SlideShare uma empresa Scribd logo
1 de 22
Self-Assembly of Two-Dimensional Multi-Component Colloidal Lattices at Liquid Interfaces,[object Object],HuanMa and Lenore L. Dai,[object Object],October 2009,[object Object]
Photonic bandgap crystals,[object Object],Chemical sensors,[object Object],Optical devices,[object Object],Porous membranes,[object Object],Masks or templates for nanostructure fabrications,[object Object],Applications of Colloidal Crystals,[object Object],2,[object Object],Colloidal crystals in polymer networks,[object Object],Structure obtained by colloidal crystal templating,[object Object],Zakhidov, A. A. et al. Science1998, 282, 897-901.,[object Object],Pan, G. S. et al. Phys. Rev. Lett. 1997, 78, 3860-3863.,[object Object]
Potential Impacts to Related Research,[object Object],Biology:,[object Object],	Protein particles in the surface layers (S-layers) of bacteria or archaea,[object Object],Physics:,[object Object],	Phase transitions with molecular and “atomic” resolution,[object Object],Premelting at a grain boundary,[object Object],Alsayed, A. M. et al. Science2005, 309, 1207-1210.,[object Object],3,[object Object],S-Layer lattice types,[object Object],Sleytr, U.B. et al. Prog. Surf. Sci.2001, 68, 231-278.,[object Object],5 µm,[object Object]
Hexagonal lattice structure,[object Object],Close packed,[object Object],Non-close packed ,[object Object],One-component 2D Colloidal Lattices,[object Object],Particle dynamics,[object Object],Particle interactions,[object Object],Lattice stability,[object Object],Phase transitions,[object Object],4,[object Object],Close packed colloidal lattice consists of carboxy-coated polystyrene particles ,[object Object],Non-close packed colloidal lattice consists of sulfate treated polystyrene particles ,[object Object],2,[object Object],1,[object Object],3,[object Object],4,[object Object],5,[object Object],4 µm,[object Object],10 µm,[object Object],Binks, B. P.; Rodrigues, J. A. Angew. Chem. Int. Ed. 2005, 44, 441-444. ,[object Object],Tarimala, S.; Wu, C.; Dai, L. L. Langmuir 2006, 22, 7458-7461.,[object Object]
Motivations,[object Object],Multi-component 2D colloidal lattices,[object Object],Rich lattice structures,[object Object],The computational predictions could hardly be validated experimentally,[object Object],Difficulty in controlling the particle size and number ratios in experiments,[object Object],Interaction models in the simulations are still under development,[object Object],5,[object Object],Disordered at NS:NL = 7:1,[object Object],Ordered at NS:NL = 2:1,[object Object],Simulation result:,[object Object],0.89 µm / 2.7 µm ,[object Object],Stirner, T.; Sun, J. Z. Langmuir 2005, 21, 6636-6641.,[object Object]
Objectives,[object Object],[object Object],To evaluate the existing particle interaction models by calculations,[object Object],6,[object Object]
Preparing Pickering Emulsions,[object Object],Materials,[object Object],Water (HPLC, Acros Organics),[object Object],Poly(dimethylsiloxane)(PDMS, Rohodorsil Fluid 47V5, 5 cSt at 25 °C),[object Object],Negatively charged FluoSpheres® fluorescent microspheres from Molecular Probes™ (~1 µm in diameter, 2% dispersion in distilled water with 2 mM sodium azide),[object Object],Ultrasonic processor  (Sonics Vibracell, 500 W model),[object Object],7,[object Object]
Laser Scanning Confocal MicroscopeImaging and Analysis,[object Object],TCS SP5 ,[object Object],Beam Splitter,[object Object],[object Object],      488 nm, 543 nm, and 633 nm,[object Object],[object Object]
 Sequential imaging functionPrasad, V. et al. J. Phys.: Condens. Matter2007, 19, 113102.,[object Object],8,[object Object]
Langmuir-Blodgett TroughInstrument and Experimental Method,[object Object],NIMA 612D Trough,[object Object],Material: Teflon,[object Object],Area range: 45 - 600 cm2,[object Object],Speed range: 7.1 - 828.5 cm2/min,[object Object],Symmetrical compression with two barriers,[object Object],Pressure sensor: a filter paper plate,[object Object],Sample ,[object Object],0.8% particle dispersions in isopropanol/water (5:1) mixture,[object Object],Method,[object Object],Inject to the air/water interface dropwise using a 250 µL Hamilton syringe,[object Object],9,[object Object]
Results,[object Object],[object Object],Confocal microscope images,[object Object],Image analysis,[object Object],Force calculations,[object Object],10,[object Object]
One-Component Colloidal Lattices,[object Object],11,[object Object],AS-PS,[object Object],S-PS,[object Object],Particles oscillate around their equilibrium positions,[object Object],Inset FFTs: six distinct first order peaks indicate long-range order,[object Object],Particle aggregates coexisting with the lattice structure,[object Object]
Two-Component Colloidal Lattices,[object Object],12,[object Object],S-PS dominated lattice,[object Object],Lattice without dominating species,[object Object],No distinct phase separation of different particle types in the lattice,[object Object],Inset FFTs: the diffuse ring indicates lower degree of lattice order,[object Object],AS-PS dominated aggregates,[object Object]
Voronoi Diagrams,[object Object],13,[object Object],AS-PS,[object Object],S-PS,[object Object],S-PS/AS-PS ,[object Object],Sevenfold,[object Object],Fivefold,[object Object],[object Object]
 AS-PS form largely fivefold defectsSixfold,[object Object]
Interparticle Distances,[object Object],14,[object Object],The two-component system seems to have a broader interparticle distance distribution than the one-component systems,[object Object]
Force Calculation,[object Object],Determine,[object Object],15,[object Object]
Coulomb Force,[object Object],16,[object Object],Assumptions:,[object Object],1 Particle size >>Debye length (22.3 nm),[object Object],2 Contact angle not very small,[object Object],Area of particle-oil interface:,[object Object],Surface charge density at particle-oil interface: σpo,[object Object],Dimensionless distance between particle centers:,[object Object],Particle radius: R,[object Object],Contact angle measured through the water phase: θ,[object Object],Dielectric constant of oil: ε,[object Object],Permittivity of vacuum: ε0,[object Object],oil,[object Object],water,[object Object],Aveyard, R. et al. Langmuir 2000, 16, 1969-1979.,[object Object]
Capillary Force,[object Object],	Undulations of the three-phase contact line,[object Object],(wetting property of the particle),[object Object],Interfacial tension of oil-water interface: γow = 44.6 mN/m,[object Object],Amplitude of the three-phase contact line undulations:,[object Object],δ    50 nm for particle size 1 µm,[object Object],17,[object Object],Stamou, D. et al. Physical Review E 2000, 62, 5263-5272.,[object Object],Horozov, T. S. Langmuir2005, 21, 7405-7412.,[object Object]
Other Negligible Forces,[object Object],Dipolar forces,[object Object],Dipoles at particle-oil interfaces (Fdipole-oil),[object Object],Asymmetric distribution of the free ions (Fdipole-water),[object Object],Capillary forces ,[object Object],Electostatic field,[object Object],Gravity (Fcapillary-gravity),[object Object],Van der Waals forces,[object Object],(Fvander Waals),[object Object],18,[object Object]
Ftotal versus σpo,[object Object],Ftotal between any pair of particles is repulsive and equal in a colloidal lattice at equilibrium,[object Object],19,[object Object],* For degree of surface ionization at particle-oil interface αpo = 0.01,[object Object],Aveyard, R. et al. Langmuir2000, 16, 1969-1979.,[object Object]
Summary,[object Object],One- and two-component colloidal lattices were successfully assembled at poly(dimethylsiloxane)-water interfaces in Pickering emulsions,[object Object],The colloidal particles assemble into long-range ordered structure and oscillate around their equilibrium positions,[object Object],Different types of particles distribute randomly in the lattice with no obvious phase separation,[object Object],In the two-component colloidal lattices, the S-PS particles form mostly 6-fold lattice sites, whereas the AS-PS particles largely form 5-fold defect sites,[object Object],In addition, we have performed total force calculations and extrapolated the surface charge density at the particle-oil interface,[object Object],20,[object Object]

Mais conteúdo relacionado

Mais procurados

SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...
SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...
SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...Mathankumar S
 
Microsoft power point dlsu solid state physics laboratory list of researche...
Microsoft power point   dlsu solid state physics laboratory list of researche...Microsoft power point   dlsu solid state physics laboratory list of researche...
Microsoft power point dlsu solid state physics laboratory list of researche...De la Salle University Physics Department
 
Zinc Oxide Nano Structures
Zinc Oxide Nano StructuresZinc Oxide Nano Structures
Zinc Oxide Nano StructuresDeepanshu Bhatia
 
Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceSaurav Ch. Sarma
 
X ray spectroscopy tools for the characterization of nanoparticles
X ray spectroscopy tools for the characterization of nanoparticlesX ray spectroscopy tools for the characterization of nanoparticles
X ray spectroscopy tools for the characterization of nanoparticlesmd islam
 
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...Daniel Moore
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresMartial Duchamp
 
eQCM - Electrochemical Quartz Crystal Microbalance
eQCM -  Electrochemical Quartz Crystal MicrobalanceeQCM -  Electrochemical Quartz Crystal Microbalance
eQCM - Electrochemical Quartz Crystal MicrobalanceGamry Instruments
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlesGaurav Yogesh
 
Xrd amct presentation final 2
Xrd amct presentation final 2Xrd amct presentation final 2
Xrd amct presentation final 2Hamza Suharwardi
 
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...Dwencel John Mamayson
 
Super lattice and quantum well
Super lattice and quantum wellSuper lattice and quantum well
Super lattice and quantum wellMUHAMMAD AADIL
 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesAshish Goel
 
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...IOSR Journals
 

Mais procurados (20)

1426777
14267771426777
1426777
 
SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...
SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...
SYNTHESIS AND CHARACTERIZATION OF ZNO NANO STRUCTURES BY MICROWAVE-ASSISTED T...
 
Microsoft power point dlsu solid state physics laboratory list of researche...
Microsoft power point   dlsu solid state physics laboratory list of researche...Microsoft power point   dlsu solid state physics laboratory list of researche...
Microsoft power point dlsu solid state physics laboratory list of researche...
 
Sia.6888
Sia.6888Sia.6888
Sia.6888
 
Zinc Oxide Nano Structures
Zinc Oxide Nano StructuresZinc Oxide Nano Structures
Zinc Oxide Nano Structures
 
Electrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal MicrobalanceElectrochemical Quartz Crystal Microbalance
Electrochemical Quartz Crystal Microbalance
 
906882
906882906882
906882
 
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material.
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material. Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material.
Sensor Development Exploiting Graphite-Epoxy Composite As Electrode Material.
 
X ray spectroscopy tools for the characterization of nanoparticles
X ray spectroscopy tools for the characterization of nanoparticlesX ray spectroscopy tools for the characterization of nanoparticles
X ray spectroscopy tools for the characterization of nanoparticles
 
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
ZnS Nanostructures: Synthesis, Characterization, and Theory - Defense Present...
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO Nanowires
 
eQCM - Electrochemical Quartz Crystal Microbalance
eQCM -  Electrochemical Quartz Crystal MicrobalanceeQCM -  Electrochemical Quartz Crystal Microbalance
eQCM - Electrochemical Quartz Crystal Microbalance
 
paper
paperpaper
paper
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticles
 
Xrd amct presentation final 2
Xrd amct presentation final 2Xrd amct presentation final 2
Xrd amct presentation final 2
 
X ray diffraction
X ray diffraction X ray diffraction
X ray diffraction
 
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...
Investigation on the Effects of Spin Speed on the Properties of Spin-Coated C...
 
Super lattice and quantum well
Super lattice and quantum wellSuper lattice and quantum well
Super lattice and quantum well
 
Bismuth Ferrite Nano particles
Bismuth Ferrite Nano particlesBismuth Ferrite Nano particles
Bismuth Ferrite Nano particles
 
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...
Synthesis, Characterization of ZnS nanoparticles by Coprecipitation method us...
 

Semelhante a Self-Assembly of Two-Dimensional Multi-Component Colloidal Lattices at Liquid Interfaces

Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...trunghieuchinh
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Jeslin Mattam
 
Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015BASF
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cellssaromemarzadeh
 
Non-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnONon-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnOUniversity of Liverpool
 
2012 tus lecture 6
2012 tus lecture 62012 tus lecture 6
2012 tus lecture 6AllenHermann
 
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronAleksey Beletskii
 
Phil. Trans. R. Soc. B-2013-Michalet-
Phil. Trans. R. Soc. B-2013-Michalet-Phil. Trans. R. Soc. B-2013-Michalet-
Phil. Trans. R. Soc. B-2013-Michalet-Fabrizio Guerrieri
 
2EU-ISMET, Alessandro Carmona
 2EU-ISMET, Alessandro Carmona 2EU-ISMET, Alessandro Carmona
2EU-ISMET, Alessandro CarmonaIMDEA-Water
 
Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites
Nanomechanical Characterization of CdSe QD-Polymer NanocompositesNanomechanical Characterization of CdSe QD-Polymer Nanocomposites
Nanomechanical Characterization of CdSe QD-Polymer Nanocompositescurtistaylor80
 
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODSBMRS Meeting
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research HighlightPing Du
 
Scintillating Metal Organic Frameworks
Scintillating Metal Organic FrameworksScintillating Metal Organic Frameworks
Scintillating Metal Organic Frameworksfpdoty
 
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...Pierre Kawak
 
Thin Film Silicon Nanowire - Prof.Rusli
Thin Film Silicon Nanowire - Prof.RusliThin Film Silicon Nanowire - Prof.Rusli
Thin Film Silicon Nanowire - Prof.RusliSTS FORUM 2016
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ FilmsAlokmay Datta
 

Semelhante a Self-Assembly of Two-Dimensional Multi-Component Colloidal Lattices at Liquid Interfaces (20)

Pushkar N Patil
Pushkar N PatilPushkar N Patil
Pushkar N Patil
 
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
Formation of-silver-nanoparticles-from-a-n-hexadecylethylenediamine-silver-ni...
 
GOMD_2016_mayurtalk
GOMD_2016_mayurtalkGOMD_2016_mayurtalk
GOMD_2016_mayurtalk
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 
666.full
666.full666.full
666.full
 
Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015Henry J. Snaith at BASF Science Symposium 2015
Henry J. Snaith at BASF Science Symposium 2015
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Non-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnONon-parabolicity and band gap renormalisation in Si doped ZnO
Non-parabolicity and band gap renormalisation in Si doped ZnO
 
2012 tus lecture 6
2012 tus lecture 62012 tus lecture 6
2012 tus lecture 6
 
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatronElectrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
Electrostatic Edge Plasma Turbulence in the Uragan-3M torsatron
 
Phil. Trans. R. Soc. B-2013-Michalet-
Phil. Trans. R. Soc. B-2013-Michalet-Phil. Trans. R. Soc. B-2013-Michalet-
Phil. Trans. R. Soc. B-2013-Michalet-
 
2EU-ISMET, Alessandro Carmona
 2EU-ISMET, Alessandro Carmona 2EU-ISMET, Alessandro Carmona
2EU-ISMET, Alessandro Carmona
 
Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites
Nanomechanical Characterization of CdSe QD-Polymer NanocompositesNanomechanical Characterization of CdSe QD-Polymer Nanocomposites
Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites
 
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODSFINE CHARACTERIZATION OF NANOSCALE MATERIALS  BY TEM METHODS
FINE CHARACTERIZATION OF NANOSCALE MATERIALS BY TEM METHODS
 
Ping Du's Research Highlight
Ping Du's Research HighlightPing Du's Research Highlight
Ping Du's Research Highlight
 
Scintillating Metal Organic Frameworks
Scintillating Metal Organic FrameworksScintillating Metal Organic Frameworks
Scintillating Metal Organic Frameworks
 
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
 
Thin Film Silicon Nanowire - Prof.Rusli
Thin Film Silicon Nanowire - Prof.RusliThin Film Silicon Nanowire - Prof.Rusli
Thin Film Silicon Nanowire - Prof.Rusli
 
Liquid-like’ Films
Liquid-like’ FilmsLiquid-like’ Films
Liquid-like’ Films
 
4 Corners Poster
4 Corners Poster4 Corners Poster
4 Corners Poster
 

Self-Assembly of Two-Dimensional Multi-Component Colloidal Lattices at Liquid Interfaces

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.