SlideShare una empresa de Scribd logo
1 de 23
Ciclos de Potencia de Vapor:
Generación de Potencia
Ciclo Rankine
Ciclo Rankine
 El Ciclo Rankine es un ciclo de
potencia termodinámico que tiene
como objetivo la conversión de calor
en trabajo, y que tiene lugar en una
Central Térmica de Vapor. 
Generación de Potencia
Existen diferentes formas de
enunciar la Segunda Ley de la
Termodinámica, pero en su versión
más simple, establece que:
2da Ley de la TERMODINÁMICA
“El calor jamás
fluye
espontáneament
e de un objeto
frío a un objeto
caliente”.
Ejemplo de Procesos Irreversibles, es decir procesos que ocurren
naturalmente en una sola dirección.
Generación de Potencia
2da Ley de la TERMODINÁMICA
“Es imposible que un dispositivo
que opera en un ciclo reciba
calor de un solo depósito y
produzca una cantidad neta de
trabajo”
Esto Implica:
“Ninguna máquina térmica (reversible,
ideal o real) puede tener una eficiencia
térmica de 100%”.
ENUNCIADO DE KELVIN-
PLANCK DE LA SEGUNDA
LEY DE LA TERMODINÁMICA
“Para que una central eléctrica opere, el
fluido de trabajo debe intercambiar calor
con el ambiente”.
Generación de Potencia
Proceso del Ciclo RankineEl Ciclo Rankine es una modificación del
ciclo Carnot, esto con el fin de mejorar el
sistema térmico corrigiendo los problemas
que este produce, entre estas
Modificaciones están:
•Compresión Isentrópica en una
Bomba.
•Adición de calor a presión
constante en una Caldera.
•Expansión Isentrópica en una
Turbina.
•Rechazo de Calor a presión
constante en un Condensador.
Generación de Potencia
1. Cada componente del Ciclo se analiza como un volumen de control
en estado estacionario.
2. Todos los Procesos que realiza el Fluido de Trabajo son
internamente reversibles.
3. La Turbina y la Bomba funcionan Adiabaticamente.
Consideraciones e
Hipótesis.
Proceso Cíclico en una Máquina de
Vapor
Generación de Potencia
Diagrama T-S: Ciclo Rankine Ideal
. Los estados principales del ciclo quedan definidos por los números del 1 al 4 en el diagrama T-S.. Los estados principales del ciclo quedan definidos por los números del 1 al 4 en el diagrama T-S.
El Diagrama T-s de un Ciclo Rankine Ideal está
formado por cuatro procesos: 2 Isentrópicos, 2
Isobáricos, Adiabático.
Generación de Potencia
ESTADOS
1: Líquido Saturado.
2: Líquido
Comprimido.
3: Vapor
Sobrecalentado.
4: Vapor Saturado o
Mezcla de Alta
Calidad. Diagrama T-v.
Diagrama T-V: Ciclo Rankine Ideal
1
2 3
4
Generación de Potencia
[1-2]
Proceso de
Compresión:
[Bomba]
Generación de Potencia
Proceso del Ciclo Rankine Ideal
[2-3]
Proceso de Adición de
Calor a Pcte
[Caldera]
[3-4]
Proceso de Expansión
Isentrópica [Turbina]
[4-1]
Proceso de Rechazo de
Calor a Pcte [Condensador]
Irreversibilidades del Ciclo Rankine
Generación de Potencia
•Fricción del Fluido
•Pérdida de Calor
Incrementar la
Temperatura
Promedio en la
Caldera
¿Cómo incrementar la Eficiencia?
Disminuir la
Temperatura
Promedio en el
Condensador
Formas de incrementar la Eficiencia
1. Reducción de la
presión del
condensador:
Reduce
automáticamente la
temperatura del
vapor.
Reduce la
temperatura a la
cual el calor se
rechaza. Generación de Potencia
2. Incremento de la
presión de la caldera:
Elevando la temperatura
de ebullición.
Esto, a su vez,
incrementa la temperatura
promedio a la que se
añade calor al vapor.
Formas de incrementar la Eficiencia
Generación de Potencia
3. Sobrecalentamiento
del vapor a altas
temperaturas:
Es posible elevar la
temperatura promedio
a la que se añade calor
al vapor sin aumentar
la presión de la
caldera.
logrando un incremento
en el trabajo de la
turbina.
Formas de incrementar la Eficiencia
Generación de Potencia
Ciclo Rankine con Recalentamiento:
Consideraciones generales
El aumento de la presión de la
caldera origina la disminución
de la calidad del vapor de agua
que sale de la turbina.
La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.
La temperatura promedio
durante el proceso de
recalentamiento puede
incrementarse si se aumenta el
número de etapas de expansión
y recalentamiento.
Generación de Potencia
Ciclo Rankine con Recalentamiento.
PRIMERA ETAPA (TURBINA DE
ALTA PRESION)
En ésta el vapor se expande
isentropicamente hasta una
presión intermedia y regresa a la
caldera donde se recalienta a
presión constante.
SEGUNDA ETAPA
(TURBINA DE BAJA PRESION)
El vapor se expande
isentropicamente hasta la presión
del condensador para luego dar
inicio nuevamente al ciclo.
La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.
Generación de Potencia
¿Cómo Aumentar la Eficiencia?
Aumentando la presión
de operación en la
caldera.
Pero: Origina un mayor 
grado de humedad. 
Sin Embargo: Puede
solucionarse haciendo uso
de recalentamiento.
Generación de Potencia
El Ciclo Rankine
Regenerativo consiste,
en extraer parte del
vapor expandido en la
turbina y utilizarlo para
suministrar calor al
fluido de trabajo,
aumentado su
temperatura antes de
pasar por la fuente
principal de calor
(Caldera) a una presión
Ciclo Rankine Regenerativo
Generación de Potencia
Ciclo Rankine con calentadores abiertos
En el caso ideal, se ajustan los flujos másicos
de las corrientes que entran al calentador, de
manera que el resultado de la mezcla a la
salida del calentador sea líquido saturado a una
presión determinada. Las presiones de entrada
deben ser iguales, para que no se produzcan
retornos indeseables en las líneas de tuberías.
Ciclo Rankine con Recalentador Abierto
Características de Operación
Ideal:
Las presiones de las
corrientes que salen del y
entran al calentador son
idénticas, P2=P3=P6
El agua de alimentación
abandona al calentador como
un líquido saturado a la presión
de extracción, T3=Tsat@P6
Ventajas:
Tienen menor costo
Vapor de extracción
P6 = P2 = P3
Ciclo Rankine Regenerativo:
Calentadores de agua de alimentación abiertos
Generación de Potencia
Ciclo Rankine con Recalentador Cerrado
Ciclo Rankine con calentadores cerrado
En un calentador cerrado no se mezclan las
corrientes que entran. El aguade alimentación
circula por el interior de los tubos que pasan por
el calentador y el vapor extraído de la turbina
para precalentar el agua, se condensa sobre los
tubos.
Generación de Potencia
 A continuación en la figura 1.12, se presentan dos arreglos de
calentadores cerrados de agua de alimentación:
a) Bombeo directo del vapor condesado ala línea del agua de
alimentación de la caldera.
b) Atrapa el vapor condensado y lo lleva a una zona de menor presión
de la línea de agua de alimentación.
Ciclo Rankine con Recalentador Cerrado
Generación de Potencia
GRACIAS!
La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.
https://www.facebook.com/german
olanno
https://www.twitter.com/GermanOl
ano
http://www.linkedin.com/in/germanolan
o
germanolano20@gmail.
com
Germán Olano

Más contenido relacionado

La actualidad más candente

Calculo de torres de enfriamiento
Calculo de torres de enfriamientoCalculo de torres de enfriamiento
Calculo de torres de enfriamiento
Doko34
 
3. Balance De EnergíA
3.  Balance De EnergíA3.  Balance De EnergíA
3. Balance De EnergíA
Heinz Lopez
 
Ciclo Rankine con Recalentamiento
Ciclo Rankine con RecalentamientoCiclo Rankine con Recalentamiento
Ciclo Rankine con Recalentamiento
Itamar Bernal
 
Coeficientes de actividad
Coeficientes de actividadCoeficientes de actividad
Coeficientes de actividad
cruizgaray
 

La actualidad más candente (20)

Ciclos de potencia de vapor y combinados-termodinamica
Ciclos de potencia de vapor y  combinados-termodinamicaCiclos de potencia de vapor y  combinados-termodinamica
Ciclos de potencia de vapor y combinados-termodinamica
 
Aletas de transferencia de calor
Aletas de transferencia de calorAletas de transferencia de calor
Aletas de transferencia de calor
 
Ciclo rankine generacion geotermica y oceanica
Ciclo rankine generacion geotermica y oceanica  Ciclo rankine generacion geotermica y oceanica
Ciclo rankine generacion geotermica y oceanica
 
Vapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoVapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentado
 
Turbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalTurbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion final
 
10.0 ciclo rankine
10.0 ciclo rankine10.0 ciclo rankine
10.0 ciclo rankine
 
CONDENSADORES DE VAPOR
CONDENSADORES DE VAPORCONDENSADORES DE VAPOR
CONDENSADORES DE VAPOR
 
Calculo de torres de enfriamiento
Calculo de torres de enfriamientoCalculo de torres de enfriamiento
Calculo de torres de enfriamiento
 
3. Balance De EnergíA
3.  Balance De EnergíA3.  Balance De EnergíA
3. Balance De EnergíA
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calor
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vapor
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Práctica V Curvas Características de una bomba
Práctica V Curvas Características de una bombaPráctica V Curvas Características de una bomba
Práctica V Curvas Características de una bomba
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Ciclo de rankine copia
Ciclo de rankine   copiaCiclo de rankine   copia
Ciclo de rankine copia
 
Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor Deducciones y demostraciones - Transferencia de Calor
Deducciones y demostraciones - Transferencia de Calor
 
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
 
Conduccion unidimensional estado estacionario
Conduccion unidimensional estado estacionarioConduccion unidimensional estado estacionario
Conduccion unidimensional estado estacionario
 
Ciclo Rankine con Recalentamiento
Ciclo Rankine con RecalentamientoCiclo Rankine con Recalentamiento
Ciclo Rankine con Recalentamiento
 
Coeficientes de actividad
Coeficientes de actividadCoeficientes de actividad
Coeficientes de actividad
 

Destacado (8)

Ciclo Rankine Regenerativo
Ciclo Rankine RegenerativoCiclo Rankine Regenerativo
Ciclo Rankine Regenerativo
 
Ciclo rankine regenerativo
Ciclo rankine regenerativoCiclo rankine regenerativo
Ciclo rankine regenerativo
 
GuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De VaporGuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De Vapor
 
Termodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankineTermodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankine
 
PresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De VaporPresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De Vapor
 
Problema Resuelto- Ciclo Rankine Simple y con Sobrecalentamiento
Problema Resuelto- Ciclo Rankine Simple y con SobrecalentamientoProblema Resuelto- Ciclo Rankine Simple y con Sobrecalentamiento
Problema Resuelto- Ciclo Rankine Simple y con Sobrecalentamiento
 
Ciclos termodinamicos-recopilación
Ciclos termodinamicos-recopilaciónCiclos termodinamicos-recopilación
Ciclos termodinamicos-recopilación
 
CICLOS TERMODINÁMICOS
CICLOS TERMODINÁMICOSCICLOS TERMODINÁMICOS
CICLOS TERMODINÁMICOS
 

Similar a Ciclo Rankine

Maquinas Termicas
Maquinas TermicasMaquinas Termicas
Maquinas Termicas
toni
 
Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3
JL Rms
 
Ciclo rankine termoii-2013
Ciclo rankine termoii-2013Ciclo rankine termoii-2013
Ciclo rankine termoii-2013
josedavid04
 

Similar a Ciclo Rankine (20)

Ciclos de potencia de vapor y combinados
Ciclos de potencia de vapor y  combinadosCiclos de potencia de vapor y  combinados
Ciclos de potencia de vapor y combinados
 
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
 
Actividad 1
Actividad 1Actividad 1
Actividad 1
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vapor
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1
 
Ciclo rankine
Ciclo rankineCiclo rankine
Ciclo rankine
 
Eter2 u2 a1_malc
Eter2 u2 a1_malcEter2 u2 a1_malc
Eter2 u2 a1_malc
 
Maquinas Termicas
Maquinas TermicasMaquinas Termicas
Maquinas Termicas
 
Ciclo de potencia PPT 7.pptx
Ciclo de potencia PPT 7.pptxCiclo de potencia PPT 7.pptx
Ciclo de potencia PPT 7.pptx
 
Maquinas de fluidos compresibles
Maquinas de fluidos compresiblesMaquinas de fluidos compresibles
Maquinas de fluidos compresibles
 
Unidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continentalUnidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continental
 
Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3
 
Tema 3
Tema 3 Tema 3
Tema 3
 
Tema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.pptTema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.ppt
 
Ciclo rankine termoii-2013
Ciclo rankine termoii-2013Ciclo rankine termoii-2013
Ciclo rankine termoii-2013
 
Actividad 1, unidad 2
Actividad 1, unidad 2Actividad 1, unidad 2
Actividad 1, unidad 2
 
Eter2 u2 a1_ardc
Eter2 u2 a1_ardcEter2 u2 a1_ardc
Eter2 u2 a1_ardc
 
Ciclos a vapor
Ciclos a vaporCiclos a vapor
Ciclos a vapor
 
Ciclo de refrigeracion por compresion de vapor
Ciclo de refrigeracion por compresion de vaporCiclo de refrigeracion por compresion de vapor
Ciclo de refrigeracion por compresion de vapor
 
Introduccion a Generacion De Potencia
Introduccion a Generacion De PotenciaIntroduccion a Generacion De Potencia
Introduccion a Generacion De Potencia
 

Más de Germán Olano

Más de Germán Olano (12)

Campaña de Difusión ARCANCIEL
Campaña de Difusión ARCANCIELCampaña de Difusión ARCANCIEL
Campaña de Difusión ARCANCIEL
 
Pecha Kucha - Consumidores Emergentes
Pecha Kucha - Consumidores EmergentesPecha Kucha - Consumidores Emergentes
Pecha Kucha - Consumidores Emergentes
 
Sistema Endocrino
Sistema EndocrinoSistema Endocrino
Sistema Endocrino
 
Capacidad de Planta
Capacidad de PlantaCapacidad de Planta
Capacidad de Planta
 
Tabaquismo
TabaquismoTabaquismo
Tabaquismo
 
Puente Octavio Frías de Oliveira.
Puente Octavio Frías de Oliveira.Puente Octavio Frías de Oliveira.
Puente Octavio Frías de Oliveira.
 
Usted Puede Sanar su Vida - Louise Hay
Usted Puede Sanar su Vida - Louise HayUsted Puede Sanar su Vida - Louise Hay
Usted Puede Sanar su Vida - Louise Hay
 
Calidad de Vida
Calidad de VidaCalidad de Vida
Calidad de Vida
 
DROGAS
DROGASDROGAS
DROGAS
 
Investigación Cualitativa vs Investigación Cuantitativa
Investigación Cualitativa vs Investigación CuantitativaInvestigación Cualitativa vs Investigación Cuantitativa
Investigación Cualitativa vs Investigación Cuantitativa
 
Importancia de las Redes Sociales
Importancia de las Redes SocialesImportancia de las Redes Sociales
Importancia de las Redes Sociales
 
Primeros Auxilios
Primeros AuxiliosPrimeros Auxilios
Primeros Auxilios
 

Último

6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
amelia poma
 

Último (20)

Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
La Evaluacion Formativa SM6 Ccesa007.pdf
La Evaluacion Formativa SM6  Ccesa007.pdfLa Evaluacion Formativa SM6  Ccesa007.pdf
La Evaluacion Formativa SM6 Ccesa007.pdf
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
PP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomasPP_Comunicacion en Salud: Objetivación de signos y síntomas
PP_Comunicacion en Salud: Objetivación de signos y síntomas
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptxPLAN LECTOR 2024  integrado nivel inicial-miercoles 10.pptx
PLAN LECTOR 2024 integrado nivel inicial-miercoles 10.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
Factores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdfFactores que intervienen en la Administración por Valores.pdf
Factores que intervienen en la Administración por Valores.pdf
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACIONRESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
RESOLUCIÓN VICEMINISTERIAL 00048 - 2024 EVALUACION
 

Ciclo Rankine

  • 1. Ciclos de Potencia de Vapor: Generación de Potencia Ciclo Rankine
  • 2. Ciclo Rankine  El Ciclo Rankine es un ciclo de potencia termodinámico que tiene como objetivo la conversión de calor en trabajo, y que tiene lugar en una Central Térmica de Vapor.  Generación de Potencia
  • 3. Existen diferentes formas de enunciar la Segunda Ley de la Termodinámica, pero en su versión más simple, establece que: 2da Ley de la TERMODINÁMICA “El calor jamás fluye espontáneament e de un objeto frío a un objeto caliente”. Ejemplo de Procesos Irreversibles, es decir procesos que ocurren naturalmente en una sola dirección. Generación de Potencia
  • 4. 2da Ley de la TERMODINÁMICA “Es imposible que un dispositivo que opera en un ciclo reciba calor de un solo depósito y produzca una cantidad neta de trabajo” Esto Implica: “Ninguna máquina térmica (reversible, ideal o real) puede tener una eficiencia térmica de 100%”. ENUNCIADO DE KELVIN- PLANCK DE LA SEGUNDA LEY DE LA TERMODINÁMICA “Para que una central eléctrica opere, el fluido de trabajo debe intercambiar calor con el ambiente”. Generación de Potencia
  • 5. Proceso del Ciclo RankineEl Ciclo Rankine es una modificación del ciclo Carnot, esto con el fin de mejorar el sistema térmico corrigiendo los problemas que este produce, entre estas Modificaciones están: •Compresión Isentrópica en una Bomba. •Adición de calor a presión constante en una Caldera. •Expansión Isentrópica en una Turbina. •Rechazo de Calor a presión constante en un Condensador. Generación de Potencia 1. Cada componente del Ciclo se analiza como un volumen de control en estado estacionario. 2. Todos los Procesos que realiza el Fluido de Trabajo son internamente reversibles. 3. La Turbina y la Bomba funcionan Adiabaticamente. Consideraciones e Hipótesis.
  • 6. Proceso Cíclico en una Máquina de Vapor Generación de Potencia
  • 7. Diagrama T-S: Ciclo Rankine Ideal . Los estados principales del ciclo quedan definidos por los números del 1 al 4 en el diagrama T-S.. Los estados principales del ciclo quedan definidos por los números del 1 al 4 en el diagrama T-S. El Diagrama T-s de un Ciclo Rankine Ideal está formado por cuatro procesos: 2 Isentrópicos, 2 Isobáricos, Adiabático. Generación de Potencia
  • 8. ESTADOS 1: Líquido Saturado. 2: Líquido Comprimido. 3: Vapor Sobrecalentado. 4: Vapor Saturado o Mezcla de Alta Calidad. Diagrama T-v. Diagrama T-V: Ciclo Rankine Ideal 1 2 3 4 Generación de Potencia
  • 9. [1-2] Proceso de Compresión: [Bomba] Generación de Potencia Proceso del Ciclo Rankine Ideal [2-3] Proceso de Adición de Calor a Pcte [Caldera] [3-4] Proceso de Expansión Isentrópica [Turbina] [4-1] Proceso de Rechazo de Calor a Pcte [Condensador]
  • 10. Irreversibilidades del Ciclo Rankine Generación de Potencia •Fricción del Fluido •Pérdida de Calor
  • 11. Incrementar la Temperatura Promedio en la Caldera ¿Cómo incrementar la Eficiencia? Disminuir la Temperatura Promedio en el Condensador
  • 12. Formas de incrementar la Eficiencia 1. Reducción de la presión del condensador: Reduce automáticamente la temperatura del vapor. Reduce la temperatura a la cual el calor se rechaza. Generación de Potencia
  • 13. 2. Incremento de la presión de la caldera: Elevando la temperatura de ebullición. Esto, a su vez, incrementa la temperatura promedio a la que se añade calor al vapor. Formas de incrementar la Eficiencia Generación de Potencia
  • 14. 3. Sobrecalentamiento del vapor a altas temperaturas: Es posible elevar la temperatura promedio a la que se añade calor al vapor sin aumentar la presión de la caldera. logrando un incremento en el trabajo de la turbina. Formas de incrementar la Eficiencia Generación de Potencia
  • 15. Ciclo Rankine con Recalentamiento: Consideraciones generales El aumento de la presión de la caldera origina la disminución de la calidad del vapor de agua que sale de la turbina. La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina.La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina. La temperatura promedio durante el proceso de recalentamiento puede incrementarse si se aumenta el número de etapas de expansión y recalentamiento. Generación de Potencia
  • 16. Ciclo Rankine con Recalentamiento. PRIMERA ETAPA (TURBINA DE ALTA PRESION) En ésta el vapor se expande isentropicamente hasta una presión intermedia y regresa a la caldera donde se recalienta a presión constante. SEGUNDA ETAPA (TURBINA DE BAJA PRESION) El vapor se expande isentropicamente hasta la presión del condensador para luego dar inicio nuevamente al ciclo. La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina. Generación de Potencia
  • 17. ¿Cómo Aumentar la Eficiencia? Aumentando la presión de operación en la caldera. Pero: Origina un mayor  grado de humedad.  Sin Embargo: Puede solucionarse haciendo uso de recalentamiento. Generación de Potencia
  • 18. El Ciclo Rankine Regenerativo consiste, en extraer parte del vapor expandido en la turbina y utilizarlo para suministrar calor al fluido de trabajo, aumentado su temperatura antes de pasar por la fuente principal de calor (Caldera) a una presión Ciclo Rankine Regenerativo Generación de Potencia
  • 19. Ciclo Rankine con calentadores abiertos En el caso ideal, se ajustan los flujos másicos de las corrientes que entran al calentador, de manera que el resultado de la mezcla a la salida del calentador sea líquido saturado a una presión determinada. Las presiones de entrada deben ser iguales, para que no se produzcan retornos indeseables en las líneas de tuberías. Ciclo Rankine con Recalentador Abierto
  • 20. Características de Operación Ideal: Las presiones de las corrientes que salen del y entran al calentador son idénticas, P2=P3=P6 El agua de alimentación abandona al calentador como un líquido saturado a la presión de extracción, T3=Tsat@P6 Ventajas: Tienen menor costo Vapor de extracción P6 = P2 = P3 Ciclo Rankine Regenerativo: Calentadores de agua de alimentación abiertos Generación de Potencia
  • 21. Ciclo Rankine con Recalentador Cerrado Ciclo Rankine con calentadores cerrado En un calentador cerrado no se mezclan las corrientes que entran. El aguade alimentación circula por el interior de los tubos que pasan por el calentador y el vapor extraído de la turbina para precalentar el agua, se condensa sobre los tubos. Generación de Potencia
  • 22.  A continuación en la figura 1.12, se presentan dos arreglos de calentadores cerrados de agua de alimentación: a) Bombeo directo del vapor condesado ala línea del agua de alimentación de la caldera. b) Atrapa el vapor condensado y lo lleva a una zona de menor presión de la línea de agua de alimentación. Ciclo Rankine con Recalentador Cerrado Generación de Potencia
  • 23. GRACIAS! La temperatura tras el recalentamiento, es generalmente igual o algo inferior a la temperatura de entrada en la primera etapa de la turbina. https://www.facebook.com/german olanno https://www.twitter.com/GermanOl ano http://www.linkedin.com/in/germanolan o germanolano20@gmail. com Germán Olano