1 vectores en r3

ERICK CONDE
ERICK CONDEINGENIERO, JEFATURA SUBTRANSMISIÓN em CNEL E.P UNIDAD DE NEGOCIOS GUAYAS - LOS RÍOS
MOISES VILLENA                                                    Vectores en R3




      1
          1.1     Definición
          1.2     Enfoque geométrico
          1.3     Igualdad
          1.4     Operaciones
          1.5     Aplicaciones

                 Objetivos.
                 Se persigue que el estudiante:
                    •   Represente geométricamente un vector de R 3
                    •   Determine magnitud y dirección de un
                        vector.
                    •   Sume vectores, multiplique por un escalar a
                        un vector, obtenga el productor escalar y el
                        producto vectorial entre vectores
                    •   Obtenga el área de un paralelogramo
                        sustentados por dos vectores.
                    •   Obtenga el volumen del paralelepípedo
                        sustentado por tres vectores.




                                                                               1
MOISES VILLENA                                                                                                 Vectores en R3


       Tomando como referencia la teoría de vectores en el plano, se obtienen
definiciones y propiedades de los vectores en el espacio.

1.1 DEFINICIÓN

                 Un vector de R 3 es una terna ordenada de
                 números reales. Denotada de la siguiente manera:
                                                 →
                                                 v = ( x, y , z )


1.2 ENFOQUE GEOMÉTRICO

                                                                3
     Geométricamente a un vector de R                                 se lo representa en el Espacio
como un segmento de recta dirigido.

       Suponga que se tienen los puntos P ( x1 , y1 , z1 ) y P2 ( x2 , y 2 , z 2 ) . Si
                                         1

trazamos un segmento de recta dirigido desde P1                                                hacia P2 tenemos una
                             →    ⎯
                                  ⎯→
representación del vector v = P P2 = ( x2 − x1 , y 2 − y1 , z1 − z 2 )
                               1
                                         z



                                                                                 P2 = ( x2 , y 2 , z 2 )

                                                               →
                                                               v




                                                      P1 = ( x1 , y1 , z1 )

                                                                                                    y




                            x

      Este vector puede tener muchas otras representaciones equivalentes en
el espacio. Una representación equivalente útil es aquella que se realiza
ubicando al vector con el origen como punto de partida.
                                             z




                                                                P ( x, y , z )

                                                  →
                                                  v



                                                                                                           y




                             x

                                                                                                                            2
MOISES VILLENA                                                               Vectores en R3


       1.2.1 Magnitud o norma

                         →
                  Sea v = ( x, y, z ) . La magnitud o norma de v
                                                                                      →



                                       →
                  denotada como v , se define como:

                                                →
                                                v = x2 + y2 + z 2

       Note que la norma sería la longitud del segmento de recta que define el
vector. Es decir, sería la distancia entre los puntos que lo definen.

             →
       Para v = ( x2 − x1 , y 2 − y1 , z 2 − z1 ) sería:

                              →
                              v =     (x2 − x1 )2 + ( y2 − y1 )2 + (z 2 − z1 )2

       1.2.2 Dirección

                                        →
                  La dirección de v = ( x, y, z ) está definida por la
                  medida de los ángulo que forma la línea de acción
                  del segmento de recta con los ejes x , y , z

                                                z




                                                        →

                                                    γ   v


                                            α
                                                        β

                                                                                  y




                              x


       Los ángulos α , β y γ son llamados Ángulos Directores.


                                                                                          3
MOISES VILLENA                                                               Vectores en R3


       Observe que:

                                              x                x
                               Cosα =         →
                                                  =
                                              v           x2 + y2 + z2


                                              y                y
                               Cosβ =         →
                                                  =
                                              v           x + y2 + z2
                                                           2




                                              y                y
                               Cosγ =         →
                                                  =
                                              v           x2 + y2 + z2


                     Ejercicio.
                     Demostrar que cos
                                         2
                                             α + cos 2 β + cos 2 γ = 1

       1.2.3 Sentido

                                    →
                 El sentido de v lo define la flecha dibujada sobre
                 el segmento de recta.
                                                      3
1.3 IGUALDAD DE VECTORES DE R

                                         →                           →
                   Dos vectores v1 = (x1 , y1 , z1 ) y v2 = (x2 , y 2 , z 2 ) son
                 iguales si y sólo si x1 = x2 , y1 = y2 y z1 = z 2
1.4 OPERACIONES

       1.4.1 Suma

                           →        →
                 Sean v1 y v2 dos vectores de R tales que
                                               3

                 →                                    →
                 v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) entonces la
                               →                  →                      →   →
                 suma de v1 con v2 , denotada como v1 + v2 , se
                 define como:
                                   →          →
                                   v1 + v2 = ( x1 + x2 , y1 + y2 , z1 + z 2 )



                                                                                          4
MOISES VILLENA                                                                                                     Vectores en R3


                 1.4.1.1 Propiedades

                              →       →           →
                   Sean v1 , v2 y v3 vectores de R 3 , entonces:
                        →       →         →           →
                   1.   v1 + v2 = v2 + v1                   la suma es conmutativa

                        v1 + ⎛ v2 + v3 ⎞ = ⎛ v1 + v2 ⎞ + v3
                        →      →    →        →    →      →
                   2.        ⎜         ⎟ ⎜           ⎟                                              la suma es asociativa
                             ⎝         ⎠ ⎝           ⎠
                          →                       →                                         →         →    →
                   3.   ∃ 0 ∈ R , ∀ v ∈ R tal que v + 0 = v ,
                                      3                           3

                                  →
                        Donde 0 = (0,0,0 ) es llamado Vector Neutro

                              ∃⎛ − v ⎞ ∈ R 3 tal que v + ⎛ − v ⎞ = 0
                            →      →                 →       →     →
                   4.   ∀v∈R , ⎜ ⎟    3
                                                         ⎜     ⎟
                               ⎝ ⎠                       ⎝     ⎠
                                      ⎛       →
                                                  ⎞
                            Donde ⎜ − v ⎟ es llamado Vector Inverso Aditivo de v
                                                                                                                   →


                                      ⎝           ⎠


Geométricamente:                                                      z
                                                                              →
                                                                                  2
                                                                              v




                                                  →
                                                  v1 = ( x1 , y1 , z1 )
                                                                          →
                                                                          1   +
                                                                          v




                                                                                  →
                                                                                  v2 = (x2 , y 2 , z 2 )
                                                                                                               y




                                          x


                            →             →
      Los vectores v1 y v2 sustentan un paralelogramo, el vector de la
diagonal mayor es el Vector Suma y el vector de la diagonal menor es el
Vector Diferencia.


       1.4.2 Multiplicación por escalar

                                                      →
                   Sea α ∈ R y v = ( x, y, z ) un vector de R 3
                   entonces:
                                                             →
                                                      α v = (αx, αy, αz )

                                                                                                                                5
MOISES VILLENA                                                                            Vectores en R3


           1.4.2.1 Propiedades

                                             ⎡α ⎛ v + v ⎞ = α v + α v ⎤
                                               →  →   →→       →       →

                   1. ∀α ∈ R, ∀ v1 , v2 ∈ R ⎢ ⎜ 1 2 ⎟
                                                                 3
                                                                        2⎥
                                             ⎣ ⎝         ⎠               ⎦
                                                                1


                                           3⎡                         ⎤
                                     →                 →     →      →

                   2. ∀α , β ∈ R, ∀ v ∈ R ⎢(α + β ) v = α v + β v ⎥
                                            ⎣                         ⎦
                      ∀α , β ∈ R, ∀ v ∈ R 3 ⎡α ⎛ β v ⎞ = (αβ ) v ⎤
                                     →              →          →

                   3.                       ⎢ ⎜ ⎟
                                            ⎣ ⎝ ⎠                 ⎥
                                                                  ⎦
                                                         →
       Cualquier vector de                    R3 ,       v = ( x, y, z ) , puede ser expresado en
                                                     →                           →
combinación lineal de los vectores i = (1,0,0) , j = (0,1,0) y k = (0,0,1)
                                                                     →




                                  →
                                  v = ( x, y, z ) = x(1,0,0 ) + y (0,1,0 ) + z (0,0,1)
                                                   →         →       →   →
                                                   v = x i + y j+ z k

       1.4. 3. Producto Escalar. Producto Punto o Producto Interno

                          →                                      →
                   Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores
                                                                         →       →
                   de R 3 . El Producto escalar de v1 con v2 denotado
                          →           →
                   como v1 • v2 se define como:
                                              →      →
                                              v1 • v2 = x1 x2 + y1y2 + z1 z 2

                     Ejemplo
                          →                        →
                     Si v1 = (3,1,−2) y v 2 = (− 1,4,0) entonces
                                          →   →
                                          v1 • v 2 = (3)(− 1) + (1)(4) + (− 2)(0) = −3 + 4 + 0 = 1




                 1.4.3.1 Propiedades

                          →           →
                   Sean v1 y v2 vectores de R 3 . Entonces:
                      →       →           →    →
                   1. v1 • v2 = v2 • v1


                                                                                                       6
MOISES VILLENA                                                                                     Vectores en R3



                 2. v1 • ⎛ v2 + v3 ⎞ = v1 • v2 + v1 • v2
                      →       →        →        →          →        →    →
                         ⎜         ⎟
                          ⎝                ⎠
                    ⎛ α v ⎞ • ⎛ β v ⎞ = αβ⎛ v • v ⎞
                          →       →         → →
                 3. ⎜ 1 ⎟ ⎜ 2 ⎟           ⎜ 1 2⎟
                    ⎝     ⎠ ⎝       ⎠     ⎝       ⎠

          →
       Si v = ( x, y, z ) entonces:
                                  →    →
                                  v • v = ( x, y , z ) • ( x, y , z ) = x 2 + y 2 + z 2 .
                      →   →        → 2                              →            →   →
       Por lo tanto v • v = v              o también v =                         v• v




       1.4. 4. Producto Vectorial. Producto Cruz

                              →                                     →
                 Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores
                                                                                               →       →
                 de R 3 . El Producto Vectorial de                                            v1 con v2
                                               →           →
                 denotado como v1 × v2 se define como:
                  →       →
                  v1× v2 = ( y1 z 2 − z 1 y2 ,−( x1 z 2 − x2 z1 ), x1 y2 − y1 x2 )

      Una manera práctica para obtener el resultado de la operación Producto
Cruz entre dos vectores es resolver el siguiente determinante, para la primera
fila:
                                                   i           j        k
                                   →       →
                                  v1 × v2 = x1                 y1       z1
                                                   x2          y2       z2

                    Ejemplo.
                          →                    →
                    Sea v1 = (1,2,−1) y v 2 = (2,−1,0 ) entonces
                                                          i         j        k
                                               →       →
                                               v1 × v 2 = 1         2        − 1 = −i − 2 j − 5k
                                                               2 −1          0




                                                                                                                7
MOISES VILLENA                                                                   Vectores en R3


                 1.4.4.1 Propiedades.

                              →       →        →

                      Sean v1 , v2 y v3 vectores de R 3
                      1. El vector ⎛ v1× v2 ⎞ es tanto perpendicular a
                                                  →    →

                                   ⎜        ⎟
                                   ⎝        ⎠
                          →                       →

                          v1 como a v 2
                      2. El sentido del vector ⎛ v1 × v2 ⎞ se lo puede
                                                                   →   →

                                               ⎜         ⎟
                                               ⎝         ⎠
                         obtener empleando la mano derecha.
                                                                                     →
                         Mientras los dedos se dirigen desde v1
                                          →
                         hacia v2 , el pulgar indica la dirección de
                         ⎛v × v ⎞.
                           →  →

                         ⎜ 1 2⎟
                         ⎝      ⎠
                                              →    →
                                              v1× v2




                                                                           →
                                                                           v2
                                                       •
                                                       •                    →
                                                                            v1




                      3. v1 × v2 = −⎛ v2 × v1 ⎞
                          →       →                →       →

                                    ⎜         ⎟
                                    ⎝         ⎠
                          →       →       →
                      4. v1 × v1 = 0
                              →       →                        →   →   →
                      5. Si v1 // v 2 entonces v1 × v 2 = 0
                         ⎛α v ⎞ × ⎛α v ⎞ = α α ⎛ v × v ⎞
                               →         →                 →   →

                      6. ⎜ 1 1 ⎟ ⎜ 2 2 ⎟                2⎜ 1     2 ⎟
                         ⎝        ⎠ ⎝       ⎠       1
                                                         ⎝         ⎠
                      7. v1 × ⎛ v2 + v3 ⎞ = ⎛ v1 × v2 ⎞ + ⎛ v1 × v3 ⎞
                         →       →    →       →    →         →     →

                              ⎜         ⎟ ⎜           ⎟ ⎜            ⎟
                              ⎝         ⎠ ⎝           ⎠ ⎝            ⎠
                                   2       2 → 2                 2

                      8. v1 × v 2 = v1 v 2 − ⎛ v1 • v 2 ⎞
                           →    →       →               →    →

                                                      ⎜        ⎟
                                                      ⎝        ⎠
      De la última expresión, empleando la propiedad del producto escalar, se
obtiene un resultado muy importante:




                                                                                              8
MOISES VILLENA                                                                                  Vectores en R3


                              → 2         → 2 → 2                            2
                         →
                                                              ⎛→ →⎞
                         v1 × v 2    = v1       v2          − ⎜ v1 • v 2 ⎟
                                                              ⎝          ⎠
                                                                                        2
                                          → 2 → 2
                                                              ⎛ → →          ⎞
                                     = v1       v2          − ⎜ v1 v 2 cos θ ⎟
                                                              ⎝              ⎠
                                          → 2 → 2                → 2 → 2
                                     = v1       v2          − v1       v2        cos 2 θ


                                                            [1 − cos θ ]
                                          → 2 → 2
                                     = v1       v2                     2



                         →    → 2         → 2 → 2
                         v1 × v 2    = v1       v 2 sen 2θ

                 Finalmente:
                                          →     →            →     →
                                          v1 × v 2 = v1 v 2 senθ



       1.5 APLICACIONES

          1.5.1      CALCULO  DEL   ÁREA   DEL    PARALELOGRAMO
                     SUSTENTADO POR DOS VECTORES.
                 →   →
       Sean v1 y v2 dos vectores, no paralelos. Observe la figura:

                                                →
                                                v1
                                     →
                                     v1
                                                        h
                                          θ
                                                                                   →
                                                →                                  v2
                                               v2


                                          →
       Tomando como base a v2 , tenemos:
                       Area = base • altura
                                                →
                                              = v2 h

                                      h                                             →       →
       Observe que senθ =             →
                                               entonces Area = v 2 v1 senθ
                                     v1

       Y por la propiedad del producto cruz:
                                                    →       →
                                    Area = v1 × v 2




                                                                                                             9
MOISES VILLENA                                                                                     Vectores en R3


                 Ejemplo 1
                                                                                                        →
                 Hallar el área del triángulo sustentado por los vectores v1 = (1, 2,−1) y
                 →
                 v 2 = (2,−1, 0 )
                 SOLUCIÓN:
                                                                                     →        →
                 El área del triángulo sustentado por dos vectores v1 y v 2 es la mitad del área del
                 paralelogramo sustentado por los vectores, es decir:
                                                                      →       →
                                                                      v1 × v 2
                                           Area Triángulo =
                                                                          2
                                      i    j     k
                        →    →
                 Como v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k
                                 2 −1 0
                 entonces

                                                        →        →
                                                       v1 × v 2
                                                                          (− 1)2 + (− 2)2 + (− 5)2           30
                              Area Triángulo =                        =                                 =
                                                             2                            2                  2


                 Ejemplo 2
                 Hallar el área del triángulo que tiene por vértices los puntos (1,−2,0 ) , (1,1,1) y
                 (− 2,0,1)
                 SOLUCIÖN:
                 Primero se forman dos vectores entre los puntos dados, tomando arbitrariamente el
                 orden de estos puntos; luego se procede de manera análoga a lo mencionado
                 anteriormente debido a que el área del triángulo es la mitad del área del paralelogramo.

                                                                               P2 (1,1,1)
                                                                 →
                                                                 v1


                                               P (1,−2,0 )                    →               P3 (− 2,0,1)
                                                1
                                                                              v2


                                  →       →
                 En este caso, v1 = P1 P2 = (1 − 1, 1 − (−2), 1 − 0 ) = (0,3,1)
                                    →      →
                                    v 2 = P2 P3 = (− 2 − 1, 0 − (−2), 1 − 0 ) = (− 3,2,1)


                 Entonces,
                                        i         j k
                              →      →
                             v1 × v 2 = 0         3 1 = i − 3 j − 9k
                                           −3 2 1
                                                        →        →
                                                       v1 × v 2
                                                                          (1)2 + (− 3)2 + (9)2          91
                              Area Triángulo =                        =                            =
                                                             2                        2                 2




                                                                                                                  10
MOISES VILLENA                                                                                  Vectores en R3


          1.5.2      CALCULO DEL VOLUMEN DEL PARALELEPÍPEDO
                      SUSTENTADO POR TRES VECTORES
                 →   →    →
       Sean v1 , v2 y v3 tres vectores. Observe la figura.



                                  →    →
                                  v1 × v 2


                                                 →             h
                                                 v3
                                             h            →
                                                      v2
                                                                   •

                                                                       →
                                                                       v1
                                                                                            →      →
       Tomando como base el paralelogramo sustentado por v1 y v2 , la altura
                                                                                           →           →   →
       h del paralelepípedo será la proyección escalar v3 sobre v1 × v2 ,
       entonces:
                         Volumen = Area base × altura
                                                      →       →
                         Donde Area base = v1 × v 2

                                                                            ⎛→ →⎞ →
                                                                       →
                                                                            ⎜ v1 × v 2 ⎟ • v3
                                altura = h = Pr oy →               →   v3 = ⎝ → ⎠      →
                                                              v1 ×v2
                                                                                 v1 × v 2

       Por tanto.
                                                  ⎛v × v ⎞ • v
                                                   →    →    →

                                                  ⎜ 1 2⎟ 3
                                Volumen = v1 × v2 ⎝ → ⎠
                                          →    →

                                                          →
                                                     v1 × v2

       Finalmente, simplificando resulta:


                                Volumen = ⎛ v1 × v 2 ⎞ • v3
                                            →    →       →

                                          ⎜          ⎟
                                          ⎝          ⎠


       Esta última expresión es denominada, EL TRIPLE PRODUCTO
                                   →         →   →
ESCALAR de los vectores v1 , v 2 y v3 , y su interpretación es el volumen del
                                                                   →        →   →
paralelepípedo sustentado por los vectores v1 , v 2 y v 3 . Observe además que
no importa el orden de operación de los vectores, ¿por qué?.




                                                                                                            11
MOISES VILLENA                                                                                                         Vectores en R3


                 Ejemplo
                                                                                                                                →
                 Hallar el volumen del paralelepípedo sustentado por los vectores v1 = (1,−2,1) ,
                  →                       →
                 v 2 = (2,0,−1) y v3 = (1,2,3) .
                 SOLUCIÖN.

                 Por lo definido anteriormente,
                                                                1 −2 1
                                            ⎛→ →⎞ →
                                  Volumen = ⎜ v1 × v 2 ⎟ • v3 = 2 0 − 1 = 2 + 14 + 4 = 20u 3
                                            ⎜          ⎟
                                            ⎝          ⎠
                                                                1 2  3



                                                         Ejercicios propuestos
                                              →                          →
                                            ˆ     j    ˆ         ˆ     j    ˆ
                 1. Sean los vectores V1 = 3i − 2 ˆ + 4k y V2 = 3i + 3 ˆ − 2k .
                                                                         →                         →
                   a) Determinar la proyección vectorial de V1 sobre el vector V2 .
                                                             →                         →
                   b) Calcular la componente de V1 perpendicular a V2 .
                                                                                 ⎯
                                                                                 ⎯→

                                                                                            (                      )
                                                                                   →
                                                              Resp. a) Pr oy → V1 = − 15 ,− 15 , 10
                                                                                      22    22 22
                                                                                                                           b)
                                                                                 V2
                                              →                              →
                                             ˆ     j    ˆ         ˆ     j       ˆ
                 2. Sean los vectores A = Ax i − 5 ˆ + 2k y B = −3i + 2 ˆ − B z k . Calcule los valores de Ax y
                                                  → →
                      Bz para los cuales A× B es paralelo a:                 a) al eje      x              b) al eje   y
                                                              Resp. a) Ax =       15
                                                                                   2
                                                                                            Bz =   4
                                                                                                   5
                                                                                                               b) Ax = 15
                                                                                                                        2
                                                                                                                                Bz =    4
                                                                                                                                        5
                 3. Calcular el área del triángulo que tiene sus vértices en los puntos (-3,2,4); (2,1,7) ; (4,2,6)
                                                              Resp. Area =            174
                                                                                       2
                 4. Dados tres vectores V1 = (5,2,6) , V2 = (−1,8,3) , V3 = (2,−7,4) forman un tetraedro con
                   vértice en el origen. Determinar su altura desde el origen.                                          Resp. h =       77
                                                                                                                                        746
                 5. Un tetraedro tiene por base el triángulo de vértices (3.-6,-1) , (4,4,-2) y (-3,-1,2); Si el vértice
                    opuesto es el punto (8,10,6) , determine su altura.                         Resp. h = 938
                                                                                                                                        5459
                 6. Sean u        y       v       vectores no nulos, diferentes tales que: w1 = u + v , w2 = u − v ,
                      w3 =1
                          2
                              (u + v ) . Hallar        w1 • (w2 × w3 )                                                  Resp. 0
                         →                                                                                     →
                 7. Sea V un vector diferente de cero, entonces, demostrar que si U es un vector cualquiera, el
                                          → →
                              →       →   U•V          →                     →
                   vector W = U −                      V es ortogonal a V .
                                                   2
                                              →
                                              V

                                              →                      →           →                     →                            →   →
                 8. Demuestre que si U es ortogonal a V y a W , entonces U es ortogonal a c V + d W para
                   escalares cualquiera           cyd.
                                                                                                                                        →   →
                 9. Demostrar que el área del triángulo, cuyos vértices son los extremos de los vectores A , B y
                     →     1 ⎛ → →⎞ ⎛ → →⎞
                     C , es ⎜ B − A ⎟ × ⎜ C − A ⎟
                            2⎜⎝
                                      ⎟ ⎜
                                      ⎠ ⎝
                                                  ⎟
                                                  ⎠
                                                                                             → →           →       →    →       →
                 10. Demostrar que el volumen del tetraedro de aristas A + B , B + C y C + A y es el doble
                                                                         →   →         →
                     del volumen del tetraedro de aristas A , B y C .
                 11. Pruebe que las diagonales de un rombo (paralelogramo con lados iguales) son
                     perpendiculares.



                                                                                                                                               12

Recomendados

Despeje de formulas 2Despeje de formulas 2
Despeje de formulas 2Victor Hugo Caiza
15.9K visualizações1 slide
Ley del seno y del cosenoLey del seno y del coseno
Ley del seno y del cosenogustavo vasquez
5.9K visualizações4 slides
Campos vectorialesCampos vectoriales
Campos vectorialesKim Silva
4.4K visualizações8 slides
Grafos propuestosGrafos propuestos
Grafos propuestosmenamigue
739 visualizações4 slides

Mais conteúdo relacionado

Mais procurados

Formulas conicas y cuadricasFormulas conicas y cuadricas
Formulas conicas y cuadricasLeandro Aschkar
12.4K visualizações16 slides
Combinacion linealCombinacion lineal
Combinacion linealCarlita Vaca
3.7K visualizações3 slides
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integralRAFA Ortega
66K visualizações32 slides

Mais procurados(20)

Formulas conicas y cuadricasFormulas conicas y cuadricas
Formulas conicas y cuadricas
Leandro Aschkar12.4K visualizações
Modulo introduccion a las edoModulo introduccion a las edo
Modulo introduccion a las edo
ING ° PEDRO MONJA RUIZ709 visualizações
Teoria y problemas de congruencia de triangulos  ccesa007Teoria y problemas de congruencia de triangulos  ccesa007
Teoria y problemas de congruencia de triangulos ccesa007
Demetrio Ccesa Rayme1.5K visualizações
Ecuaciones cuadraticas factorizacionEcuaciones cuadraticas factorizacion
Ecuaciones cuadraticas factorizacion
Karla Paulina4.1K visualizações
Combinacion linealCombinacion lineal
Combinacion lineal
Carlita Vaca3.7K visualizações
Aplicacion de la integralAplicacion de la integral
Aplicacion de la integral
RAFA Ortega66K visualizações
Taller teorema de pitagoras problemasTaller teorema de pitagoras problemas
Taller teorema de pitagoras problemas
racevedo512.3K visualizações
07 Integrales por partes07 Integrales por partes
07 Integrales por partes
www.cathedratic.com90.1K visualizações
Grafos  resueltosGrafos  resueltos
Grafos resueltos
Paloma Garcia Injoque62.2K visualizações
Rectas paralelas-cortadas-por-una-secante ejerciciosRectas paralelas-cortadas-por-una-secante ejercicios
Rectas paralelas-cortadas-por-una-secante ejercicios
piros200320110.7K visualizações
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
Andrés Hidalgo191.3K visualizações
Archivo con demostraciones de espacios vectorialesArchivo con demostraciones de espacios vectoriales
Archivo con demostraciones de espacios vectoriales
Cindy Adriana Bohórquez Santana9.7K visualizações
SISTEMA DE MEDIDAS ANGULARES ISISTEMA DE MEDIDAS ANGULARES I
SISTEMA DE MEDIDAS ANGULARES I
EDWIN RONALD CRUZ RUIZ108.9K visualizações
VectoresVectores
Vectores
Luis Cañedo Cortez2.2K visualizações
Ejercicios en integralEjercicios en integral
Ejercicios en integral
Alex Wilfred Pumarrumi Escobar69.4K visualizações
Ed homogeneas y reducibles a homogéneas  2012 uncpEd homogeneas y reducibles a homogéneas  2012 uncp
Ed homogeneas y reducibles a homogéneas 2012 uncp
Antony Melgar Salinas27.9K visualizações
áNgulos cortados por dos paralelas y una secanteáNgulos cortados por dos paralelas y una secante
áNgulos cortados por dos paralelas y una secante
Juan Jose Tello69.8K visualizações
Teoría de Grafos.Teoría de Grafos.
Teoría de Grafos.
José Tomás Diarte Añazco5.3K visualizações
Area de curvas planas coordenadas rectangularesArea de curvas planas coordenadas rectangulares
Area de curvas planas coordenadas rectangulares
Eunice Ramos5.7K visualizações

Destaque

Vectores en R2 - 2Vectores en R2 - 2
Vectores en R2 - 2Piero Sandro Cóndor Costilla
198.8K visualizações32 slides
6 curvas6 curvas
6 curvasERICK CONDE
4.7K visualizações18 slides
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variablesERICK CONDE
11.9K visualizações60 slides
2 geometría analítica2 geometría analítica
2 geometría analíticaERICK CONDE
24.7K visualizações54 slides
Ecuaciones 2do ordenEcuaciones 2do orden
Ecuaciones 2do ordenERICK CONDE
6.9K visualizações15 slides
4 extremos4 extremos
4 extremosERICK CONDE
12.6K visualizações31 slides

Destaque(20)

Vectores en R2 - 2Vectores en R2 - 2
Vectores en R2 - 2
Piero Sandro Cóndor Costilla198.8K visualizações
6 curvas6 curvas
6 curvas
ERICK CONDE4.7K visualizações
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variables
ERICK CONDE11.9K visualizações
2 geometría analítica2 geometría analítica
2 geometría analítica
ERICK CONDE24.7K visualizações
Ecuaciones 2do ordenEcuaciones 2do orden
Ecuaciones 2do orden
ERICK CONDE6.9K visualizações
4 extremos4 extremos
4 extremos
ERICK CONDE12.6K visualizações
7 análisis vectorial7 análisis vectorial
7 análisis vectorial
ERICK CONDE12.2K visualizações
Vectores en r2 y r3 por tony Vectores en r2 y r3 por tony
Vectores en r2 y r3 por tony
Tony Purple Diamond9.4K visualizações
Algebra lineal (vectores r2 y r3)Algebra lineal (vectores r2 y r3)
Algebra lineal (vectores r2 y r3)
Guillermo J Fariñez F62.6K visualizações
Solucionario ecuaciones2Solucionario ecuaciones2
Solucionario ecuaciones2
ERICK CONDE81K visualizações
VECTORES EN R3VECTORES EN R3
VECTORES EN R3
Piero Sandro Cóndor Costilla265.9K visualizações
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
ERICK CONDE19.3K visualizações
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
ERICK CONDE465.5K visualizações
Libro: Vectores y Matrices. Autor: Ricardo Figueroa GarcíaLibro: Vectores y Matrices. Autor: Ricardo Figueroa García
Libro: Vectores y Matrices. Autor: Ricardo Figueroa García
Carlos Aviles Galeas60.9K visualizações
Algebra lineal-vectores-rectas-planos-rotacionesAlgebra lineal-vectores-rectas-planos-rotaciones
Algebra lineal-vectores-rectas-planos-rotaciones
LUIS GABRIEL RODRIGUEZ HERNANDEZ2.2K visualizações
vectores en r2 y r3 vectores en r2 y r3
vectores en r2 y r3
Gonzalez Pedro968 visualizações
Geometria analiticaGeometria analitica
Geometria analitica
Daniel Ossa5K visualizações
Geometria analiticaGeometria analitica
Geometria analitica
Juan Luis Diaz Cuevas1.6K visualizações
libro algebra para el cbclibro algebra para el cbc
libro algebra para el cbc
apuntescbc17.2K visualizações

Similar a 1 vectores en r3

Corordenadas PolaresCorordenadas Polares
Corordenadas PolaresJosé Encalada
896 visualizações12 slides
Campos esc y_vectCampos esc y_vect
Campos esc y_vectJrg Rouco
919 visualizações15 slides
2f 01 gravitación32f 01 gravitación3
2f 01 gravitación3CAL28
3.2K visualizações39 slides
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12romerogonzalezcinthia
501 visualizações26 slides
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12romerogonzalezcinthia
655 visualizações26 slides
Espacio afinEspacio afin
Espacio afinOurentermal Ourense Termal
2.2K visualizações27 slides

Similar a 1 vectores en r3(20)

Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
José Encalada896 visualizações
Campos esc y_vectCampos esc y_vect
Campos esc y_vect
Jrg Rouco919 visualizações
2f 01 gravitación32f 01 gravitación3
2f 01 gravitación3
CAL283.2K visualizações
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12
romerogonzalezcinthia501 visualizações
Unidad iv  apuntes nov12Unidad iv  apuntes nov12
Unidad iv apuntes nov12
romerogonzalezcinthia655 visualizações
Espacio afinEspacio afin
Espacio afin
Ourentermal Ourense Termal2.2K visualizações
Ecuacion de la recta pendienteEcuacion de la recta pendiente
Ecuacion de la recta pendiente
Julian Andres98.6K visualizações
Capitulo3 calculo de volumenesCapitulo3 calculo de volumenes
Capitulo3 calculo de volumenes
Nicolás Carrasco Barrera184 visualizações
03 203 2
03 2
Jose Gregorio Villarreal Ortega185 visualizações
Capitulo4 centro de masa y teorema de pappusCapitulo4 centro de masa y teorema de pappus
Capitulo4 centro de masa y teorema de pappus
Nicolás Carrasco Barrera21.5K visualizações
Integracion multipleIntegracion multiple
Integracion multiple
ERICK CONDE1.5K visualizações
Integrales multiplesIntegrales multiples
Integrales multiples
Ems Es56.9K visualizações
5 integración múltiple5 integración múltiple
5 integración múltiple
Maria Cabrera Ramirez3K visualizações
5 integración múltiple5 integración múltiple
5 integración múltiple
Jonnathan Arias928 visualizações
3 funciones de varias variables3 funciones de varias variables
3 funciones de varias variables
geni_us25901 visualizações
Capítulo nº2Capítulo nº2
Capítulo nº2
mishell_0296123 visualizações
1b 01 vectores1b 01 vectores
1b 01 vectores
CAL283.1K visualizações
áLgebra lin cap2aáLgebra lin cap2a
áLgebra lin cap2a
Alexandro Lino1.3K visualizações
Álgebra Sistema Coordenadas CartesianasÁlgebra Sistema Coordenadas Cartesianas
Álgebra Sistema Coordenadas Cartesianas
Computer Learning Centers607 visualizações
Funciones 1º Grado Y Eje De CoordenadasFunciones 1º Grado Y Eje De Coordenadas
Funciones 1º Grado Y Eje De Coordenadas
Nolaa's School1.4K visualizações

Mais de ERICK CONDE

Practica 10Practica 10
Practica 10ERICK CONDE
4.8K visualizações10 slides
Practica 11Practica 11
Practica 11ERICK CONDE
1.7K visualizações5 slides
Pre practica 9Pre practica 9
Pre practica 9ERICK CONDE
1.3K visualizações4 slides
Practica 8Practica 8
Practica 8ERICK CONDE
1.1K visualizações9 slides
Pre practica 8Pre practica 8
Pre practica 8ERICK CONDE
828 visualizações3 slides
Practica #5Practica #5
Practica #5ERICK CONDE
855 visualizações11 slides

Mais de ERICK CONDE(20)

Practica 10Practica 10
Practica 10
ERICK CONDE4.8K visualizações
Practica 11Practica 11
Practica 11
ERICK CONDE1.7K visualizações
Pre practica 9Pre practica 9
Pre practica 9
ERICK CONDE1.3K visualizações
Practica 8Practica 8
Practica 8
ERICK CONDE1.1K visualizações
Pre practica 8Pre practica 8
Pre practica 8
ERICK CONDE828 visualizações
Practica #5Practica #5
Practica #5
ERICK CONDE855 visualizações
Pre practica #6Pre practica #6
Pre practica #6
ERICK CONDE810 visualizações
Practica #5Practica #5
Practica #5
ERICK CONDE495 visualizações
Pre practica #6Pre practica #6
Pre practica #6
ERICK CONDE535 visualizações
Producción de campos magnéticosProducción de campos magnéticos
Producción de campos magnéticos
ERICK CONDE3.7K visualizações
MagnetismoMagnetismo
Magnetismo
ERICK CONDE1.9K visualizações
Ley de ohmLey de ohm
Ley de ohm
ERICK CONDE4.3K visualizações
Introducción a la electricidadIntroducción a la electricidad
Introducción a la electricidad
ERICK CONDE9.9K visualizações
Inductancia, motores y generadores de ccInductancia, motores y generadores de cc
Inductancia, motores y generadores de cc
ERICK CONDE5.6K visualizações
Induccion electromagnéticaInduccion electromagnética
Induccion electromagnética
ERICK CONDE11.3K visualizações
Equivalente eléctrico del calorEquivalente eléctrico del calor
Equivalente eléctrico del calor
ERICK CONDE13.8K visualizações
ElectrizaciónElectrización
Electrización
ERICK CONDE9.5K visualizações
Circuitos rcCircuitos rc
Circuitos rc
ERICK CONDE4K visualizações
Campo y potencialCampo y potencial
Campo y potencial
ERICK CONDE8.4K visualizações
Leyes de kirchhoff Leyes de kirchhoff
Leyes de kirchhoff
ERICK CONDE15.6K visualizações

Último(20)

Google alternativo, para volarGoogle alternativo, para volar
Google alternativo, para volar
corpbracat8 visualizações
Trabajo de tecnologia.docxTrabajo de tecnologia.docx
Trabajo de tecnologia.docx
LauraCamilaMuozRamos8 visualizações
excelavanzado-231120155649-2cd7fe4e.pdfexcelavanzado-231120155649-2cd7fe4e.pdf
excelavanzado-231120155649-2cd7fe4e.pdf
RazeThefox7 visualizações
Excel avanzado.pdfExcel avanzado.pdf
Excel avanzado.pdf
fspro998 visualizações
Proyecto Tercer Periodo Informática - 9-2 .pdfProyecto Tercer Periodo Informática - 9-2 .pdf
Proyecto Tercer Periodo Informática - 9-2 .pdf
JuanCamiloCaicedoPor33 visualizações
RECURSOS INCLUSIVOS.pptxRECURSOS INCLUSIVOS.pptx
RECURSOS INCLUSIVOS.pptx
milenathais20259 visualizações
Excel avanzado.pdfExcel avanzado.pdf
Excel avanzado.pdf
NyobeMahechaDvila46 visualizações
Excel avanzado.pdfExcel avanzado.pdf
Excel avanzado.pdf
SebastinPrez6715 visualizações
Taller de Electricidad y Electrónica.docxTaller de Electricidad y Electrónica.docx
Taller de Electricidad y Electrónica.docx
juantrujillosolano108 visualizações
Taller Electricidad y Electrónica 10-2 Equipo 3 .docxTaller Electricidad y Electrónica 10-2 Equipo 3 .docx
Taller Electricidad y Electrónica 10-2 Equipo 3 .docx
JuanDavidRiaoamezqui9 visualizações
.conf go 2023 - De NOC a CSIRT (Cellnex).conf go 2023 - De NOC a CSIRT (Cellnex)
.conf go 2023 - De NOC a CSIRT (Cellnex)
Splunk166 visualizações
El Libro de la Inteligencia Artificial (versión 5)El Libro de la Inteligencia Artificial (versión 5)
El Libro de la Inteligencia Artificial (versión 5)
Alfredo Vela Zancada7 visualizações
Tarea Práctica web de la sesión 14.pptxTarea Práctica web de la sesión 14.pptx
Tarea Práctica web de la sesión 14.pptx
illanlir7 visualizações
tecnologaeinformtica-231124115719-3a836080.pdftecnologaeinformtica-231124115719-3a836080.pdf
tecnologaeinformtica-231124115719-3a836080.pdf
MaraJos72280110 visualizações
excelavanzado1-231020003159-be608ddc.pdfexcelavanzado1-231020003159-be608ddc.pdf
excelavanzado1-231020003159-be608ddc.pdf
sarahloradorado11 visualizações
RECURSOS EDUCATIVOS.docxRECURSOS EDUCATIVOS.docx
RECURSOS EDUCATIVOS.docx
glorypagalo8410 visualizações
excelavanzado1-231020003159-be608ddc.pdfexcelavanzado1-231020003159-be608ddc.pdf
excelavanzado1-231020003159-be608ddc.pdf
orianaisabellaramire15 visualizações

1 vectores en r3

  • 1. MOISES VILLENA Vectores en R3 1 1.1 Definición 1.2 Enfoque geométrico 1.3 Igualdad 1.4 Operaciones 1.5 Aplicaciones Objetivos. Se persigue que el estudiante: • Represente geométricamente un vector de R 3 • Determine magnitud y dirección de un vector. • Sume vectores, multiplique por un escalar a un vector, obtenga el productor escalar y el producto vectorial entre vectores • Obtenga el área de un paralelogramo sustentados por dos vectores. • Obtenga el volumen del paralelepípedo sustentado por tres vectores. 1
  • 2. MOISES VILLENA Vectores en R3 Tomando como referencia la teoría de vectores en el plano, se obtienen definiciones y propiedades de los vectores en el espacio. 1.1 DEFINICIÓN Un vector de R 3 es una terna ordenada de números reales. Denotada de la siguiente manera: → v = ( x, y , z ) 1.2 ENFOQUE GEOMÉTRICO 3 Geométricamente a un vector de R se lo representa en el Espacio como un segmento de recta dirigido. Suponga que se tienen los puntos P ( x1 , y1 , z1 ) y P2 ( x2 , y 2 , z 2 ) . Si 1 trazamos un segmento de recta dirigido desde P1 hacia P2 tenemos una → ⎯ ⎯→ representación del vector v = P P2 = ( x2 − x1 , y 2 − y1 , z1 − z 2 ) 1 z P2 = ( x2 , y 2 , z 2 ) → v P1 = ( x1 , y1 , z1 ) y x Este vector puede tener muchas otras representaciones equivalentes en el espacio. Una representación equivalente útil es aquella que se realiza ubicando al vector con el origen como punto de partida. z P ( x, y , z ) → v y x 2
  • 3. MOISES VILLENA Vectores en R3 1.2.1 Magnitud o norma → Sea v = ( x, y, z ) . La magnitud o norma de v → → denotada como v , se define como: → v = x2 + y2 + z 2 Note que la norma sería la longitud del segmento de recta que define el vector. Es decir, sería la distancia entre los puntos que lo definen. → Para v = ( x2 − x1 , y 2 − y1 , z 2 − z1 ) sería: → v = (x2 − x1 )2 + ( y2 − y1 )2 + (z 2 − z1 )2 1.2.2 Dirección → La dirección de v = ( x, y, z ) está definida por la medida de los ángulo que forma la línea de acción del segmento de recta con los ejes x , y , z z → γ v α β y x Los ángulos α , β y γ son llamados Ángulos Directores. 3
  • 4. MOISES VILLENA Vectores en R3 Observe que: x x Cosα = → = v x2 + y2 + z2 y y Cosβ = → = v x + y2 + z2 2 y y Cosγ = → = v x2 + y2 + z2 Ejercicio. Demostrar que cos 2 α + cos 2 β + cos 2 γ = 1 1.2.3 Sentido → El sentido de v lo define la flecha dibujada sobre el segmento de recta. 3 1.3 IGUALDAD DE VECTORES DE R → → Dos vectores v1 = (x1 , y1 , z1 ) y v2 = (x2 , y 2 , z 2 ) son iguales si y sólo si x1 = x2 , y1 = y2 y z1 = z 2 1.4 OPERACIONES 1.4.1 Suma → → Sean v1 y v2 dos vectores de R tales que 3 → → v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) entonces la → → → → suma de v1 con v2 , denotada como v1 + v2 , se define como: → → v1 + v2 = ( x1 + x2 , y1 + y2 , z1 + z 2 ) 4
  • 5. MOISES VILLENA Vectores en R3 1.4.1.1 Propiedades → → → Sean v1 , v2 y v3 vectores de R 3 , entonces: → → → → 1. v1 + v2 = v2 + v1 la suma es conmutativa v1 + ⎛ v2 + v3 ⎞ = ⎛ v1 + v2 ⎞ + v3 → → → → → → 2. ⎜ ⎟ ⎜ ⎟ la suma es asociativa ⎝ ⎠ ⎝ ⎠ → → → → → 3. ∃ 0 ∈ R , ∀ v ∈ R tal que v + 0 = v , 3 3 → Donde 0 = (0,0,0 ) es llamado Vector Neutro ∃⎛ − v ⎞ ∈ R 3 tal que v + ⎛ − v ⎞ = 0 → → → → → 4. ∀v∈R , ⎜ ⎟ 3 ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ → ⎞ Donde ⎜ − v ⎟ es llamado Vector Inverso Aditivo de v → ⎝ ⎠ Geométricamente: z → 2 v → v1 = ( x1 , y1 , z1 ) → 1 + v → v2 = (x2 , y 2 , z 2 ) y x → → Los vectores v1 y v2 sustentan un paralelogramo, el vector de la diagonal mayor es el Vector Suma y el vector de la diagonal menor es el Vector Diferencia. 1.4.2 Multiplicación por escalar → Sea α ∈ R y v = ( x, y, z ) un vector de R 3 entonces: → α v = (αx, αy, αz ) 5
  • 6. MOISES VILLENA Vectores en R3 1.4.2.1 Propiedades ⎡α ⎛ v + v ⎞ = α v + α v ⎤ → → →→ → → 1. ∀α ∈ R, ∀ v1 , v2 ∈ R ⎢ ⎜ 1 2 ⎟ 3 2⎥ ⎣ ⎝ ⎠ ⎦ 1 3⎡ ⎤ → → → → 2. ∀α , β ∈ R, ∀ v ∈ R ⎢(α + β ) v = α v + β v ⎥ ⎣ ⎦ ∀α , β ∈ R, ∀ v ∈ R 3 ⎡α ⎛ β v ⎞ = (αβ ) v ⎤ → → → 3. ⎢ ⎜ ⎟ ⎣ ⎝ ⎠ ⎥ ⎦ → Cualquier vector de R3 , v = ( x, y, z ) , puede ser expresado en → → combinación lineal de los vectores i = (1,0,0) , j = (0,1,0) y k = (0,0,1) → → v = ( x, y, z ) = x(1,0,0 ) + y (0,1,0 ) + z (0,0,1) → → → → v = x i + y j+ z k 1.4. 3. Producto Escalar. Producto Punto o Producto Interno → → Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores → → de R 3 . El Producto escalar de v1 con v2 denotado → → como v1 • v2 se define como: → → v1 • v2 = x1 x2 + y1y2 + z1 z 2 Ejemplo → → Si v1 = (3,1,−2) y v 2 = (− 1,4,0) entonces → → v1 • v 2 = (3)(− 1) + (1)(4) + (− 2)(0) = −3 + 4 + 0 = 1 1.4.3.1 Propiedades → → Sean v1 y v2 vectores de R 3 . Entonces: → → → → 1. v1 • v2 = v2 • v1 6
  • 7. MOISES VILLENA Vectores en R3 2. v1 • ⎛ v2 + v3 ⎞ = v1 • v2 + v1 • v2 → → → → → → → ⎜ ⎟ ⎝ ⎠ ⎛ α v ⎞ • ⎛ β v ⎞ = αβ⎛ v • v ⎞ → → → → 3. ⎜ 1 ⎟ ⎜ 2 ⎟ ⎜ 1 2⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ → Si v = ( x, y, z ) entonces: → → v • v = ( x, y , z ) • ( x, y , z ) = x 2 + y 2 + z 2 . → → → 2 → → → Por lo tanto v • v = v o también v = v• v 1.4. 4. Producto Vectorial. Producto Cruz → → Sean v1 = ( x1 , y1 , z1 ) y v2 = ( x2 , y2 , z 2 ) vectores → → de R 3 . El Producto Vectorial de v1 con v2 → → denotado como v1 × v2 se define como: → → v1× v2 = ( y1 z 2 − z 1 y2 ,−( x1 z 2 − x2 z1 ), x1 y2 − y1 x2 ) Una manera práctica para obtener el resultado de la operación Producto Cruz entre dos vectores es resolver el siguiente determinante, para la primera fila: i j k → → v1 × v2 = x1 y1 z1 x2 y2 z2 Ejemplo. → → Sea v1 = (1,2,−1) y v 2 = (2,−1,0 ) entonces i j k → → v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k 2 −1 0 7
  • 8. MOISES VILLENA Vectores en R3 1.4.4.1 Propiedades. → → → Sean v1 , v2 y v3 vectores de R 3 1. El vector ⎛ v1× v2 ⎞ es tanto perpendicular a → → ⎜ ⎟ ⎝ ⎠ → → v1 como a v 2 2. El sentido del vector ⎛ v1 × v2 ⎞ se lo puede → → ⎜ ⎟ ⎝ ⎠ obtener empleando la mano derecha. → Mientras los dedos se dirigen desde v1 → hacia v2 , el pulgar indica la dirección de ⎛v × v ⎞. → → ⎜ 1 2⎟ ⎝ ⎠ → → v1× v2 → v2 • • → v1 3. v1 × v2 = −⎛ v2 × v1 ⎞ → → → → ⎜ ⎟ ⎝ ⎠ → → → 4. v1 × v1 = 0 → → → → → 5. Si v1 // v 2 entonces v1 × v 2 = 0 ⎛α v ⎞ × ⎛α v ⎞ = α α ⎛ v × v ⎞ → → → → 6. ⎜ 1 1 ⎟ ⎜ 2 2 ⎟ 2⎜ 1 2 ⎟ ⎝ ⎠ ⎝ ⎠ 1 ⎝ ⎠ 7. v1 × ⎛ v2 + v3 ⎞ = ⎛ v1 × v2 ⎞ + ⎛ v1 × v3 ⎞ → → → → → → → ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 2 → 2 2 8. v1 × v 2 = v1 v 2 − ⎛ v1 • v 2 ⎞ → → → → → ⎜ ⎟ ⎝ ⎠ De la última expresión, empleando la propiedad del producto escalar, se obtiene un resultado muy importante: 8
  • 9. MOISES VILLENA Vectores en R3 → 2 → 2 → 2 2 → ⎛→ →⎞ v1 × v 2 = v1 v2 − ⎜ v1 • v 2 ⎟ ⎝ ⎠ 2 → 2 → 2 ⎛ → → ⎞ = v1 v2 − ⎜ v1 v 2 cos θ ⎟ ⎝ ⎠ → 2 → 2 → 2 → 2 = v1 v2 − v1 v2 cos 2 θ [1 − cos θ ] → 2 → 2 = v1 v2 2 → → 2 → 2 → 2 v1 × v 2 = v1 v 2 sen 2θ Finalmente: → → → → v1 × v 2 = v1 v 2 senθ 1.5 APLICACIONES 1.5.1 CALCULO DEL ÁREA DEL PARALELOGRAMO SUSTENTADO POR DOS VECTORES. → → Sean v1 y v2 dos vectores, no paralelos. Observe la figura: → v1 → v1 h θ → → v2 v2 → Tomando como base a v2 , tenemos: Area = base • altura → = v2 h h → → Observe que senθ = → entonces Area = v 2 v1 senθ v1 Y por la propiedad del producto cruz: → → Area = v1 × v 2 9
  • 10. MOISES VILLENA Vectores en R3 Ejemplo 1 → Hallar el área del triángulo sustentado por los vectores v1 = (1, 2,−1) y → v 2 = (2,−1, 0 ) SOLUCIÓN: → → El área del triángulo sustentado por dos vectores v1 y v 2 es la mitad del área del paralelogramo sustentado por los vectores, es decir: → → v1 × v 2 Area Triángulo = 2 i j k → → Como v1 × v 2 = 1 2 − 1 = −i − 2 j − 5k 2 −1 0 entonces → → v1 × v 2 (− 1)2 + (− 2)2 + (− 5)2 30 Area Triángulo = = = 2 2 2 Ejemplo 2 Hallar el área del triángulo que tiene por vértices los puntos (1,−2,0 ) , (1,1,1) y (− 2,0,1) SOLUCIÖN: Primero se forman dos vectores entre los puntos dados, tomando arbitrariamente el orden de estos puntos; luego se procede de manera análoga a lo mencionado anteriormente debido a que el área del triángulo es la mitad del área del paralelogramo. P2 (1,1,1) → v1 P (1,−2,0 ) → P3 (− 2,0,1) 1 v2 → → En este caso, v1 = P1 P2 = (1 − 1, 1 − (−2), 1 − 0 ) = (0,3,1) → → v 2 = P2 P3 = (− 2 − 1, 0 − (−2), 1 − 0 ) = (− 3,2,1) Entonces, i j k → → v1 × v 2 = 0 3 1 = i − 3 j − 9k −3 2 1 → → v1 × v 2 (1)2 + (− 3)2 + (9)2 91 Area Triángulo = = = 2 2 2 10
  • 11. MOISES VILLENA Vectores en R3 1.5.2 CALCULO DEL VOLUMEN DEL PARALELEPÍPEDO SUSTENTADO POR TRES VECTORES → → → Sean v1 , v2 y v3 tres vectores. Observe la figura. → → v1 × v 2 → h v3 h → v2 • → v1 → → Tomando como base el paralelogramo sustentado por v1 y v2 , la altura → → → h del paralelepípedo será la proyección escalar v3 sobre v1 × v2 , entonces: Volumen = Area base × altura → → Donde Area base = v1 × v 2 ⎛→ →⎞ → → ⎜ v1 × v 2 ⎟ • v3 altura = h = Pr oy → → v3 = ⎝ → ⎠ → v1 ×v2 v1 × v 2 Por tanto. ⎛v × v ⎞ • v → → → ⎜ 1 2⎟ 3 Volumen = v1 × v2 ⎝ → ⎠ → → → v1 × v2 Finalmente, simplificando resulta: Volumen = ⎛ v1 × v 2 ⎞ • v3 → → → ⎜ ⎟ ⎝ ⎠ Esta última expresión es denominada, EL TRIPLE PRODUCTO → → → ESCALAR de los vectores v1 , v 2 y v3 , y su interpretación es el volumen del → → → paralelepípedo sustentado por los vectores v1 , v 2 y v 3 . Observe además que no importa el orden de operación de los vectores, ¿por qué?. 11
  • 12. MOISES VILLENA Vectores en R3 Ejemplo → Hallar el volumen del paralelepípedo sustentado por los vectores v1 = (1,−2,1) , → → v 2 = (2,0,−1) y v3 = (1,2,3) . SOLUCIÖN. Por lo definido anteriormente, 1 −2 1 ⎛→ →⎞ → Volumen = ⎜ v1 × v 2 ⎟ • v3 = 2 0 − 1 = 2 + 14 + 4 = 20u 3 ⎜ ⎟ ⎝ ⎠ 1 2 3 Ejercicios propuestos → → ˆ j ˆ ˆ j ˆ 1. Sean los vectores V1 = 3i − 2 ˆ + 4k y V2 = 3i + 3 ˆ − 2k . → → a) Determinar la proyección vectorial de V1 sobre el vector V2 . → → b) Calcular la componente de V1 perpendicular a V2 . ⎯ ⎯→ ( ) → Resp. a) Pr oy → V1 = − 15 ,− 15 , 10 22 22 22 b) V2 → → ˆ j ˆ ˆ j ˆ 2. Sean los vectores A = Ax i − 5 ˆ + 2k y B = −3i + 2 ˆ − B z k . Calcule los valores de Ax y → → Bz para los cuales A× B es paralelo a: a) al eje x b) al eje y Resp. a) Ax = 15 2 Bz = 4 5 b) Ax = 15 2 Bz = 4 5 3. Calcular el área del triángulo que tiene sus vértices en los puntos (-3,2,4); (2,1,7) ; (4,2,6) Resp. Area = 174 2 4. Dados tres vectores V1 = (5,2,6) , V2 = (−1,8,3) , V3 = (2,−7,4) forman un tetraedro con vértice en el origen. Determinar su altura desde el origen. Resp. h = 77 746 5. Un tetraedro tiene por base el triángulo de vértices (3.-6,-1) , (4,4,-2) y (-3,-1,2); Si el vértice opuesto es el punto (8,10,6) , determine su altura. Resp. h = 938 5459 6. Sean u y v vectores no nulos, diferentes tales que: w1 = u + v , w2 = u − v , w3 =1 2 (u + v ) . Hallar w1 • (w2 × w3 ) Resp. 0 → → 7. Sea V un vector diferente de cero, entonces, demostrar que si U es un vector cualquiera, el → → → → U•V → → vector W = U − V es ortogonal a V . 2 → V → → → → → → 8. Demuestre que si U es ortogonal a V y a W , entonces U es ortogonal a c V + d W para escalares cualquiera cyd. → → 9. Demostrar que el área del triángulo, cuyos vértices son los extremos de los vectores A , B y → 1 ⎛ → →⎞ ⎛ → →⎞ C , es ⎜ B − A ⎟ × ⎜ C − A ⎟ 2⎜⎝ ⎟ ⎜ ⎠ ⎝ ⎟ ⎠ → → → → → → 10. Demostrar que el volumen del tetraedro de aristas A + B , B + C y C + A y es el doble → → → del volumen del tetraedro de aristas A , B y C . 11. Pruebe que las diagonales de un rombo (paralelogramo con lados iguales) son perpendiculares. 12