1
1
Integral
Definida
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline2
 Problemas clássicos do Cálculo
...
2
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline3
 Cálculo Integral – Grécia Antiga
 Arquimedes / Eudo...
3
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline5
 Divisão do intervalo [a,b] em n
subintervalos
 Subi...
4
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline7
 A norma de uma partição 𝑃, denotada por
𝑃 , é o maio...
5
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline9
Refinando a Área
n = 40 n = 80
0.5 1.0
0.5
1.0
y = x^2...
6
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline11
 Definição
 Seja f uma função definida no intervalo...
7
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline13
 Funções contínuas
 Algumas funções não contínuas
...
8
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline15
 Se a = b, então 𝑓 𝑥 𝑑𝑥 = 0
𝑏
𝑎
 Se a > b, então 𝑓 ...
9
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline17
 Se f é integrável em [a,b], [a,c] e [c,b],
então
 ...
10
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline19
 Seja f contínua em [a,b], então existe
c[a,b], ta...
11
Prof. Gustavo Costa http://sites.google.com/site/excelenteonline21
 Cálculo – Um Novo Horizonte – H. Anton –
vol. 1
 ...
Próximos SlideShares
Carregando em…5
×

Integral Definida

781 visualizações

Publicada em

Integral Definida e Cálculo de Áreas

Publicada em: Educação
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Integral Definida

  1. 1. 1 1 Integral Definida Prof. Gustavo Costa http://sites.google.com/site/excelenteonline2  Problemas clássicos do Cálculo Cálculo de retas tangentes e áreas  Subdivisão Cálculo Diferencial  Determinação de tangentes e taxas de variação Cálculo Integral  Determinação de áreas e volumes Introdução
  2. 2. 2 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline3  Cálculo Integral – Grécia Antiga  Arquimedes / Eudoxo Método da Exaustão  Esgotar a figura por outras de áreas ou volumes conhecidos  Egípcios  Recalculavam áreas de suas terras por conta da variação das águas do Rio Nilo Um pouco de história Prof. Gustavo Costa http://sites.google.com/site/excelenteonline4  Considere a área da região limitada pelo gráfico de uma função y=f(x), não negativa, num intervalo [a,b], o eixo OX e as retas x = a e x = b. Calculando Áreas
  3. 3. 3 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline5  Divisão do intervalo [a,b] em n subintervalos  Subintervalo: [xi-1, xi]  O retângulo que se estende desde o eixo OX até algum ponto da curva y=f(x) terá por:  Base: comprimento do subintervalo  xi = xi – xi-1  Altura: f(i), onde i  [xi-1, xi]  Área aproximada  S = 𝑓(𝜀𝑖)𝑛 𝑖=1 ∙ ∆𝑥𝑖 Aproximação por retângulos Prof. Gustavo Costa http://sites.google.com/site/excelenteonline6  Generalizar conceito para f(x) < 0  Esses somatórios são chamados Somas de Riemann e existem muitas para cada curva variando comprimento dos subintervalos e o ponto da curva f(x) Soma de Riemann
  4. 4. 4 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline7  A norma de uma partição 𝑃, denotada por 𝑃 , é o maior de todos os comprimentos dos subintervalos de [a,b]. Se 𝑃 é um número pequeno, então os subintervalos de 𝑃 são ditos estreitos.  Uma partição de subintervalos estreitos fornece uma melhor aproximação para a área calculada pela soma de Riemann. Norma de uma Partição Prof. Gustavo Costa http://sites.google.com/site/excelenteonline8  Aumentando o número n de subintervalos Refinando a Área 0.5 1.0 0.5 1.0 y = x^2 n = 10 n = 20 0.5 1.0 0.5 1.0 y = x^2 20 sub-intervalos
  5. 5. 5 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline9 Refinando a Área n = 40 n = 80 0.5 1.0 0.5 1.0 y = x^2 40 sub-intervalos 1.0 1.0 x y y = x^2 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline10  “O conceito de Integral Definida baseia-se na ideia de que, para certas funções, quando a norma das partições de [a,b] tende a zero, os valores das somas de Riemann correspondentes tendem a um valor limite I.” (Thomas)  𝑃 → 0 ou, analogamente, 𝑛 → ∞  S → I  É possível mostrar que, quando a convergência é satisfeita (limite existe), I é o mesmo, independente da partição e da altura f(i). A Integral Definida
  6. 6. 6 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline11  Definição  Seja f uma função definida no intervalo [a,b] e seja 𝑃 uma partição qualquer de [a,b]. A integral definida de f de a até b, denotada por 𝑓 𝑥 𝑑𝑥 𝑏 𝑎 é dada por:  𝑓 𝑥 𝑑𝑥 𝑏 𝑎 = lim 𝑃 →0 𝑓(𝜀𝑖)∆𝑥𝑖 𝑛 𝑖=1  Desde que esse limite exista  Se 𝑓 𝑥 𝑑𝑥 𝑏 𝑎 existe, dizemos que f é integrável em [a,b].  a e b são os limites de integração (inferior e superior, respectivamente) A Integral Definida Prof. Gustavo Costa http://sites.google.com/site/excelenteonline12  Quando cada partição tem n subintervalos iguais onde ∆𝑥 = 𝑏−𝑎 𝑛 , é correto afirmar  𝑓 𝑥 𝑑𝑥 𝑏 𝑎 = lim 𝑛→∞ 𝑓(𝜀𝑖)∆𝑥𝑛 𝑖=1  Desde que esse limite exista  A função f é chamada integrando  Teorema  Uma função contínua em [a,b] é integrável em [a,b].  Ideia da prova: Soma Inferior < I < Soma Superior (teorema do confronto - sanduíche) A Integral Definida
  7. 7. 7 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline13  Funções contínuas  Algumas funções não contínuas  Basta que seja possível aproximar a área por retângulos estreitos  Alguns pontos de descontinuidade  Exemplo de função não integrável  Função característica dos números racionais  𝑓 𝑥 = 1, 𝑠𝑒 𝑥 é 𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 0, 𝑠𝑒 𝑥 é 𝑖𝑟𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 Funções Integráveis Prof. Gustavo Costa http://sites.google.com/site/excelenteonline14  Calcular, baseado em Somas de Riemann, os valores (aproximados) das integrais abaixo.  2𝑥𝑑𝑥 4 0  𝑥2 𝑑𝑥 1 0 Exemplos
  8. 8. 8 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline15  Se a = b, então 𝑓 𝑥 𝑑𝑥 = 0 𝑏 𝑎  Se a > b, então 𝑓 𝑥 𝑑𝑥 = 𝑏 𝑎 − 𝑓 𝑥 𝑑𝑥 𝑎 𝑏  Se f é uma função contínua e não negativa em [a,b], então  𝑓 𝑥 𝑑𝑥 = 𝑏 𝑎 Área sob o gráfico de f até o eixo OX de a até b. Consequências Imediatas Prof. Gustavo Costa http://sites.google.com/site/excelenteonline16  Supondo que f e g sejam funções integráveis  𝑐𝑓 𝑥 𝑑𝑥 = 𝑐 𝑓 𝑥 𝑑𝑥 𝑏 𝑎 𝑏 𝑎  (𝑓 𝑥 + 𝑔 𝑥 )𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 + 𝑔 𝑥 𝑑𝑥 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎  f(x)  g(x) x  [a,b]  𝑓 𝑥 𝑑𝑥 ≤ 𝑔 𝑥 𝑑𝑥 𝑏 𝑎 𝑏 𝑎 Propriedades
  9. 9. 9 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline17  Se f é integrável em [a,b], [a,c] e [c,b], então  𝑓 𝑥 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 + 𝑓 𝑥 𝑑𝑥 𝑏 𝑐 𝑐 𝑎 𝑏 𝑎  Repartir a área  Se M e m são respectivamente os valores máximo e mínimo de f em [a,b] (mf(x)M), então  𝑚(𝑏 − 𝑎) ≤ 𝑓 𝑥 𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎) 𝑏 𝑎  Preparação para Valor Médio Propriedades Prof. Gustavo Costa http://sites.google.com/site/excelenteonline18  Retomando: se M e m são respectivamente os valores máximo e mínimo de f em [a,b] (mf(x)M), então 𝑚(𝑏 − 𝑎) ≤ 𝑓 𝑥 𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎) 𝑏 𝑎  Entre m e M, então deve haver um ‘meio termo’ que, multiplicado por (b – a) seja igual à integral  Área sob a curva comparada à área de um retângulo  (b – a) é a base  M e m são alturas Comparação de Áreas
  10. 10. 10 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline19  Seja f contínua em [a,b], então existe c[a,b], tal que 𝑓 𝑥 𝑑𝑥 = 𝑓(𝑐) ∙ (𝑏 − 𝑎) 𝑏 𝑎 Teorema do Valor Médio  O Teorema diz que a área sob a curva é igual à área de um retângulo de base em [a,b] e altura em algum ponto de f(x) em [a,b]  Observações:  f(c) é chamado de valor médio de f em [a,b]  c pode não ser único Prof. Gustavo Costa http://sites.google.com/site/excelenteonline20  Calcule o valor médio das funções abaixo nos intervalos determinados f(x) = 2x, em [0,4] f(x) = 1 – x, em [0,1] Exemplos
  11. 11. 11 Prof. Gustavo Costa http://sites.google.com/site/excelenteonline21  Cálculo – Um Novo Horizonte – H. Anton – vol. 1  Cálculo A – Diva Fleming  Cálculo com Geo. Analítica – Swokowski – vol. 1  Cálculo – George B. Thomas – vol. 1  História da Matemática – C. Boyer  Wikipedia (imagens) Referências

×