O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

kel 3 pres ke 3.pptx

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 17 Anúncio

Mais Conteúdo rRelacionado

Semelhante a kel 3 pres ke 3.pptx (20)

Anúncio

Mais recentes (20)

kel 3 pres ke 3.pptx

  1. 1. Bakhtiar Zaid Ariadji 23120310 Implementation of Anomaly Detection in Geothermal Power Plant Using Autoencoders
  2. 2. Scope Overview - Topik dan Objek Metode
  3. 3. Overview - Topik dan Objek
  4. 4. Overview - Autoencoder Autoencoder adalah jenis unsupervised neural network yang bertujuan untuk: 1. Menerima input dari dataset. 2. Compress data input ke latent-space representation. 3. Rekonstruksi data dari latent-space representation ke output. auto-encoder (AE) sering digunakan dalam deteksi anomaly pada engineered system. Terbagi menjadi 2 bagian utama: • Encoder: menerima input data dan meng-compress data ke latent-space. • Decoder: mengambil data dari latent-space dan merekonstruksinya menjadi serupa dengan data input. 1. Lu, Chen, et al. "Fault diagnosis of rotary machinery components using a stacked denoising autoencoder- based health state identification." Signal Processing 130 (2017): 377-388. 2. Zhao, Rui, et al. "Deep learning and its applications to machine health monitoring." Mechanical Systems and Signal Processing 115 (2019): 213-237. 3. Ko, Jin Uk, et al. "A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines." Expert Systems with Applications 189 (2022): 116094. 4. Lee, Geunbae, et al. "Unsupervised anomaly detection of the gas turbine operation via convolutional auto-encoder." 2020 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 2020.
  5. 5. Overview - Autoencoder Ko, Jin Uk, et al. "A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines." Expert Systems with Applications 189 (2022): 116094
  6. 6. Overview - Autoencoder Dimensionality reduction Denoising Anomaly Detection Tujuan penggunaan autoencoder adalah untuk melatih sebuah network yang dapat merekonstruksi data input, namun nilai utama dari autoencoder adalah penggunaan latent-space:
  7. 7. Skema Autoencoder Ko, Jin Uk, et al. "A new auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly detection of steam turbines." Expert Systems with Applications 189 (2022): 116094
  8. 8. Dataset Feature Sensor Satuan Nama Feature Turbine Inlet Steam Flow FI-201 ton/h tbnflow Turbine Inlet Pressure PI-205 BarG tbnpres205 Turbine Inlet Temperature TI-203 °C tbntem203 Shaft Bearing Vibration X No. 1 VI-201A μm brg_x1 Shaft Bearing Vibration Y No. 1 VI-201B μm brg_y1 Shaft Bearing Vibration Y No. 2 VI-202B μm brg_y2 Generator Vibration X No. 1 VI-1101A μm gen_x1 Generator Vibration Y No. 1 VI-1101B μm gen_y1 Generator Vibration X No. 2 VI-1102A μm gen_x2 Generator Vibration Y No. 2 VI-1102B μm gen_y2
  9. 9. Preprocessing – Missing Value Treatment Before After
  10. 10. Preprocessing – Outlier Removal Before After
  11. 11. Training Data – Train & Test Split
  12. 12. Training Data – Scaler & Noise Generating
  13. 13. Modelling Data
  14. 14. Model Loss Curve Model Accuracy Curve
  15. 15. Terima Kasih

×