Anúncio
Anúncio

Mais conteúdo relacionado

Similar a A Study on Estimation of Household Kerosene Consumption for Optimization of Delivery Plan(20)

Mais de harmonylab(16)

Anúncio

Último(20)

A Study on Estimation of Household Kerosene Consumption for Optimization of Delivery Plan

  1. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. A Study on Estimation of Household Kerosene Consumption for Optimization of Delivery Plan 北海道大学 大学院情報科学院 情報理工学専攻 調和系工学研究室 修士2 年 劉兆邦
  2. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 2 Background Kerosene consumption estimation • Kerosene is main resource for heating and shower • Efficient kerosene delivery plan - Need to know the remaining kerosene - Apply inventory routing algorithm • Difficulties in kerosene consumption estimation - Change in consumption pattern - New customer Problem in existing method • Based on experience - Frequently deliver or rarely deliver • Based on sensor - Installed on part of the customers - Unable to install sensor on all customers for now Refueling and kerosene tank under snow
  3. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 3 Related Work • Kerosene consumption estimation is treated as multivariate time series regression problem • Related work - Electricity consumption estimation[1][2] • One building or one country • Focused on future consumption - Time series classification[3] • Sound and Medical area • Kerosene delivery recording composed by many similar time series(each customer) • Classify simple consumption pattern and estimate consumption [1]Nivethitha Somu, Gauthama Raman MR, and Krithi Ramamritham. A hybrid model for building energy consumption forecasting using long short term memory networks. Applied Energy, 261:114131, 2020. [2] Tao Liu, Zehan Tan, Chengliang Xu, Huanxin Chen, and Zhengfei Li. Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy and Buildings, 208:109675, 2020. [3] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. Tapnet: Multivariate time series classification with attentional prototypical network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6845–6852, 2020.
  4. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Target - Improve kerosene consumption estimation precision • One day consumption, Refueling quantity(Between two refuels) - Support optimization of delivery plan • No measurable estimation model for delivery plan creation • Reduce delivery times(about 23 times delivery each day one worker) • Reduce customer running out of kerosene(about 4 customers each month) Table of contents - Refueling recordings and influence factors in Sapporo - Formulate kerosene consumption estimation problem - Proposed method - Experiments - Conclusion Target and Contents 4
  5. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 5 Overview • Use refuel recordings(different interval) and influence factors (fixed interval) - Days between refuels are called refueling interval • Estimate mean consumption or refuel quantity • Mean consumption is applied in delivery planning algorithm
  6. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. interval(day) 13 14 15 18 21 25 34 40 number 4 3 1 1 1 1 1 1 Interval of customer A 6 Refuel recordings • Refuel recording in Sapporo - Refuel time and quantity are recorded Interval distribution Recordings of customer A Recordings of customer B Same customer may have different interval Refuel recording history is different Refuel centered on winter(Nov-April) Interval is different from the whole dataset
  7. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 7 Influence Factor • Meteorological data from Japan Meteorological Agency – Recording method • Average of 24 recordings in one day – Area:Sapporo – Period:2010~2022 • Kerosene price data – Interval is one month Japan Meteorological Agency(気象庁):https://www.data.jma.go.jp/obd/stats/etrn/index.php 北海道生活協同組合連合会: http://www.doren.coop/oil.html Temperature data in Sapporo Kerosene price data in Sapporo
  8. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Variable name variable Remark Sum consumption for Customer 𝑢𝑖 in one season How many kerosene this customer use each season Mean consumption for Customer 𝑢𝑖 in one season How many kerosene this customer use each day 8 Formulation Variable name variable Remark Customer ID 𝑢𝑖 Refuel Time 𝑡𝑢𝑖,𝑠𝑙,𝑗 Customer 𝑢𝑖 , 𝑗𝑡ℎ refuel time in season 𝑠𝑙 Refuel quantity 𝑞𝑢𝑖,𝑠𝑙,𝑗 Refuel quantity for 𝑗𝑡ℎ refuel ※Assume every time is fully refueled Season: Nov~next year April Refuel recording • Use kerosene refuel recording and influence factors as input • Estimate mean consumption and refuel quantity
  9. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 9 Formulation • Multivariate time series: Instance 𝑋 ∈ 𝑇, dimenson of 𝑋 is 𝑛, 𝑚 • Data augment: • Time series regression: Input is time series、output is scalar Variable name variable Remark Instance 𝑋 input Period 𝑇 Refuel history Timestep 𝑛 interval between continuous refuel Features 𝑚 date 𝑑𝑖 Refuel recording 𝑟𝑘 Refuel time, refuel quantity, customer ID Estimation value 𝑐 Output(scalar)
  10. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 10 Model Data Processing: data augmentation and match with external feature Attention: Search relation between each time step Deep Learning: DNN, LSTM, Deep Sets, transformer
  11. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 11 Data process Refuel recording Date between refuel Meteorological data price Sum consumption Mean consumption date • Refuel recording data only include contents in refuel day – Refuel quantity is determined by all the days from last refuel • After data augmentation, information is efficiently used – 𝑑1 is the date for last refuel、𝑑𝑛 is this refuel date – Between 𝑑1 and 𝑑𝑛 is continuous date • Add External features to corresponding date 𝑑
  12. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 12 Attention • Input vector of each timestep(date) • Output vector contains relation between each time step – Same customer with similar meteorological will have similar consumption – Use attention to catch this relation Variable name Remark 𝑥 input (feature vector) 𝑞,𝑘,𝑣 Vector transformed from input 𝑠 Attention score 𝑦 Weighted 𝑣 𝑜 Output(contains each time steps relation) Output vector contains relation between each timestep Attention score for each timestep
  13. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 13 Deep Leaning-DNN, LSTM • DNN – A normal deep learning method, can be seen as a multivariate function • Base line deep learning model • LSTM – A sequence specified deep learning model, mainly used in time series data • Kerosene recording is time series data
  14. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 14 Deep Leaning-Deep Sets • For kerosene consumption, sum of cold day is important • Deep Sets treats time series as set – permutation invariance • Embedding: Change to other space – Best result may not in dataset’ local space • Sum the time axis to capture the set feature d1 d2 d3 d4 d1 d2 d4 d3 Warm Cold
  15. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 15 Deep Leaning-Transformer [1] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017). [2] Zerveas, George, et al. "A transformer-based framework for multivariate time series representation learning." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021. Encoder Decoder Use encoder only • Regression and classification • Reduce training time and parameter
  16. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 16 Experiments • Experimental setting • Experiment 1 – Pre-experiment • Verify assumption • Experiment 2 – Compare with baseline • Linear regression – Error analysis • Experiment 3 – Number of customer run out of kerosene – Delivery time
  17. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 17 Experimental setting customer recording ShortHRR-Highcc 1,329 11,098 ShortHRR-Lowcc 194 2,167 LongHRR-Highcc 84 4,233 LongHRR-Lowcc 14 836 Original Refuel Recording Datasets(two different companies) • LongHRR: Long History Refuel Recordings(few customers) – 2009 ~ 2019(10years) • ShortHRR: Short History Refuel Recordings(more customers) – 2020 ~2023 (3years) customer recording LongHRR 212 11,706 ShortHRR 1,722 26,512 Processed Dataset for Experiment 1 cc: correlation coefficient between consumption and temperature Highcc: cc above threshold Lowcc: cc under threshold threshold: 0.6 Processed Dataset for Experiment 2 Relation between mean consumption and temperature
  18. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 18 Experimental setting Evaluation Metric for Estimated Consumption • MAE use refuel quantity as label (MAEr) • MAE use mean consumption between continuous refuel as label(MAEd) • Use refuel interval to calculate mean consumption Variable name variable 𝑐 Estimated mean consumption, refuel quantity 𝑞 Real refuel quantity 𝑛 Number of test data Artificial consumption pattern • Some customer only contain one season recording • An average consumption is used as their last season consumption pattern Hyperparameter • Epoch:200 • Trial: 3 • Learning rate: 0.001~0.000001(Reduce learning rate when metric has stopped improving.) • Train:Test = 8:2
  19. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 19 Experiment 1 Linear DNN LSTM DeepSets Transformer shortHRR- highcc 36.53 29.67 76.65 29.53 30.30 shortHRR- lowcc 85.19 71.41 103.08 71.76 75.67 longHRR- highcc 44.66 37.18 34.35 35.43 37.55 longHRR- lowcc 49.63 44.99 50.70 46.05 50.98 • High correlation coefficient customer has high estimation precision compared to low correlation coefficient customer - Model can capture general consumption pattern • All best results are Deep Learning model - In kerosene consumption estimation, deep leaning model can capture nonlinear pattern better Estimation result for Different Group(MAEr) Average of 3 trials MAEr: L/each refuel
  20. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 20 Experiment 2-1 Estimation result for Different Model • DeepSets and Transformer have high precision • Transfomer is more complicated than DeepSets - Time consuming • Models with attention has better performance for MAEd - Relation between each day captured by attention • LSTM performs better on longHRR • Interval in longHRR centered between 1 week and 2 weeks – Real world delivery has long range interval(ShortHRR) Dataset Metric Model Linear DNN LSTM DeepSets DeepSets +Attention Transformer longHRR MAEd 6.09 6.01 5.67 5.96 5.59 5.59 shortHRR MAEd 4.63 4.34 6.20 4.30 3.98 3.96 longHRR MAEr 65.24 62.74 57.70 61.76 60.41 58.20 shortHRR MAEr 60.58 54.25 52.69 53.92 52.51 52.74 DeepSets+attention is more suitable for real world use Average of 3 trials MAEr: L/each refuel MAEd: L/each day
  21. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 21 Experiment 2-2 Most of the error (72%) are less than 60L and less than 30% than that refuel • Extremely large error exists • Need to pay attention to those customers when apply in real world use Recordings Mean Refuel MAEr MAEd artificial 2,849 215.10 64.69 4.70 real 2,453 223.46 39.33 3.51 Model performs much better in customer with real past consumption pattern • A better artificial past consumption pattern may help improve the model Error distribution(MAEr) Artificial and real past consumption pattern
  22. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 22 Experiment 3-1 Period: 2022.01.01~ 2022.03.31, 2022.11.01~2022.12.31, Area: Sapporo Estimation Model: Deep Sets - Attention, shortHRR、MAEd IRP Algorithm: tabu search heuristic with rolling horizon procedure is applied Current threshold: Currently used refueling threshold (real world), refuel under this value (0.5) Low threshold : Reduce delivery times、Increase possibility of running out of kerosene (0.3) Pattern threshold: Artificial past consumption pattern use current, real use low Number of Customer: 568 period 1 7 Final delivery order Delivery order Delivery order for sub problem e.g. (𝑫 = 𝟕、𝑾 = 𝟑、𝑺 = 𝟐) Rolling Horizon Delivery times and Working hours • To make sure the influence of estimation model on delivery plan Customer running out of kerosene: • To make sure how many customer will run out of kerosene compared to real recording Delivery plan setting Delivery plan metric
  23. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 23 Experiment 3-2 Delivery times and Working hours • Using current threshold only several customers running out of kerosene GTC: Ground truth consumption based delivery plan EC: Estimated consumption based delivery plan Refuel Threshold Delivery times(times/day) -weather type Working hours(hour/day) -weather type true forecast true forecast Real GTC EC GTC EC GTC EC GTC EC Current(50%) 23 52 64(+12) 52 64(+12) 8.5 9.9(+1.4) 8.5 9.8(+1.3) Low(30%) 31 39(+8) 31 39(+8) 6.2 7.2(+1.0) 6.2 7.3(+1.1) pattern 44 52(+8) 44 52(+8) 7.6 8.8(+1.2) 7.6 8.7(+1.1) Customer running out of kerosene • 10 more customers need to be delivered about 1 hour working Refuel Threshold Real(1month) Estimated each month Nov Dec Jan Feb Mar Current(50%) 4 4 3 10 6 7 Low(30%) 23 52 40 63 58 pattern 20 52 30 36 34
  24. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 24 Experiment 3-2 Delivery times and Working hours • Using current threshold only several customers running out of kerosene GTC: Ground truth consumption based delivery plan EC: Estimated consumption based delivery plan Refuel Threshold Delivery times(times/day) -weather type Working hours(hour/day) -weather type true forecast true forecast Real GTC EC GTC EC GTC EC GTC EC Current(50%) 23 52 64(+12) 52 64(+12) 8.5 9.9(+1.4) 8.5 9.8(+1.3) Low(30%) 31 39(+8) 31 39(+8) 6.2 7.2(+1.0) 6.2 7.3(+1.1) pattern 44 52(+8) 44 52(+8) 7.6 8.8(+1.2) 7.6 8.7(+1.1) Customer running out of kerosene • 10 more customers need to be delivered about 1 hour working Refuel Threshold Real(1month) Estimated each month Nov Dec Jan Feb Mar Current(50%) 4 4 3 10 6 7 Low(30%) 23 52 40 63 58 pattern 20 52 30 36 34 Automate delivery plan creation that used to be made by delivery worker and their experience
  25. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Conclusion 25 Conclusion • Use meteorological and price data to help consumption estimation • Formulated kerosene consumption estimation problem • Proposed Deep Learning based kerosene consumption estimation model • Deep Sets with Attention mechanism is suitable for real world use • Be able to automate delivery plan creation using current threshold without increase customers that running out of kerosene Prospect • Find better way to create artificial past consumption pattern • Create robust model to lower the refuel threshold without increasing customers that running out of kerosene
  26. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. Copyright © 2020 調和系工学研究室 - 北海道大学 大学院情報科学研究院 情報理工学部門 複合情報工学分野 – All rights reserved. 26 Research achievements Domestic conference • 劉 兆邦, 横山 想一郎, 山下 倫央, 川村 秀憲, 多田 満朗, Estimation of Household Kerosene Consumption Using Multi-Layer Perceptron for Determining Kerosene Delivery Plan, 第21回 複雑系マイクロシンポジウム, 8, オンライン(2022) • 劉兆邦, 横山 想一郎, 山下 倫央, 川村 秀憲, 多田 満朗, Estimation of Household Kerosene Consumption Using DeepSets for Efficient Kerosene Delivery Plan, 第22回データ指向構成マ イニングとシミュレーション研究会(SIG-DOCMAS), 5, ハイブリッド開催(オンライン/横 浜)(2022) Exhibition • 令和4年度北楡会・北海道大学情報系交流会,情報科学研究院棟,2022年9月. • 2022北海道ビジネスEXPO,アクセスサッポロ,2022年11月. To be announced • 劉 兆邦,横山 想一郎,山下 倫央,川村 秀憲,多田 満朗,Prediction of Household Kerosene Consumption Using Deep Learning for Kerosene Delivery Planning,社会システム と情報技術研究ウィーク(WSSIT2023),2023
Anúncio