT DEVELOPMENT FROM BANANA GERMPLA...
PHYSICO-CHEMICAL CHARACTERIZATION AND PRODUCT DEVELOPMENT FROM BANANA GERMPLA...
 
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
 
DESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFTDESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFT
 
ODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCHODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCH
 
Ijmet 07 06_005
Ijmet 07 06_005Ijmet 07 06_005
Ijmet 07 06_005
 

Similar to Determination of physico chemical properties of castor biodiesel a potential

Performance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blendsPerformance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blends
IAEME Publication
 
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
IDES Editor
 
ADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERYADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERY
Amit Nitharwal
 
Performance and emission characteristics of di ci diesel engine with pre
Performance and emission characteristics of di ci diesel engine with prePerformance and emission characteristics of di ci diesel engine with pre
Performance and emission characteristics of di ci diesel engine with pre
IAEME Publication
 

Similar to Determination of physico chemical properties of castor biodiesel a potential (20)

J011646668
J011646668J011646668
J011646668
 
Optimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological StudiesOptimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological Studies
 
Mh3422062209
Mh3422062209Mh3422062209
Mh3422062209
 
Oil to Biodiesel from Two Potential Sources – A 360 degree Comparative Study
Oil to Biodiesel from Two Potential Sources – A 360 degree Comparative StudyOil to Biodiesel from Two Potential Sources – A 360 degree Comparative Study
Oil to Biodiesel from Two Potential Sources – A 360 degree Comparative Study
 
Production of simarouba oil methyl ester using mixed base catalyst and its ch...
Production of simarouba oil methyl ester using mixed base catalyst and its ch...Production of simarouba oil methyl ester using mixed base catalyst and its ch...
Production of simarouba oil methyl ester using mixed base catalyst and its ch...
 
Ijmet 06 10_009
Ijmet 06 10_009Ijmet 06 10_009
Ijmet 06 10_009
 
STUDIES ON EXHAUST EMISSIONS OF DIESEL ENGINE WITH CERAMIC COATED COMBUSTION ...
STUDIES ON EXHAUST EMISSIONS OF DIESEL ENGINE WITH CERAMIC COATED COMBUSTION ...STUDIES ON EXHAUST EMISSIONS OF DIESEL ENGINE WITH CERAMIC COATED COMBUSTION ...
STUDIES ON EXHAUST EMISSIONS OF DIESEL ENGINE WITH CERAMIC COATED COMBUSTION ...
 
Performance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blendsPerformance and emission study of jatropha biodiesel and its blends
Performance and emission study of jatropha biodiesel and its blends
 
Optimization, kinetic degradation and quality characterization of oil extract...
Optimization, kinetic degradation and quality characterization of oil extract...Optimization, kinetic degradation and quality characterization of oil extract...
Optimization, kinetic degradation and quality characterization of oil extract...
 
Experimental Investigation on Performance of Sugarcane Straw Pyrolysed Bio- O...
Experimental Investigation on Performance of Sugarcane Straw Pyrolysed Bio- O...Experimental Investigation on Performance of Sugarcane Straw Pyrolysed Bio- O...
Experimental Investigation on Performance of Sugarcane Straw Pyrolysed Bio- O...
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
CT-3215
CT-3215CT-3215
CT-3215
 
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
Performance, Combustion and Emission Evaluation of Fish and Corn Oil as subst...
 
Correlation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude OilCorrelation of True Boiling Point of Crude Oil
Correlation of True Boiling Point of Crude Oil
 
IRJET- Experimental Investigation of Engine Characteristics of Diesel Engine ...
IRJET- Experimental Investigation of Engine Characteristics of Diesel Engine ...IRJET- Experimental Investigation of Engine Characteristics of Diesel Engine ...
IRJET- Experimental Investigation of Engine Characteristics of Diesel Engine ...
 
ADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERYADVANCEMENT IN ENHANCED OIL RECOVERY
ADVANCEMENT IN ENHANCED OIL RECOVERY
 
Exploration of the Potential of Reclaimed Waste Cooking Oil for Oil-Immersed ...
Exploration of the Potential of Reclaimed Waste Cooking Oil for Oil-Immersed ...Exploration of the Potential of Reclaimed Waste Cooking Oil for Oil-Immersed ...
Exploration of the Potential of Reclaimed Waste Cooking Oil for Oil-Immersed ...
 
Performance and emission characteristics of di ci diesel engine with pre
Performance and emission characteristics of di ci diesel engine with prePerformance and emission characteristics of di ci diesel engine with pre
Performance and emission characteristics of di ci diesel engine with pre
 
Transesterification of fish oil and performance study on 4 stroke ci engine w...
Transesterification of fish oil and performance study on 4 stroke ci engine w...Transesterification of fish oil and performance study on 4 stroke ci engine w...
Transesterification of fish oil and performance study on 4 stroke ci engine w...
 
Cd5627 nurul haizan_ahmad
Cd5627 nurul haizan_ahmadCd5627 nurul haizan_ahmad
Cd5627 nurul haizan_ahmad
 

More from IAEME Publication

A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
IAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
IAEME Publication
 

More from IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 

Recently uploaded (20)

Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 

Determination of physico chemical properties of castor biodiesel a potential

  • 1. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 101 DETERMINATION OF PHYSICO-CHEMICAL PROPERTIES OF CASTOR BIODIESEL: A POTENTIAL ALTERNATE TO CONVENTIONAL DIESEL R.SRUTHI*1 , K. RAVI KUMAR2 , G. SHIRISHA3 1 Asst Prof., Department of Petroleum Engineering, AHCET, Chevella, Ranga Reddy – 515002(A.P.), India. 2 Asst Prof., Department of Mechanical Engineering, AHCET, Chevella, Ranga Reddy – 515002(A.P.), India. 3 Asst Prof., Department of Mechanical Engineering, AHCET, Chevella, Ranga Reddy – 515002(A.P.), India ABSTRACT: Depletion of world’s crude oil reserves, increasing crude oil prices, negative effects of mineral and synthetic oils on man. Biodiesel is receiving increased attention as an alternative, non- toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net green house gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant resources has created a great importance in several countries. Vegetable oil after tansesterification being used as bio diesel. Considering the cost and demand of the edible oil is bearable, so it may be preferred for the preparation of bio diesel in India. In the present study castor oil was exctracted from seeds through soxhlet extraction, fatty acid methylesters was synthesized with methanol, KOH as a base catalyst. Product was confirmed with 1HNMR spectra, physico-chemical properties were determined for oil and its methylesters to compare the properties. Physico-chemical properties demonstrate that methylesters are exhibiting improved and excellent properties than its oil for bio-diesel purpose. Thermo-oxidative stability and cold flow properties were also found, which is showing satisfactory results. From this study it was concluded that castor oil can be used as a potential alternate to conventional diesel... 1. INTRODUCTION Gradual depletion of world fossil reserves and emissions of green house gasses are leading to energy insecurity and ecological imbalance in future. Biodiesel derived from renewable resources i.e vegetable oils seems to be a resolution as it is ecofriendly in nature. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 4, Issue 3, April 2013, pp. 101-107 © IAEME: www.iaeme.com/ijaret.asp Journal Impact Factor (2013): 5.8376 (Calculated by GISI) www.jifactor.com IJARET © I A E M E
  • 2. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 102 Biodiesel can be defined as basically monoalkyl esters of fatty acids produced from animal fats or vegetable oils by transesterification or other methods with small chain alcohols, using different kinds of catalysts [1]. Currently, more than 95% biodiesel are produced from edible oil feedstock, due to this there is a huge imbalance in the human nutrition chain versus fuel [2]. This will make biodiesel economically unfeasible as compared to petroleum-derived fuels [3,4]. To avoid these situations, non- edible oil seeds need to be used for commercial production of biodiesel. Many researchers have initiated work on the use of low cost non-edible oils as alternative feedstock for biodiesel production [5,6,7]. Among non-edible oil feedstock, seeds of castor proved to be a one of the highly promising reliable source having high seed oil content. Castor oil is non-edible due to presence of toxic phorbol esters and curcin [9]. Therefore, in the present paper efforts has been made to extract the oil from castor seeds, synthesis of its fatty acid methylesters, determination of physico-chemical properties (fuel properties) and thermo-oxidative stability analysis of castor for exploration of potential biodiesel sources. 2. MATERIALS AND METHODS 2.1. Materials Castor seeds were separated from the fruit mechanically and cleaned manually to remove all foreign material. The cleaned seeds were dried at 60O C temperature. Pure standards of FAME was purchased from M/s Sigma Aldrich. All other chemicals and reagents (methanol, ethanol, n- hexane, potassium hydroxide, and phenolphthalein indicator were analytical reagent grade and purchased from M/s Merck. 2.2. Extraction procedure of Castor oil Castor oil was extracted in soxhlet apparatus using n-hexane as per the standard AOCS (American Oil Chemical Society) procedure for 8 h. The extract was concentrated in rota vapor, the residual oil was cooled and weighed. The physico-chemical properties of the oil were determined. 2.3. Transesterification of Castor oil Due to low acid value of the oil direct transesterification procedure was followed. Transesterification reaction was carried out in 250 ml three necked glass vessels (3 mm thick) sealed tightly and fitted with condenser at the top. The reaction glass vessel was placed on the hot plate magnetic stirrer. Methyl esters of Castor seed oil were prepared by refluxing the oil at 60O C employing a 1:6 molar ratio of oil to methanol for one and half hour with 1 wt% KOH as catalyst and the mixture was stirred using a magnetic stirrer at 400 rpm [10]. After completion of the reaction, the mixture was cooled to room temperature and poured in a separating funnel, leading to separation of two phases. The bottom glycerol layer was discarded and the top ester layer was washed gently several times with warmed water to remove the catalyst, glycerol, and soap. A pH meter was used to check the complete removal of the catalyst. The washed methyl ester was further purified under vacuum on a rotary evaporator. 2.4. 1 H NMR spectroscopy 1H NMR spectrum of Castor oil and the fatty acid methyl esters was obtained on 500 MHz NMR spectrometer. Samples were dissolved in 400 ml deuterated chloroform (CdCl3) and transferred to the 5-mm NMR tube. The deuterated chloroform chemical shift peak at 7.26 ppm was taken as internal reference. Typical parameters used were: spectral width: 4800 Hz; time domain data points: 32 K; flip angle: 90O ; relaxation delay: 5 s; spectrum size: 32 K points; and line broadening for exponential window function: 0.3 Hz.
  • 3. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 103 2.5. Thermogravimetric analysis (TGA) The thermogravimetric profile of castor oil and its methyl esters was obtained using Thermogravimetric Analyzer at the heating rate of 10 O C/min in both nitrogen and air atmosphere. The sample size was kept almost same 5 to 6 mg throughout the study. 3. RESULTS AND DISCUSSION 3.1. Physiochemical characterization of castor oil The physico-chemical characteristics of oil was estimated as per the ASTM standard methods. Initially, the specific gravity of the oil sample was determined using the standard method mentioned above. Specific gravity of castor oil was found to be 0.875, which is within acceptable range of standard ASTM specifications. Similarly, viscosity of oil sample was measured using a standard protocol. Viscosity of the oil increases with increase in molecular weight and decreases with increase in unsaturation level and temperature [19]. The kinematic viscosity of the oil at (40 O C) was found to be 75.40 cst respectively, which is much higher as compared to conventional diesel . These high viscosity oils cannot be used directly in engine. High viscosity causes injector fouling and other engine operational problems. Therefore, before application in diesel engine, processing is required to reduce the viscosity of the oil. The flash point of the oil was found to be 314. The result shows that the flash point of oil sample is much higher as compared to conventional diesel. Similarly, the fire point of oil was found at 333 O C which is much higher than diesel. Refractive index is the degree of the deflection of a beam light that occurs when it passes from one medium to the other. The refractive index value increases with the degree of unsaturation. Refractive index was found to be 1.46. Moisture content of oils was determined using Karl fisher titrator. Moisture content is a qualitative parameter of oil, which influences the storage life of fuel. High moisture content may serve as a medium for microbial growth. Microbial growth in the oil may leads to damage of tank and emulsion formation [20]. Besides this, it initiates oxidation of oil which effects longetivity of engines and reduced shelf life of the oil. The moisture content of the oil was found to be 0.33 which are within acceptable range of standard values. The flow characteristic of oil was observed under low temperature. The pour point of 7 O C was observed. The calorific value for the oil was measured in an oxygen bomb colorimeter. The data obtained from experiment for castor oil showed high calorific value in the range of 35.46 MJ/Kg. The acid value of the oil determines the process of transesterfication i.e. either one step or two step process [21]. The acid value of the castor oil was measured to check the free fatty acid content in the oil sample, and it was found to be 3.23 mg/KOH. As per the values reported in the literature FFA content of castor oil varies in the range of 4 to 40 which is far beyond the capacity of conversion to biodiesel via single step alkali catalyzed transesterification. But in the present study FFA content of oil was found to be very less. So, single step alkali catalyzed reaction was performed for conversion of oil in to biodiesel. This single step transesterification yields substantially higher conversion rate and decreased the reagent use and reaction time as compared to two step transesterification process. The high FFA content increases the formation of fatty acids salts (soap) and conversion rate decreased which cause problem in separation of glycerol at washing step. 3.2. Characterization and evaluation of synthesized methyl esters The fuel properties of methyl esters of castor oil was determined using the standard protocol. During the study it was observed that the specific gravity which influences the fuel atomization [21] was reduced after methanolysis. The obtained values for methyl esters castor oil was within the acceptable range of ASTM standards . As described above the viscosity which is the major problem in the oil samples for engine operation was substantially decreased after transesterification. The decreased value of the viscosity was found to be 12 cst. The values are almost within the acceptable range of ASTM standards . Similarly, flash and fire point values were also found to be reduced after transesterification and the obtained Values are in the range of 185 and 190 O C respectively.
  • 4. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 104 Fig.1 1 H NMR spectrum of castor oil and methyl ester Since, flash point and fire point values are depends on viscosity, therefore, decrease in the viscosity values after transesterification might be one of the cause for reduction. Acid value is another measure of qualitative character of biodiesel. As per the ASTM standard, acid value of transesterified product should not be more than 0.5 mg KOH/g. The acid values of the methyl esters of the castor oil sample in the present study was found to be 0.46 mg KOH/g, which is below the maximum limits of the standards . Similarly, the moisture content of the prepared methyl esters samples was determined using Karl fisher titrator. After transesterification the moisture content of methyl esters was found to be 0.25% , which is well below the maximum acceptable limits. Cold flow properties such pour point of methyl ester was found to be improved after transesterification. Pour point of methyl esters was measured as 2 O C. But these values are still much higher than the conventional diesel. The heating value is one of the essential properties for evaluation of biodiesel, which provides the suitability of fuels as alternative to diesel fuels [25]. Calorific value for methyl esters was obtained as 41.36 MJ/Kg. The result shows that calorific value of methyl esters is higher than the corresponding oils . All these properties combined together have shown that castor oil could act as the potential candidates for biodiesel production. 3.3. 1 H NMR spectroscopy Nuclear magnetic resonance (NMR) spectroscopy was employed to monitor the transesterification reaction. In case of 1H NMR spectra of methyl esters, signal appears in the region at 3.7 ppm which indicates the presence methylic esters group [27]. The characteristic peak of methoxy protons was observed as a singlet at 3.65 ppm and this signal was attributed to methyl esters, which was absent in the oil. In case of 1H NMR spectra of oil, multiple peaks were observed in the region 4.11-4.115, 4.266-4.306 ppm and 5.30-5.34 ppm, due to oxymethylic hydrogen that are characteristic of triglycerides. 1H NMR spectrum of castor methyl esters, the strong singlet peak at 3.659 ppm is indicative of conversion of parent oil to methyl esters. So, from the NMR spectrum of oil and methyl esters, it could be verified that castor oil conversion into biodiesel was successfully completed. 3.4. Thermal stability of castor oil and methyl esters Thermal stability of castor oil and its methyl esters was determined from onset temperature of thermal decomposition under nitrogen atmosphere. The curve shows three consecutive stages of thermal decomposition of the oil samples. The first phase of decomposition start at 310-315 O C and second phase extended up to 470 O C which leads to rapid weight loss. The final stage of decomposition, where pyrolyzed product of second phase fully decomposed extended from 470 to 700 O C. In the first stage evaporation starts at 240-280 O C, extended up to 540 O C where rapid weight loss
  • 5. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 105 was occurred. Final decomposition occurred between 540 and 700 O C. TGA analysis of methyl esters samples was carried out under similar condition. Fig.2- TGA profile of castor oil and methyl esters under nitrogen environment From the TGA curves of the oil samples and methyl esters it was observed that, the process of degradation of castor methyl esters initiates and completed within a temperature range inferior to the respective oil sample. Molecular tension produced by bulky triglycerides molecule in the oil sample which could be the reason for thermal stability of oil [28]. Besides this, high viscosity might be the reason for slow degradation process [15]. The poor volatility and high viscosity of the oils are the major challenges to run modern diesel engines with plant oils. The onset temperature for volatilization and distillation was calculated from respective TGA curves of castor oil and methyl esters. The result shows that onset temperature of thermal degradation of methyl esters was lower as compared to oil sample. In case of oil sample weight loss was negligible below 300 O C. But after that rapid degradation was observed at 310 O C compared to its methyl esters at 120 O C. During this study it was observed that for oil sample 50% weight loss was occurred at around 420 O C , while in case of methyl esters it was around at 280 O C. All the volatile components of the oil which accounted for almost 90% weight were decomposed at around 440 O C, whereas in case of respective methyl ester 90% weight loss was observed at 295 O C. The remaining 10% was pyrolysis product which is highly viscous liquids, under goes secondary decomposition. The temperature for secondary decomposition extended up to 470-530O C for oil and 320-380 O C for methyl esters. The residue was completely burnt out after heating up to 700 O C for both oil and methyl esters. The above data confirms that oil is more thermally stable and less volatile as compared to methyl esters. Further it is also confirmed that methyl esters shows close proximity with conventional diesel. 3.5. Oxidative stability of Castor oil and methyl esters Oxidative stability is the quality indicative parameter for methyl esters. It is defined as the resistance of the oil against oxidation. Fig.3- TGA profile of castor oil and methyl esters under oxygen environment
  • 6. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 106 The consequence of lipid oxidation results in decreasing the shelf life of the oil. The oxidation of long chain methyl esters initially results in accumulation of hydro peroxides. Then gradually it polymerizes forming insoluble sediments that plugged filters, fouled injectors and interfered with engine operation [15]. To measure the oxidative stability of the oil as well as methyl esters TGA analysis was performed in air atmosphere under same conditions. During the analysis it was observed that the onset temperature of oxidative degradation for oil sample was 230 O C, whereas, in case of methyl esters it was 120 O C. That is mainly because methyl esters are less viscous than oil. This low viscosity increases the contact between oxygen and ester molecules resulting higher oxygen diffusion [29]. The vegetable oil contains naturally occurring antioxidants such as tocopherols, sterols and tocotrienols, but the purification process destroys these natural antioxidants and hence becomes prone to oxidation [30]. The oxidative stability of methyl ester can be improved either by using synthetic antioxidants which are available in market or vegetable oil based antioxidant additives. So, further research and development on castor oil based biodiesel will make it more attractive to replace fossil fuels. 4. CONCLUSIONS Current investigation on the oil content and fuel properties of castor oil provides valuable information on potential resources for biodiesel production. Physicochemical characterization of oil and methyl esters established the suitability of the biodiesel to use in diesel engine. The castor oil used in the present study showed low level of FFA, therefore single step alkali catalyzed transesterification was found to be sufficient for biodiesel production. From the study it can be concluded that castor oil can be used for large scale propagation and cost-effective biodiesel production. However, more extensive and experimental study needs to be carried out to investigate combustion, emission characteristics and its performance on Engine. Therefore, we still need to focus on the process design, and kinetics of castor oil transesterification in a batch reactor and analysis in biodiesel- fueled engine to establish castor biodiesel as successful alternative fuel. REFERENCES [1]Knothe G. Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 2006;83:823e33. [2] Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. nonedible oil vs. waste edible oil as biodiesel feedstock. Energy 2008;33:1646e53. [3] Wang Y, Ou SY, Liu PZ, Tang SZ. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal A Chem 2006;252:107e12. [4] Zhang Y, Dube MA, Mclean DD, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 2003;90:229e40. [5] Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 2009;29(3):396e403. [6] Karmee SK, Chadha A. Preparation of biodiesel fromcrude oil of Pongamia pinnata. Bioresour Technol 2005;96(13):1425e9. [7] Bora DK, Nath R. Use of Nahar oil methyl ester (NOME) in CI engines. J Sci Ind Res 2007;6:256e8. [8] Chitra P, Venkatachalam P, Sampathrajan A. Optimisation of experimental conditions for biodiesel production from alkali-catalysed transesterification of Jatropha curcus oil. Energy Sust Dev 2005;9:13e8. [9] Ahmed WA, Salimon J. Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur J Sci Res 2009;31(3):429e36.
  • 7. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 3, April (2013), © IAEME 107 [10] Darnoko D, Cheryan. Kinetics of palm oil transesterification in a batch reactor. J Am Oil Chem Soc 2000;77(12):1263e7. [11] Knothe G, Steidely KR. Kinematic viscosity of biodiesel fuel and related compound. Influence of compound structure and comparison to petrodiesel fuel component. Fuel 2005;84: 1059e65. [12] Knothe G, Bagby MO, Ryan TW. Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers. JAOCS 1998;75(8):1007e13. [13] RamadhasAS, Jayaraj S,MuraleedharanC.Biodieselproduction from high FFA rubber seed oil. Fuel 2005;84:335e40. [14] Cormick MC, Graboski RL, Alleman TL, Herring AM. Impact of biodiesel source materials and chemical structure onemissions of criteria pollutants from heavy e duty engine. Environ Sci Technol 2011;35:1741e2. [15] Durrett TP, Benning C, Ohlrogge J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 2008;54: 593e607. [16] Gunstone FD. Rapeseed and canola oil: production, processing, properties and uses. London: Blackwell Publishing Ltd; 2004. [17] Augustus GD, Jayablan M, Seiler GJ. Evaluation and bioinduction of energy components of Jatropha curcas. Biomass Bioenergy 2002;23:161e4. [18] Rao PV. Experimental investigations on the influence of properties of Jatropha biodiesel on performance,combustion, and emission characteristics of a DI-CI engine. World Academy of Science, Engineering and Technology; 2011. p. 75. [19] Nourredini H, Teoh BC, Clements LD. Viscosities of vegetable oils and fattyacids. J Am Oil Chem Soc 1992;69:1184e8. [20] Monteiroa MR, Ambrozina ARP, Morais Liaob LM, Ferreira AG. Critical review on analytical methods for biodiesel characterization. Talanta 2008;77:593e605. [21] T. Pushparaj, S. Ramabalan, “Influence Of Cnsl Biodiesel With Ethanol Additive On Diesel Engine Performance And Exhaust Emission” International Journal Of Mechanical Engineering & Technology (IJMET) Volume 3, Issue 2, 2012, pp. 665 - 674, ISSN PRINT : 0976 – 6340, ISSN ONLINE : 0976 – 6359. [22] S.H. Choi, Y.T. Oh and J. Azjargal, “Lard Biodiesel Engine Performance and Emissions Characteristics With Egr Method” International Journal Of Mechanical Engineering & Technology (IJMET) Volume 3, Issue 2, 2012, pp. 397 - 409, ISSN PRINT: 0976 – 6340, ISSN ONLINE: 0976 – 6359.