SlideShare uma empresa Scribd logo
1 de 68
Baixar para ler offline
Métodos de Programação da
Produção
Planejamento e Controle da Produção
2
Compras
Pedidos de
Compras
Planejamento Estratégico da
Produção
Plano de
Produção
Planejamento-mestre da
Produção
Plano-mestre
de Produção
Programação da Produção
Administração dos Estoques
Seqüenciamento
Emissão e Liberação
Ordens de
Compras
Ordens de
Fabricação
Ordens de
Montagem
Fabricação e MontagemEstoques
Clientes
Marketing
Engenharia
Fornecedores
AcompanhamentoeControledaProdução
Previsão de
Vendas
Pedidos em
Carteira
Estrutura do
Produto
Roteiro de
Fabricação
AvaliaçãodeDesempenho
Fluxo de Informações e PCP
3
 A partir do sistema de gestão de estoques serão
geradas a cada período de programação as
necessidades de compras, fabricação e montagem
dos itens para atender ao PMP
 Convencionalmente, as ordens de compras, uma vez
geradas, são encaminhadas para o setor encarregado das
compras e saem da esfera de ação do PCP
 Já as necessidades de fabricação e de montagem precisam
normalmente passar pôr um sistema produtivo com limitações
de capacidade. A adequação do programa gerado aos
recursos disponíveis (máquinas, homens, instalações, etc.) é
função do seqüenciamento
Programação da Produção
4
Emissão de Ordens
 A programação materializa-se através da emissão de
ordens. Estas ordens são de dois tipos: ordens de produção
(fabricação e montagem) e ordens de compra.
 As ordens devem conter as seguintes informações:
 A) Especificação de item a ser produzido ou comprado.
 B) Quantidade.
 C) Prazo de entrega ou conclusão da produção.
 Cada sistema de produção (Tradicional, MRP ou Just-in-
time) possui particularidades e características próprias para
a programação.
5
Emissão e Liberação
de Ordens
 A última atividade do PCP antes do início da produção
propriamente dita, consiste na emissão e liberação
das ordens de fabricação, montagem e compras, que
permitirão aos diversos setores operacionais da
empresa executarem suas atividades de forma
coordenada no sentido de atender determinado PMP.
6
Emissão e Liberação
de Ordens
 Até serem emitidas e liberadas, as ordens são
apenas planos que se pretendem cumprir.
 Uma vez formalizada a documentação e
encaminhada aos seus executores, estas ordens
entram na esfera operacional do processo produtivo.
 Ações são tomadas e recursos alocados para a sua
efetivação, fazendo com que seja difícil e antieconômico
mudanças nesta programação.
7
Emissão e Liberação
de Ordens
 As ordens de compra são encaminhadas ao
Departamento de Compras;
 As ordens de fabricação e montagem, antes de
liberadas, necessitam ser verificadas quanto a
disponibilidade de recursos humanos, máquinas e
materiais.
8
Programação da Produção
(ou programação das ordens de produção)
Programar é a atividade que determina quando cada tarefa necessária a
execução de um produto ou serviço deve ser iniciada e concluída.
a. Princípio da duração ótima da tarefa: A programação tende a atingir sua
máxima eficiência quando a duração das tarefas é pequena e todas as tarefas
são da mesma ordem de grandeza.
b. Princípio do plano de produção ótimo: A programação tende a atingir sua
máxima eficiência quando o trabalho é planejado de forma que a carga de
todos os centros produtivos seja igual.
c. Princípio da seqüência ótima de operações: A programação tende a atingir
sua máxima eficiência quando o trabalho é planejado de forma que os centros
produtivos sejam normalmente usados na mesma seqüência.
Princípios da programação
9
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Lead Time ProdutivoBaixo Alto
CustosBaixo Alto
Contínuos
Massa
Repetitivos
em Lotes
Sob
Encomenda
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Lead Time ProdutivoBaixo Alto
CustosBaixo Alto
Contínuos
Massa
Repetitivos
em Lotes
Sob
Encomenda
Demanda/Volume de ProduçãoAlta Baixa
Flexibilidade/Variedade de itensBaixa Alta
Detalhamento da ProgramaçãoBaixo Alto
Contínuos
Massa
Repetitivos
em Lotes
Sob
Encomenda
Logística das MP/PA
e PMP Define Tempo
de Ciclo para
balanceamento da
linha
Explosão dos itens (MRP) e
seqüenciamento das ordens por
recurso
Garantia da data
de entrega
capacidade finita
ou PERT/CPM)
Programação da Produção
(ou programação das ordens de produção)
10
Seqüenciamento das ordens
de produção
 Como normalmente temos várias ordens de
produção para serem processadas nos mesmos
recursos é necessário estabelecer um
seqüenciamento destas ordens.
 O seqüenciamento é a programação de um
conjunto de ordens.
 O seqüenciamento estabelece a ordem segundo
a qual cada ordem de produção será executada
levando em conta certos critérios.
11
Seqüenciamento nos
Processos Contínuos
 Como os processos contínuos se propõem a
produção de poucos itens, não existem
problemas de seqüenciamento quanto a
ordem de execução das atividades.
 Os problemas de programação estão focados na
definição da velocidade que será dada ao
sistema produtivo para atender a determinada
demanda estabelecida no PMP.
12
Seqüenciamento nos Processos
Repetitivos em Massa
 O trabalho da programação da produção nos
processos em massa consiste em buscar um
ritmo equilibrado entre os vários postos de
trabalho conhecido como "balanceamento" de
linha, de forma a atender economicamente uma
taxa de demanda, expressa em termos de
"tempo de ciclo" de trabalho.
13
Balanceamento de Linhas de
Montagem
TC = TD/D
MP PA
Componentes
ROP = TC
ROP = TC
ROP = TC ROP = TC ROP = TC
ROP = TC ROP = TC ROP = TC
•Montadores disposto seqüencialmente em postos de trabalhos
•Conjunto de operações-padrão ou rotina de operações-padrão (ROP),
•Limitado a um tempo de ciclo (TC),
•Para cada TC um produto acabado seja montado.
14
Balanceamento de Linhas de
Montagem
Montagem da Placa de Bornes e Caixa de Ligação – Operações-padrão
Ordem Operações-padrão Tempo (min.)
1 Soltar cabos 0,132
2 Fazer ligação na placa de bornes 0,648
3 Colocar ponte de ligação e porcas com arruelas 0,527
4 Pegar parafusadeira e fixar porcas na placa de bornes 0,156
5 Dobrar cabos com terminais 0,196
6 Pegar caixa de ligação e posicionar na bancada 0,102
7 Posicionar e prensar aterramento na caixa de ligação 0,074
8 Posicionar parafusos na caixa de ligação 0,351
9 Pegar caixa de ligação e posicionar sobre o motor 0,345
10 Pegar parafusadeira e fixar caixa de ligação 0,370
11 Enrolar duas pontas do cabo da resistência 0,207
12 Pegar estanhador e estanhar cabo da resistência 0,415
13 Cortar conector e retirar rebarba 0,593
14 Conectar cabos da resistência no conector 0,611
15 Parafusar conector na caixa de ligação 0,590
16 Conectar cabos do termostato no conector 1,030
Tempo Total 6,347
15
Balanceamento de Linhas de
Montagem
TC
TD
CP =
CP = Capacidade de produção em unidades por dia
TC = Tempo de ciclo em minutos por unidade
TD = Tempo disponível para produção em minutos por dia
O tempo da operação gargalo (operação 16) é importante, pois define para o
PCP o limite de capacidade de produção (CP) do centro de trabalho
16
Balanceamento de Linhas de
Montagem
TC
TD
CP =
Está se admitindo que a linha é focada a uma família de motores, ou seja, não
há setups, e que todas as operações-padrão são operações manuais, ou seja,
exigem a presença do operador para executá-las, e está se colocando vários
operadores na linha, sendo que um deles dedicado apenas à operação 16,
admitindo-se ainda que esse operador precise pegar e devolver o item a
bancada, consumindo mais 0,100 minutos
unid/dia
min/unid
min/dia
CP 424
130,1
480
≈=
Operação-padrão gargalo = 1,030 minutos
Deslocamentos = 0,100 minutos
TC = 1,130 minutos por unidade
17
Balanceamento de Linhas de
Montagem
D
TD
TC =
TD
D
TX =
TC = Tempo de ciclo em minutos por unidade
TX = Taxa de produção em unidades por minuto
TD = Tempo disponível para produção em minutos por dia
D = Demanda média em unidades por dia
Admitindo-se que a demanda média esperada por dia seja de 200 unidades
desses motores, a linha de montagem tem que ser balanceada para um TC de
2,40 minutos por unidade, o que equivale a uma TX de 0,416 unidades por
minutos
min/unid
unid/dia
min/dia
TC 40,2
200
480
==
unid/min
min/dia
unid/dia
TX 416,0
480
200
≈=
18
Balanceamento de Linhas de
Montagem
Ordem T min ROP T.op. T.mov. Total
1 0,132
2 0,648
3 0,527
4 0,156
5 0,196
6 0,102
7 0,074
8 0,351
9 0,345
10 0,370
11 0,207
12 0,415
13 0,593
14 0,611
15 0,590 Posto 5 0,590 0,100 0,690
16 1,030 Posto 6 1,030 0,100 1,130
Posto 1
Posto 2
Posto 3
Posto 4 0,100
0,992
1,3041,204
1,224 0,100 1,324
0,100 1,092
1,307 0,100 1,407
Operação-padrão Linha Retilínea
Para TC 1,5 min (320 unid/dia)
Está se admitindo que cada posto de trabalho
tenha que pegar a carcaça do motor (0,050 min)
na bancada e, após as operações-padrão,
recolocá-la (0,050 min) para o próximo operador
19
Atividade: Balanceamento de
uma Linha de Montagem
 Admitindo-se que um produto é montado em uma linha que trabalha
480 minutos por dia (8 horas) a partir de seis operações seqüenciais,
com os seguintes tempos unitários:
Operação 1 Operação 2 Operação 3 Operação 4 Operação 5 Operação 6
0,8 min. 1,0 min. 0,5 min. 1,0 min. 0,5 min. 0,7 min.
CP=
TP
TC
CP = Capacidade de produção por dia;
TP = Tempo disponível para a produção por dia;
TC = Tempo de ciclo em minutos por unidade;
D = Demanda esperada por dia.
TC
TP
D
=
Calcule a capacidade máxima teórica de produção da linha e o número de
postos de trabalho para uma produção de 240 unidades.
20
Balanceamento de Fluxo de
produção
A
C
H
B
F
E
G
D
I
0,2
0,4
0,7
0,6
0,5
0,4
0,1
0,3
0,6
21
Balanceamento de Fluxo de
produção
A
C H
B
F
E
G
D
I
0,2
0,4
0,7
0,6
0,5
0,4
0,1
0,3
0,6
1° Passo – Calcular o tempo total necessário para a produção:
Tempo total de Produção = 0,2 + 0,6 + 0,4 + 0,7 + 0,3 + 0,5 + 0,6 + 0,1+ 0,4 = 3,80
2° Passo – Calcular a quantidade de operadores / estágios necessários
Qtde. Operadores = Tempo de produção / tempo de ciclo = 3,80Minutos / 1 min =
Qtde. Operadores = 3,8 ~ 4 operadores
22
3° Passo – Balancear o fluxo usando 4 operadores
Operador Tarefa Tempo 1 Tempo 2 Tempo 3 Tempo Total
1 A e B 0,2 0,6 0,8
2 C e F e H 0,4 0,5 0,1 1,0
3 D e E 0,7 0,3 1,0
4 G e I 0,6 0,4 1,0
Balanceamento de Fluxo de
produção
23
Atividade: Balanceamento de um
fluxo de produção.
A
C
HB
F
E
G
D
3,0
1,0
4,0
3,0
5,0
9,0
3,0
2,0
Faça o balanceamento do fluxo de produção abaixo para uma
produção de 12 unidades de produto por hora.
24
Seqüenciamento na Produção
em lotes
 Quanto à escolha da ordem a ser processada
 regras normalmente baseadas nas características do item ou lote a ser
produzido, como, por exemplo, tempo da operação-padrão, cobertura
do estoque, importância do cliente, etc.
 Quanto à escolha do recurso a ser utilizado
 o foco das regras de seqüenciamento é o recurso, como, por exemplo,
tempo de setup, taxa de produção, capacidade disponível, etc.
Ordem 1
Ordem 2
Ordem n
Fila de Espera
Regras para
escolha da
ordem
Ordem
Escolhida
Regras para
escolha do
recurso
Recurso 1
Recurso 2
Recurso m
Grupo de Recursos
Recurso
Escolhido
Decisão 1 Decisão 2
25
Seqüenciamento
 O Seqüenciamento tem por objetivo minimizar
o tempo total exigido para executar um
conjunto de tarefas ou satisfazer um prazo
previsto para a entrega de um produto, ou
mesmo minimizar os custos de produção.
 A seqüência de produção deve ser estabelecida
tendo em vista os seguintes objetivos:
 - Cumprir datas previstas de término
 - Reduzir custos de preparação
 - Otimizar a utilização das máquinas
26
Cronograma de Fabricação
dos Produtos
 O cronograma de fabricação do produto mostra contra uma
escala de tempo a seqüência de atividades pela qual os
produtos acabados são fabricados.
 O tempo de cada atividade inclui não só o tempo para processar
o trabalho, mas também o tempo de espera antes e depois da
operação.
 O cronograma de fabricação do produto têm basicamente dois
objetivos:
 (1) Estabelecer como uma política da empresa, quais
atividades precisam ser iniciadas antes do recebimento do
pedido do cliente para o produto ao qual elas se relacionam.
 (2) Prover uma base para a programação das datas de
começo e fim de cada atividade, contra as quais se possa iniciar
a atividade e testar o seu progresso.
27
1 2 3 4 5 6
Projeto, fabricação e montagem
Transporte Espera Preparação Operação Espera
Atividade 3
Cronograma de Fabricação
dos Produtos
As atividade consideradas podem envolver, além das de produção, as de projeto,
preparação de planos e programas, processamento de dados, emissão de ordens,
compra e recebimento de itens, e qualquer outra atividade relevante.
28
Seqüenciamento e Cronograma de
Fabricação
Espera Processamento Inspeção Transporte
P1E1 I1 T1
Lead Time
Cada Processo ou Centro de Trabalho
P3E3 I3 T3P2E2 I2 T2 PnEn In Tn
Para Programação da Produção
Nas Filas de Entrada dos CT
Para Conclusão do Lote
+
+
Pode chagar a 80%
do LT da Cadeia de
Valor
Tem relação direta
com o seqüenciamento
29
Seqüenciamento na Produção em
Lotes
Estoques PC e MP
Estoques de PA
SM
SM
SM SM
SM PA
SM PC
SM MP
SM PC
TC TC
TC
TC
TC
Layout Departamental
Seqüenciamento por Máquina
Layout Celular
Seqüenciamento por Célula
30
 O gráfico de Gantt é um instrumento para a visualização de
um programa de produção, auxiliando na análise de
diferentes alternativas de seqüenciamento deste programa.
 O Gráfico de GANTT é uma tabela de dupla entrada na qual
listam-se os fatores de produção na vertical e uma escala de
tempo na no eixo horizontal.
Gráfico de Gantt
31
Com uma simbologia adequada demarcamos ao longo das linhas um
segmento proporcional ao intervalo de tempo necessário para cada
atividade, de modo que não haja mais de uma atividade simultaneamente
designadas para o mesmo fator de produção e que seja condizente com a
seqüência das atividades do cronograma de fabricação do produto.
Exemplo de uma gráfico de
GANTT
Seção de Usinagem
Trabalhos 02/11 03/11 04/11 05/11 06/11 09/11 10/11
OP 043
Torno AB1 FREZA GT3 Montagem
OP 047
Freza GT3 Furadeira T5
OP050
Freza GT2
OP045
Torno AB1 Freza GT2
OP046
Montagem
OP052
Torno AB 2 Freza GT2
OP044
Montagem
32
Problemas de Seqüenciamento
Os problemas de seqüenciamento podem ser classificados em
dois grupos:
1. N tarefas processadas em M diferentes máquinas.
2. M máquinas para uma lista de tarefas (cada vez que
uma máquina completa uma tarefa tem-se que decidir
sobre a próxima tarefa da lista. A lista de tarefas muda
com novas encomendas)
As hipóteses básicas para formulação do problema são:
 As ordens de produção (OP) devem seguir a seqüência de A para B,
isto é, nenhuma das OP tem a primeira operação na máquina B.
 Os tempos para passar da máquina A para a máquina B estão
incluídos no tempo de processamento.
 Não há prioridades, ou seja, as ordens podem ser programadas em
qualquer seqüência.
33
N Tarefas através de M Máquinas
Cada trabalho obedece uma ordem de processamento A, B,
...,N (onde A, B,...,N representam as máquinas através dos
quais a tarefa tem que passar).
O problema é encontrar uma seqüência de processamento
tal que o tempo total gasto para efetuar o conjunto de tarefas
seja o mínimo possível.
Atualmente só existem soluções ótimas para os três casos
especiais:
o N trabalhos e 2 máquinas
o N trabalhos e 3 máquinas
o 2 trabalhos e M máquinas
Para problemas que não admitem uma solução ótima
emprega-se as Regras de Seqüenciamento.
34
Regras de Seqüenciamento
 As regras de seqüenciamento são heurísticas usadas
para selecionar qual dos lotes esperando na fila de
um grupo de recursos terá prioridade de
processamento, bem como qual recurso deste grupo
será carregado com esta ordem.
 Geralmente, as informações mais importantes estão
relacionadas com o tempo de processamento (lead
time) e a data de entrega.
 As regras para definição da seqüência das
atividades não garantem a obtenção da
seqüência ótima, mas ajudam estabelecer
prioridades na execução das tarefas, são elas:
35
Regras de Seqüenciamento
 Primeiro as rotinas com maior número de operações.
 Primeiro as rotinas com maior soma de tempos de operação.
 Primeiro as rotinas com a primeira operação mais curta
seguida pela operação mais longa.
 Programar em seqüência todas as rotinas que seguem fluxo
de produção semelhantes.
 Programar por último as rotinas com uma só operação.
 Programar por último as rotinas com duas operações em que
a última é mais curta que a primeira.
36
Regras de Seqüenciamento
Sigla Especificação Definição
PEPS Primeira que entra primeira
que sai
Os lotes serão processados de acordo com sua chegada no recurso.
MTP Menor tempo de
processamento
Os lotes serão processados de acordo com os menores tempos de
processamento no recurso.
MDE Menor data de entrega Os lotes serão processados de acordo com as menores datas de
entrega.
IPI Índice de prioridade Os lotes serão processados de acordo com o valor da prioridade
atribuída ao cliente ou ao produto.
ICR Índice crítico Os lotes serão processados de acordo com o menor valor de:
IFO Índice de folga Os lotes serão processados de acordo com o menor valor de:
IFA Índice de falta Os lotes serão processados de acordo com o menor valor de:
quantidade em estoque / taxa de demanda
37
Características das Regras de
Seqüenciamento
Simplicidade: As regras devem ser simples e rápidas de entender e
aplicar.
Transparência: A lógica por trás das regras deve estar clara, caso
contrário o usuário não verá sentido em aplicá-la.
Interatividade: Devem facilitar a comunicação entre os agentes do
processo produtivo.
Gerar prioridades palpáveis: As regras aplicadas devem gerar prioridades
de fácil interpretação.
Facilitar o processo de avaliação: As regras de seqüenciamento devem
promover, simultaneamente à programação, a avaliação de desempenho
de utilização dos recursos produtivos.
38
Exemplo de Seqüenciamento
Ordem de
Produção
(OP)
Tempo de Processamento
Máquina A Máquina B
1 3 6
2 6 2
3 7 4
4 5 3
5 4 7
Gráfico de GANTT – Primeiro que entra é o primeiro que sai.
Seção de Usinagem
Máquinas 5 10 15 20 25 30 35
A OP 01- 3 OP 02 - 6 OP03 – 7 OP 04 - 5 OP 05 - 4
B OP-01 - 6 OP
02 -
2
OP03 - 4 OP04 -
3
OP05 - 7
32 h
39
Seqüenciamento para o caso
de N trabalhos e 2 máquinas
 A Regra de Johnson é um algoritmo minimiza o
leadtime total de um conjunto de ordens processadas
em dois recursos sucessivos (N trabalhos em 2
recursos).
 O algoritmo de Johnson consiste em:
1. Selecionar o menor tempo entre todos os tempos de
processamento da lista de ordens a serem programadas nas
máquinas A (1°máquina) e B (2° máquina), no caso de empate
escolha qualquer um;
2. Se o tempo escolhido for na máquina A, programe esta ordem
no início. Se o tempo escolhido for na máquina B, programe
esta ordem para o final.
3. Elimine a ordem escolhida da lista de ordens a serem
programadas e retorne ao passo 1 até programar todas as
ordens.
40
Regra de Johnson
 A primeira vista o caso de duas máquinas parece sem importância,
entretanto em geral, tem-se poucas máquinas de grande custo, a
qual desejamos utilizar o máximo.
 Aplicando-se a regra de JOHNSON para o exemplo anterior o
gráfico de GANTT desta seqüência mostra que a duração deste
programa será de 27 horas, a qual é a mínima possível
Seção de Usinagem
Máquinas 5 10 15 20 25 30 35
A OP 01- 3 OP 05 -
4
OP 03 - 7 OP 04 - 5 OP 02 - 6
B OP-01 - 6 OP 05 - 7 OP 03 -
4
OP 04 -
3
OP 02
- 2 27 h
41
Seqüenciamento para o caso de N
Trabalhos Através de 3 Máquinas
Não existe nenhuma solução geral para o caso de 3 máquinas (A, B e C)
com uma ordem preestabelecida (A -> B -> C) para cada trabalho e sem
alteração nas ordens de produção. Entretanto, se qualquer uma das
duas condições abaixo for satisfeita haverá solução.
 O menor tempo de processamento na máquina A ser maior ou igual
ao maior tempo de processamento na máquina B.
 O menor tempo de processamento da máquina C ser maior ou igual
ao maior tempo de processamento da máquina B.
O método consiste em substituir este problema por um problema
equivalente envolvendo N trabalhos e 2 máquinas, ou seja, criar duas
máquinas fictícias G e H, cujo tempo de processamento da máquina G
seria a soma dos tempos de processamento das máquinas A e B, e o
tempo de processamento da máquina H seria a soma dos tempos de
processamento das máquinas B e C.
42
Exemplo para o Caso de N
Trabalhos Através de 3 Máquinas
Ordem de
Produção
Tempo de Processamento
Máquina A Máquina B Máquina C
1 4 5 8
2 9 6 10
3 8 2 6
4 6 3 7
5 5 5 11
Suponha-se o seguinte exemplo: tem-se 5 trabalhos, cada um dos quais
devendo passar pelas máquinas A, B e C na ordem A->B->C. Os tempos de
processamento são dados abaixo:
43
Exemplo para o Caso de N
Trabalhos Através de 3 Máquinas
Tem-se que Min Ai = 4, Máx. Bi = 6 e Min Ci = 6.
1a. Condição Min Ai >= Max Bi --> não satisfeita
2a. Condição Min Ci >= Max Bi --> satisfeita
Ordem de Produção Tempo de Processamento
Máquina G Máquina H
1 9 13
2 15 16
3 10 8
4 9 10
5 9 15
Então podemos transformar este problema num equivalente de N trabalhos e 2
máquinas. Os tempos de processamento são dados abaixo:
44
Exemplo para o Caso de N
Trabalhos Através de 3 Máquinas
5 -> 4 -> 1 -> 2 -> 3
1 -> 4 -> 5 -> 2 -> 3
1 -> 5 -> 4 -> 2 -> 3
4 -> 5 -> 1 -> 2 -> 3
4 -> 1 -> 5 -> 2 -> 3
5 -> 1 -> 4 -> 2 -> 3
Neste caso, o número de seqüências ótimas (6) deve-se ao fato de haver ocorrido
muitos empates.
Aplicando-se a regra de JOHSON, obtém-se as seguintes seqüências:
45
Atividade: Aplicação das
Regras de Seqüenciamento
 Cinco ordens de fabricação precisam ser estampadas na
máquina A e, em seguida, usinadas na máquina B. Os tempos
de processamento (incluindo os setups), as datas de entrega
(em número de horas a partir da programação) e as prioridades
atribuídas a cada ordem são apresentados na tabela abaixo.
Ordens Processamento (horas) Entrega
(horas)
Prioridade
Máquina A Máquina B
OF1 5 5 15 4
OF2 8 6 20 1
OF3 4 5 13 3
OF4 2 4 10 2
OF5 4 3 9 5
 Use as regras: PEPS, MTP, MDE,IPI, ICR, IFO e Johnson.
 Calcule os tempos totais de processamento para cada regra.
46
Seqüenciamento em
Processos por Projetos
 Os processos por projeto são aqueles que buscam atender a
demanda específica de um determinado cliente.
 O PCP de processos por projetos busca seqüenciar as
diferentes atividades do projeto de forma que cada uma
delas tenha seu início e conclusão encadeados com as
demais atividades que estarão ocorrendo em seqüência e/ou
paralelo com a mesma.
 A técnica mais empregada para planejar, seqüenciar e
acompanhar projetos é a técnica conhecida como
PERT/CPM (Program Evaluation and Review Technique /
Critical Path Method)
47
Seqüenciamento em
Processos por Projetos
 Esta técnica permite que os gestores do projeto tenham:
 Uma visão gráfica das atividades que compõem o projeto;
 Uma estimativa de quanto tempo o projeto consumirá;
 Uma visão de quais atividades são críticas para o atendimento
do prazo de conclusão do projeto;
 Uma visão de quanto tempo de folga dispomos nas atividades
não-críticas.
48
A rede PERT/CPM
 Uma rede PERT/CPM é formada por um conjunto interligado de
setas e nós.
 As setas representam as atividades do projeto que consomem
determinados recursos (mão-de-obra, máquinas, etc.) e/ou
tempo, já os nós representam o momento de início e fim das
atividades, os quais são chamados de eventos.
 Os eventos são pontos no tempo (nós) que demarcam o
projeto e, diferente das atividades, não consomem recursos nem
tempo.
 Os nós são numerados da esquerda para a direita e de cima
para baixo. O nome da atividade aparece em cima da seta e sua
duração em baixo. A direção da seta caracteriza o sentido de
execução da atividade.
49
A rede PERT/CPM
Atividade Dependência Nós Duração
A - 1-2 10
B - 1-3 6
C A 2-4 7
D B 3-4 5
E B 3-5 9
F C e D 4-6 5
G E 5-6 4
1
2
3
4
5
6
A
B
C
D
E
F
G
10
6
7
5
9
5
4
Cada ligação entre o nó
inicial e o final é
chamada de caminho.
50
A rede PERT/CPM
K
X
Y
W
X
Y
W
Fantasma
K
W
X
Y
L
Fantasma
 As atividades fantasmas não consomem
tempo nem recursos.
51
Cálculo dos tempos da rede
 Para cada nó ou evento de uma rede que representa um projeto
podemos calcular dois tempos que definirão os limites no tempo
que as atividades que partem deste evento dispõem para serem
iniciadas.
 O Cedo de um evento é o tempo necessário para que o evento
seja atingido desde que não haja atrasos imprevistos nas
atividades antecedentes deste evento.
 O Tarde de um evento é a última data de início das atividades
que partem deste evento de forma a não atrasar a conclusão do
projeto.
52
Cálculo dos tempos da rede
1
2
3
4
5
6
A
B
C
D
E
F
G
10
6
7
5
9
5
4
0
10
6 15
17
22
22
17
189
10
0
Cedo
Tarde
53
Cálculo dos tempos da rede
 Podemos definir para cada atividade integrante de um projeto
quatro tempos que se referem as datas de início e término da
atividade, quais sejam:
 PDI - Primeira data de início;
 PDT - Primeira data de término;
 UDI - Última data de início;
 UDT - Última data de término.
 O tempo disponível (TD) é o intervalo de tempo que existe entre a
primeira data de início (PDI) e a última data de término (UDT) de
uma atividade.
 O tempo disponível (TD) é o maior intervalo de tempo que uma
atividade dispõem para ser realizada, sem alterar o Cedo do evento
inicial nem o Tarde do evento final.
54
Cálculo dos tempos da rede
 Para cada atividade constante de um projeto podemos definir
quatro tipos de folgas:
 Folga Total (FT) = TD - t
 Folga Livre (FL) = (Cedof - Cedoi) - t
 Folga Dependente (FD) = (Tardef - Tardei) - t
 Folga Independente (FI) = (Cedof - Tardei) - t)
Atividade t Cedo Tarde FT FL FD FI
i f i f
A 10 0 10 0 10 0 0 0 0
B 6 0 6 0 9 3 0 3 0
C 7 10 17 10 17 0 0 0 0
D 5 6 17 9 17 6 6 3 3
E 9 6 15 9 18 3 0 0 0
F 5 17 22 17 22 0 0 0 0
G 4 15 22 18 22 3 3 0 0
55
Caminho Crítico
 O caminho crítico é a seqüência de atividades que possuem
folga total nula e que determina o tempo total de duração do
projeto.
 As atividades pertencentes ao caminho crítico são chamadas de
atividades críticas.
 A identificação do caminho crítico de um projeto é importe
para o gerenciamento do mesmo, pois o PCP pode concentrar
seus esforços para que estas atividades tenham prioridade na
alocação dos recursos produtivos.
56
Seqüenciamento de Projetos
PERT/CPM
Caminho Crítico
1
2 4
3 5
6
C
7
E
9
B
6
F
5
G
4
A
10
D
5
0
0
10
10
6
9
17
17
15
18
22
22
57
Atividade: Calcule o caminho
crítico da rede abaixo.
1
2
3
5 8
7 10
4 6
9
7
6
3
8
8
8
8
5
1 3
1
2
1
A
L
D
C
G
E
F
J
I
H
B
N
K
58
 Quando as estimativas dos tempos das atividades estão sujeitas à
variações aleatórias, se diz que as estimativas são probabilísticas,
devendo incluir uma indicação do grau de variabilidade das
previsões.
Tempos probabilísticos
t
t t t
e
p m o
=
+ ⋅ +4
6
σ 2
2
6
=
−





t tp o
Tempo médio esperado
Variância
59
Tempos probabilísticos
 Podemos montar a rede e proceder os cálculos dos Cedos, Tardes,
folgas e caminho crítico da mesma forma como foi feito no tópico
anterior para os tempos determinísticos, considerando que o
tempo médio esperado é o tempo da atividade.
 Dado que a média da soma de variáveis aleatórias é igual à
soma das médias destas variáveis, podemos considerar como a
variância total do projeto, a soma das variâncias das atividades
que compõem o caminho crítico.
 Caso ocorram dois, ou mais, caminhos críticos, adotamos como
variância total do projeto aquela que for menor.
60
Seqüenciamento de Projetos
PERT/CPM
Rede com Tempos Probabilísticos
6
4 omp
e
ttt
t
+⋅+
=
2
2
6 






 −
=
op tt
σ
Atividade Dependência Nós Duração
to
tm
tp
te σ2
A - 1-2 8 10 11 9,83 0,25
B - 1-3 4 6 7 5,83 0,25
C A 2-4 5 7 7,5 6,75 0,17
D B 3-4 4,5 5 6 5,08 0,06
E B 3-5 8 9 11 9,16 0,25
F C e D 4-6 4,5 5 6,5 5,16 0,11
G E 5-6 2 4 5 3,83 0,25
Quando as estimativas estão
sujeitas a variações aleatórias,
se diz que as estimativas são
probabilísticas
Emprega-se a Função Beta
61
Tempos probabilísticos
Atividade Dependência Nós Duração
to tm tp te σ2
A - 1-2 8 10 11 9,83 0,25
B - 1-3 4 6 7 5,83 0,25
C A 2-4 5 7 7,5 6,75 0,17
D B 3-4 4,5 5 6 5,08 0,06
E B 3-5 8 9 11 9,16 0,25
F C e D 4-6 4,5 5 6,5 5,16 0,11
G E 5-6 2 4 5 3,83 0,25
1
2
3
4
5
6
A
B
C
D
E
F
G
9,83
5,83
6,75
5,08
9,16
5,16
3,83
16,58
21,74
21,74
16,58
14,99
17,91
5,83
8,75
9,83
9,83
0
0
Caminho Crítico
A-C-F
Tempo Esperado
21,74
Variância
(0,25+0,17+0,11)
0,53
62
Seqüenciamento de Projetos
PERT/CPM
Atividade t Cedo Tarde FT FL FD FI
i f i f
A 9,83 0 9,83 0 9,83 0 0 0 0
B 5,83 0 5,83 0 8,75 2,92 0 2,92 0
C 6,75 9,83 16,58 9,83 16,58 0 0 0 0
D 5,08 5,83 16,58 8,75 16,58 5,67 5,67 2,75 2,75
E 9,16 5,83 14,99 8,75 17,91 2,82 0 0 0
F 5,16 16,58 21,74 16,58 21,74 0 0 0 0
G 3,83 14,99 21,74 17,91 21,74 2,92 2,92 0 0
σ
totaltt
K
−
=
73,1
53,0
74,2123
=
−
=K
probabilidade de 95,6%
do projeto ser concluído
neste prazo
1
2 4
3 5
6
C
6,75
E
9,16
B
5,83
F
5,16
G
3,83
A
9,83
D
5,08
0
0
9,83
9,83
5,83
8,75
16,58
16,58
14,99
17,91
21,74
21,74
63
Tempos probabilísticos
 Como os tempos de realização das atividades são
probabilísticos, é importante podermos estimar qual a
probabilidade que temos do projeto ficar concluído em
determinado prazo.
 Por exemplo, digamos que queremos saber qual a
probabilidade deste projeto ser concluído em 23
unidades de tempo, aplicando a fórmula achamos o
valor de K = 1,73. Entrando com este valor na tabela
da função de distribuição da curva normal,
verificamos que existe uma probabilidade de 95,6%
do projeto ser concluído neste prazo.
K
t ttotal
=
−
σ
K =
−
=
23 21 74
0 53
1 73
,
,
,
64
0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Distribuição Normal : Valores de P( Z < z ) = A(z)
Segunda decimal de z
Parteinteiraeprimeiradecimaldez
65
Aceleração de uma rede
 As estimativas de tempo das atividades de um projeto estão
relacionadas à quantidade de recursos (homens, equipamentos,
dinheiro, etc.) alocados para cada atividade.
 Geralmente, é possível adicionar, ou retirar, recursos alocados à
uma atividade de forma a acelerar, ou desacelerar, seu prazo de
conclusão.
 Desta forma, uma vez montada a rede e identificado o caminho
crítico, duas análises de custos podem ser realizadas:
 podemos analisar as folgas das atividades não críticas e
verificar a possibilidade de reduzir os recursos, e
conseqüentemente os custos, alocados as mesmas;
 podemos analisar as atividades do caminho crítico e verificar a
possibilidade de reduzir, ou aumentar, o prazo de conclusão do
projeto.
66
 Com relação à primeira análise, pode-se estudar a possibilidade de
resseqüenciar os recursos alocados as atividades não críticas, dado que
isto não afetaria o prazo de conclusão do projeto
 A atividade B teoricamente poderia ser desacelerada em 3 unidades de tempo,
a atividade D em 6, a atividade E em 3, e a atividade G em 3
 Deve-se prestar atenção que ao se ir retirando as folgas das atividades não
críticas, novos caminhos críticos surgirão
Seqüenciamento de Projetos
PERT/CPM
1
2 4
3 5
6
C
7
E
9
B
6
F
5
G
4
A
10
D
5
0
0
10
10
6
9
17
17
15
18
22
22
67
Aceleração de uma rede
 O segundo tipo de análise, aceleração ou desaceleração do
prazo de conclusão do projeto, é mais trabalhosa, pois envolve
a relação custo-benefício que temos em alterar os prazos das
atividades do caminho crítico, bem como a possibilidade de, em
dado momento, outros caminhos se tornarem também críticos e
entrarem nesta análise.
Atividade Tempo Normal Tempo Acelerado Custo por Unidade
de Tempo Reduzida
A 10 8 $100
B 6 5 $600
C 7 6 $500
D 5 5 -
E 9 7 $300
F 5 2 $300
G 4 3 $500
68
Seqüenciamento de Projetos
PERT/CPM
Aceleração da Rede
Atividade Tempo Normal Tempo Acelerado Custo por Unidade
de Tempo Reduzida
A 10 8 $100
B 6 5 $600
C 7 6 $500
D 5 5 -
E 9 7 $300
F 5 2 $300
G 4 3 $500
22 para 18
ACF 2 x A = $200
18 para 17
ACF 1 x F = $300
17 para 16
ACF 1 x F = $300
BEG 1x E = $300
22 para 16
Total = $1100

Mais conteúdo relacionado

Mais procurados

Introdução à Gestão da Produção
Introdução à Gestão da ProduçãoIntrodução à Gestão da Produção
Introdução à Gestão da ProduçãoEliseu Fortolan
 
1 slides - planejamento e controle da produção (pcp)
1   slides - planejamento e controle da produção (pcp)1   slides - planejamento e controle da produção (pcp)
1 slides - planejamento e controle da produção (pcp)Caio Roberto de Souza Filho
 
Jit – just in time
Jit – just in timeJit – just in time
Jit – just in timetrainertek
 
Just in time (jit)
Just in time (jit)Just in time (jit)
Just in time (jit)Robson Costa
 
Previsão da Demanda I
Previsão da Demanda IPrevisão da Demanda I
Previsão da Demanda IMauro Enrique
 
Processos de Produção
Processos de ProduçãoProcessos de Produção
Processos de ProduçãoMauro Enrique
 
Planejamento e controle da produção
Planejamento e controle da produçãoPlanejamento e controle da produção
Planejamento e controle da produçãoLuiza Mucida
 
Aula21082020 ferramentas de estoque
Aula21082020 ferramentas de estoqueAula21082020 ferramentas de estoque
Aula21082020 ferramentas de estoqueRicardoSilva562385
 
Balanceamento de linhas
Balanceamento de linhasBalanceamento de linhas
Balanceamento de linhasmarcioemorais
 

Mais procurados (20)

Planejamento e controle da capacidade
Planejamento e controle da capacidadePlanejamento e controle da capacidade
Planejamento e controle da capacidade
 
Aula 2 - Sistemas de Produção
Aula 2 - Sistemas de ProduçãoAula 2 - Sistemas de Produção
Aula 2 - Sistemas de Produção
 
Introdução à Gestão da Produção
Introdução à Gestão da ProduçãoIntrodução à Gestão da Produção
Introdução à Gestão da Produção
 
Lean Manufacturing 2
Lean Manufacturing 2Lean Manufacturing 2
Lean Manufacturing 2
 
1 slides - planejamento e controle da produção (pcp)
1   slides - planejamento e controle da produção (pcp)1   slides - planejamento e controle da produção (pcp)
1 slides - planejamento e controle da produção (pcp)
 
Aula 7 - Sistemas de Produção
Aula 7 - Sistemas de ProduçãoAula 7 - Sistemas de Produção
Aula 7 - Sistemas de Produção
 
Jit – just in time
Jit – just in timeJit – just in time
Jit – just in time
 
Just in time (jit)
Just in time (jit)Just in time (jit)
Just in time (jit)
 
Arranjos Físico
 Arranjos Físico Arranjos Físico
Arranjos Físico
 
Previsão da Demanda I
Previsão da Demanda IPrevisão da Demanda I
Previsão da Demanda I
 
administração da producão
administração da producãoadministração da producão
administração da producão
 
Gestão da produção
Gestão da produçãoGestão da produção
Gestão da produção
 
Gestão pela Qualidade Total
Gestão pela Qualidade TotalGestão pela Qualidade Total
Gestão pela Qualidade Total
 
Processos de Produção
Processos de ProduçãoProcessos de Produção
Processos de Produção
 
Lean Manufacturing 5
Lean Manufacturing 5Lean Manufacturing 5
Lean Manufacturing 5
 
Planejamento e controle da produção
Planejamento e controle da produçãoPlanejamento e controle da produção
Planejamento e controle da produção
 
Aula21082020 ferramentas de estoque
Aula21082020 ferramentas de estoqueAula21082020 ferramentas de estoque
Aula21082020 ferramentas de estoque
 
PCP
PCPPCP
PCP
 
Balanceamento de linhas
Balanceamento de linhasBalanceamento de linhas
Balanceamento de linhas
 
Lean Manufacturing Nova Visão
Lean Manufacturing Nova VisãoLean Manufacturing Nova Visão
Lean Manufacturing Nova Visão
 

Destaque

Carregamento, Sequenciamento e Programação da produção
Carregamento, Sequenciamento e Programação da produçãoCarregamento, Sequenciamento e Programação da produção
Carregamento, Sequenciamento e Programação da produçãoMauro Enrique
 
03 Planejamento E Controle
03 Planejamento E Controle03 Planejamento E Controle
03 Planejamento E Controlemartoncampos
 
Exercício resolvido planejamento agregado apostila
Exercício resolvido   planejamento agregado apostilaExercício resolvido   planejamento agregado apostila
Exercício resolvido planejamento agregado apostilaMoises Ribeiro
 
Sistema de Planejamento e Controle da Produção - PCP
Sistema de Planejamento e Controle da Produção - PCPSistema de Planejamento e Controle da Produção - PCP
Sistema de Planejamento e Controle da Produção - PCPMauro Enrique
 
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )Rafael Santos Adriano
 
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...GlaucoVelosodosSantos
 
Aula 13 Natureza Do Planejamento E Controle
Aula 13   Natureza Do Planejamento E ControleAula 13   Natureza Do Planejamento E Controle
Aula 13 Natureza Do Planejamento E Controleguesteb91dafb
 
Curso estoque e_custos
Curso estoque e_custosCurso estoque e_custos
Curso estoque e_custosGilmar Mathes
 
PPCP03 Cap01 parte B
PPCP03 Cap01 parte BPPCP03 Cap01 parte B
PPCP03 Cap01 parte BAndre Jun
 
Planeamento e Controlo da Producao
Planeamento e Controlo da ProducaoPlaneamento e Controlo da Producao
Planeamento e Controlo da ProducaoManuel Alberto
 
Palestra - Planejamento programação e controle da produção
Palestra - Planejamento programação e controle da produçãoPalestra - Planejamento programação e controle da produção
Palestra - Planejamento programação e controle da produçãoMichelle Raimundo dos Santos
 
PPCP06 Cap03 parte A
PPCP06 Cap03 parte APPCP06 Cap03 parte A
PPCP06 Cap03 parte AAndre Jun
 
06 administração (planejamento da produção)
06   administração (planejamento da produção)06   administração (planejamento da produção)
06 administração (planejamento da produção)Elizeu Ferro
 

Destaque (20)

Carregamento, Sequenciamento e Programação da produção
Carregamento, Sequenciamento e Programação da produçãoCarregamento, Sequenciamento e Programação da produção
Carregamento, Sequenciamento e Programação da produção
 
03 Planejamento E Controle
03 Planejamento E Controle03 Planejamento E Controle
03 Planejamento E Controle
 
Exercício resolvido planejamento agregado apostila
Exercício resolvido   planejamento agregado apostilaExercício resolvido   planejamento agregado apostila
Exercício resolvido planejamento agregado apostila
 
Sistema de Planejamento e Controle da Produção - PCP
Sistema de Planejamento e Controle da Produção - PCPSistema de Planejamento e Controle da Produção - PCP
Sistema de Planejamento e Controle da Produção - PCP
 
Planejamento agregado
Planejamento agregadoPlanejamento agregado
Planejamento agregado
 
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )
Apresentação PCP - Produção Puxada - Manufatura Enxuta ( Lean Manufacturing )
 
Aula 2 - Planejamento e Controle da Produção II
Aula 2 - Planejamento e Controle da Produção IIAula 2 - Planejamento e Controle da Produção II
Aula 2 - Planejamento e Controle da Produção II
 
Planejamento Tático de Produção
Planejamento Tático de ProduçãoPlanejamento Tático de Produção
Planejamento Tático de Produção
 
Trabalho sobre a anglo gold ashanti
Trabalho sobre a anglo gold ashantiTrabalho sobre a anglo gold ashanti
Trabalho sobre a anglo gold ashanti
 
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...
Classificação e dimensionamento de estoques - MBA em Logística e Supply Chai...
 
Pert cpm
Pert cpmPert cpm
Pert cpm
 
Apresentacao ctoc
Apresentacao ctocApresentacao ctoc
Apresentacao ctoc
 
Aula 13 Natureza Do Planejamento E Controle
Aula 13   Natureza Do Planejamento E ControleAula 13   Natureza Do Planejamento E Controle
Aula 13 Natureza Do Planejamento E Controle
 
Curso estoque e_custos
Curso estoque e_custosCurso estoque e_custos
Curso estoque e_custos
 
PPCP03 Cap01 parte B
PPCP03 Cap01 parte BPPCP03 Cap01 parte B
PPCP03 Cap01 parte B
 
Planeamento e Controlo da Producao
Planeamento e Controlo da ProducaoPlaneamento e Controlo da Producao
Planeamento e Controlo da Producao
 
Palestra - Planejamento programação e controle da produção
Palestra - Planejamento programação e controle da produçãoPalestra - Planejamento programação e controle da produção
Palestra - Planejamento programação e controle da produção
 
Gráfico de gantt
Gráfico de ganttGráfico de gantt
Gráfico de gantt
 
PPCP06 Cap03 parte A
PPCP06 Cap03 parte APPCP06 Cap03 parte A
PPCP06 Cap03 parte A
 
06 administração (planejamento da produção)
06   administração (planejamento da produção)06   administração (planejamento da produção)
06 administração (planejamento da produção)
 

Semelhante a Planejamento e Controle da Produção

Guia pratico-para-o-calculo-do-oee-illustrado
Guia pratico-para-o-calculo-do-oee-illustradoGuia pratico-para-o-calculo-do-oee-illustrado
Guia pratico-para-o-calculo-do-oee-illustradoSidonio Guerreiro
 
Conexão entre a engenharia de manufatura e o chão de fábrica
Conexão entre a engenharia de manufatura e o chão de fábricaConexão entre a engenharia de manufatura e o chão de fábrica
Conexão entre a engenharia de manufatura e o chão de fábricaPLMX -Soluções para Negocios
 
checklist-roteiro.pdf
checklist-roteiro.pdfchecklist-roteiro.pdf
checklist-roteiro.pdfMrciaJorge5
 
Ferramentas stp 2017_moodle
Ferramentas stp 2017_moodleFerramentas stp 2017_moodle
Ferramentas stp 2017_moodleTelmo Telles
 
Fabricação de uma peça real utilizando CNC e o código G
Fabricação de uma peça real utilizando CNC e o código GFabricação de uma peça real utilizando CNC e o código G
Fabricação de uma peça real utilizando CNC e o código GRafael Lial
 
Unidade i mrp, mrpii, opt, cam, cim
Unidade i   mrp, mrpii, opt, cam, cimUnidade i   mrp, mrpii, opt, cam, cim
Unidade i mrp, mrpii, opt, cam, cimluiz0807
 
Administração de Produção - Layout/Arranjo Fisico
Administração de Produção - Layout/Arranjo FisicoAdministração de Produção - Layout/Arranjo Fisico
Administração de Produção - Layout/Arranjo Fisicodouglas
 
[BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...
 [BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ... [BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...
[BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...EloGroup
 
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...EloGroup
 
Projeto de otimização de Performance e Redução de Custos Sistema On-Line
Projeto de otimização de Performance e Redução de Custos Sistema On-LineProjeto de otimização de Performance e Redução de Custos Sistema On-Line
Projeto de otimização de Performance e Redução de Custos Sistema On-LineJoao Galdino Mello de Souza
 
Analise de Problema de Negocios Empresariais
Analise de Problema de Negocios EmpresariaisAnalise de Problema de Negocios Empresariais
Analise de Problema de Negocios Empresariaischaideac
 
Automação ind 6_2014
Automação ind 6_2014Automação ind 6_2014
Automação ind 6_2014Marcio Oliani
 
Mecanismo da Função Produção Perdas
Mecanismo da Função Produção PerdasMecanismo da Função Produção Perdas
Mecanismo da Função Produção PerdasUniversity
 

Semelhante a Planejamento e Controle da Produção (20)

Guia pratico-para-o-calculo-do-oee-illustrado
Guia pratico-para-o-calculo-do-oee-illustradoGuia pratico-para-o-calculo-do-oee-illustrado
Guia pratico-para-o-calculo-do-oee-illustrado
 
Conexão entre a engenharia de manufatura e o chão de fábrica
Conexão entre a engenharia de manufatura e o chão de fábricaConexão entre a engenharia de manufatura e o chão de fábrica
Conexão entre a engenharia de manufatura e o chão de fábrica
 
checklist-roteiro.pdf
checklist-roteiro.pdfchecklist-roteiro.pdf
checklist-roteiro.pdf
 
Ferramentas stp 2017_moodle
Ferramentas stp 2017_moodleFerramentas stp 2017_moodle
Ferramentas stp 2017_moodle
 
Fabricação de uma peça real utilizando CNC e o código G
Fabricação de uma peça real utilizando CNC e o código GFabricação de uma peça real utilizando CNC e o código G
Fabricação de uma peça real utilizando CNC e o código G
 
Unidade i mrp, mrpii, opt, cam, cim
Unidade i   mrp, mrpii, opt, cam, cimUnidade i   mrp, mrpii, opt, cam, cim
Unidade i mrp, mrpii, opt, cam, cim
 
Administração de Produção - Layout/Arranjo Fisico
Administração de Produção - Layout/Arranjo FisicoAdministração de Produção - Layout/Arranjo Fisico
Administração de Produção - Layout/Arranjo Fisico
 
[BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...
 [BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ... [BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...
[BPM Day Porto Alegre 2014] Luciano André Merigo (Unicasa) – Ganhos rápidos ...
 
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...
[BPM Day Porto Alegre] Luciano André Merigo (Unicasa) - Ganhos rápidos (quick...
 
Projeto de otimização de Performance e Redução de Custos Sistema On-Line
Projeto de otimização de Performance e Redução de Custos Sistema On-LineProjeto de otimização de Performance e Redução de Custos Sistema On-Line
Projeto de otimização de Performance e Redução de Custos Sistema On-Line
 
STP - SHIGEO SHINGO
STP - SHIGEO SHINGOSTP - SHIGEO SHINGO
STP - SHIGEO SHINGO
 
MRP e JIT
MRP e JITMRP e JIT
MRP e JIT
 
Clp basico
Clp basicoClp basico
Clp basico
 
Mainframe Performance Review
Mainframe Performance ReviewMainframe Performance Review
Mainframe Performance Review
 
Analise de Problema de Negocios Empresariais
Analise de Problema de Negocios EmpresariaisAnalise de Problema de Negocios Empresariais
Analise de Problema de Negocios Empresariais
 
Takt time calculo e avaliações
Takt time calculo e avaliaçõesTakt time calculo e avaliações
Takt time calculo e avaliações
 
Arquitetura 8 3
Arquitetura 8 3Arquitetura 8 3
Arquitetura 8 3
 
Arquitetura 8 3
Arquitetura 8 3Arquitetura 8 3
Arquitetura 8 3
 
Automação ind 6_2014
Automação ind 6_2014Automação ind 6_2014
Automação ind 6_2014
 
Mecanismo da Função Produção Perdas
Mecanismo da Função Produção PerdasMecanismo da Função Produção Perdas
Mecanismo da Função Produção Perdas
 

Último

Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animalleandroladesenvolvim
 
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdf
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdfAulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdf
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdfMateusSerraRodrigues1
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAMCassio Rodrigo
 
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docxAE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docxConsultoria Acadêmica
 
Resistencias dos materiais I - Tensao.pptx
Resistencias dos materiais I - Tensao.pptxResistencias dos materiais I - Tensao.pptx
Resistencias dos materiais I - Tensao.pptxjuliocameloUFC
 
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024Consultoria Acadêmica
 

Último (6)

Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animal
 
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdf
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdfAulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdf
Aulas Práticas da Disciplina de Desenho Técnico Projetivo _ Passei Direto.pdf
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
 
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docxAE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
AE03 - VIBRACOES MECANICAS E ACUSTICAS.docx
 
Resistencias dos materiais I - Tensao.pptx
Resistencias dos materiais I - Tensao.pptxResistencias dos materiais I - Tensao.pptx
Resistencias dos materiais I - Tensao.pptx
 
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024
AE03 - TEORIAS DA ADMINISTRACAO UNICESUMAR 51/2024
 

Planejamento e Controle da Produção

  • 1. Métodos de Programação da Produção Planejamento e Controle da Produção
  • 2. 2 Compras Pedidos de Compras Planejamento Estratégico da Produção Plano de Produção Planejamento-mestre da Produção Plano-mestre de Produção Programação da Produção Administração dos Estoques Seqüenciamento Emissão e Liberação Ordens de Compras Ordens de Fabricação Ordens de Montagem Fabricação e MontagemEstoques Clientes Marketing Engenharia Fornecedores AcompanhamentoeControledaProdução Previsão de Vendas Pedidos em Carteira Estrutura do Produto Roteiro de Fabricação AvaliaçãodeDesempenho Fluxo de Informações e PCP
  • 3. 3  A partir do sistema de gestão de estoques serão geradas a cada período de programação as necessidades de compras, fabricação e montagem dos itens para atender ao PMP  Convencionalmente, as ordens de compras, uma vez geradas, são encaminhadas para o setor encarregado das compras e saem da esfera de ação do PCP  Já as necessidades de fabricação e de montagem precisam normalmente passar pôr um sistema produtivo com limitações de capacidade. A adequação do programa gerado aos recursos disponíveis (máquinas, homens, instalações, etc.) é função do seqüenciamento Programação da Produção
  • 4. 4 Emissão de Ordens  A programação materializa-se através da emissão de ordens. Estas ordens são de dois tipos: ordens de produção (fabricação e montagem) e ordens de compra.  As ordens devem conter as seguintes informações:  A) Especificação de item a ser produzido ou comprado.  B) Quantidade.  C) Prazo de entrega ou conclusão da produção.  Cada sistema de produção (Tradicional, MRP ou Just-in- time) possui particularidades e características próprias para a programação.
  • 5. 5 Emissão e Liberação de Ordens  A última atividade do PCP antes do início da produção propriamente dita, consiste na emissão e liberação das ordens de fabricação, montagem e compras, que permitirão aos diversos setores operacionais da empresa executarem suas atividades de forma coordenada no sentido de atender determinado PMP.
  • 6. 6 Emissão e Liberação de Ordens  Até serem emitidas e liberadas, as ordens são apenas planos que se pretendem cumprir.  Uma vez formalizada a documentação e encaminhada aos seus executores, estas ordens entram na esfera operacional do processo produtivo.  Ações são tomadas e recursos alocados para a sua efetivação, fazendo com que seja difícil e antieconômico mudanças nesta programação.
  • 7. 7 Emissão e Liberação de Ordens  As ordens de compra são encaminhadas ao Departamento de Compras;  As ordens de fabricação e montagem, antes de liberadas, necessitam ser verificadas quanto a disponibilidade de recursos humanos, máquinas e materiais.
  • 8. 8 Programação da Produção (ou programação das ordens de produção) Programar é a atividade que determina quando cada tarefa necessária a execução de um produto ou serviço deve ser iniciada e concluída. a. Princípio da duração ótima da tarefa: A programação tende a atingir sua máxima eficiência quando a duração das tarefas é pequena e todas as tarefas são da mesma ordem de grandeza. b. Princípio do plano de produção ótimo: A programação tende a atingir sua máxima eficiência quando o trabalho é planejado de forma que a carga de todos os centros produtivos seja igual. c. Princípio da seqüência ótima de operações: A programação tende a atingir sua máxima eficiência quando o trabalho é planejado de forma que os centros produtivos sejam normalmente usados na mesma seqüência. Princípios da programação
  • 9. 9 Demanda/Volume de ProduçãoAlta Baixa Flexibilidade/Variedade de itensBaixa Alta Lead Time ProdutivoBaixo Alto CustosBaixo Alto Contínuos Massa Repetitivos em Lotes Sob Encomenda Demanda/Volume de ProduçãoAlta Baixa Flexibilidade/Variedade de itensBaixa Alta Lead Time ProdutivoBaixo Alto CustosBaixo Alto Contínuos Massa Repetitivos em Lotes Sob Encomenda Demanda/Volume de ProduçãoAlta Baixa Flexibilidade/Variedade de itensBaixa Alta Detalhamento da ProgramaçãoBaixo Alto Contínuos Massa Repetitivos em Lotes Sob Encomenda Logística das MP/PA e PMP Define Tempo de Ciclo para balanceamento da linha Explosão dos itens (MRP) e seqüenciamento das ordens por recurso Garantia da data de entrega capacidade finita ou PERT/CPM) Programação da Produção (ou programação das ordens de produção)
  • 10. 10 Seqüenciamento das ordens de produção  Como normalmente temos várias ordens de produção para serem processadas nos mesmos recursos é necessário estabelecer um seqüenciamento destas ordens.  O seqüenciamento é a programação de um conjunto de ordens.  O seqüenciamento estabelece a ordem segundo a qual cada ordem de produção será executada levando em conta certos critérios.
  • 11. 11 Seqüenciamento nos Processos Contínuos  Como os processos contínuos se propõem a produção de poucos itens, não existem problemas de seqüenciamento quanto a ordem de execução das atividades.  Os problemas de programação estão focados na definição da velocidade que será dada ao sistema produtivo para atender a determinada demanda estabelecida no PMP.
  • 12. 12 Seqüenciamento nos Processos Repetitivos em Massa  O trabalho da programação da produção nos processos em massa consiste em buscar um ritmo equilibrado entre os vários postos de trabalho conhecido como "balanceamento" de linha, de forma a atender economicamente uma taxa de demanda, expressa em termos de "tempo de ciclo" de trabalho.
  • 13. 13 Balanceamento de Linhas de Montagem TC = TD/D MP PA Componentes ROP = TC ROP = TC ROP = TC ROP = TC ROP = TC ROP = TC ROP = TC ROP = TC •Montadores disposto seqüencialmente em postos de trabalhos •Conjunto de operações-padrão ou rotina de operações-padrão (ROP), •Limitado a um tempo de ciclo (TC), •Para cada TC um produto acabado seja montado.
  • 14. 14 Balanceamento de Linhas de Montagem Montagem da Placa de Bornes e Caixa de Ligação – Operações-padrão Ordem Operações-padrão Tempo (min.) 1 Soltar cabos 0,132 2 Fazer ligação na placa de bornes 0,648 3 Colocar ponte de ligação e porcas com arruelas 0,527 4 Pegar parafusadeira e fixar porcas na placa de bornes 0,156 5 Dobrar cabos com terminais 0,196 6 Pegar caixa de ligação e posicionar na bancada 0,102 7 Posicionar e prensar aterramento na caixa de ligação 0,074 8 Posicionar parafusos na caixa de ligação 0,351 9 Pegar caixa de ligação e posicionar sobre o motor 0,345 10 Pegar parafusadeira e fixar caixa de ligação 0,370 11 Enrolar duas pontas do cabo da resistência 0,207 12 Pegar estanhador e estanhar cabo da resistência 0,415 13 Cortar conector e retirar rebarba 0,593 14 Conectar cabos da resistência no conector 0,611 15 Parafusar conector na caixa de ligação 0,590 16 Conectar cabos do termostato no conector 1,030 Tempo Total 6,347
  • 15. 15 Balanceamento de Linhas de Montagem TC TD CP = CP = Capacidade de produção em unidades por dia TC = Tempo de ciclo em minutos por unidade TD = Tempo disponível para produção em minutos por dia O tempo da operação gargalo (operação 16) é importante, pois define para o PCP o limite de capacidade de produção (CP) do centro de trabalho
  • 16. 16 Balanceamento de Linhas de Montagem TC TD CP = Está se admitindo que a linha é focada a uma família de motores, ou seja, não há setups, e que todas as operações-padrão são operações manuais, ou seja, exigem a presença do operador para executá-las, e está se colocando vários operadores na linha, sendo que um deles dedicado apenas à operação 16, admitindo-se ainda que esse operador precise pegar e devolver o item a bancada, consumindo mais 0,100 minutos unid/dia min/unid min/dia CP 424 130,1 480 ≈= Operação-padrão gargalo = 1,030 minutos Deslocamentos = 0,100 minutos TC = 1,130 minutos por unidade
  • 17. 17 Balanceamento de Linhas de Montagem D TD TC = TD D TX = TC = Tempo de ciclo em minutos por unidade TX = Taxa de produção em unidades por minuto TD = Tempo disponível para produção em minutos por dia D = Demanda média em unidades por dia Admitindo-se que a demanda média esperada por dia seja de 200 unidades desses motores, a linha de montagem tem que ser balanceada para um TC de 2,40 minutos por unidade, o que equivale a uma TX de 0,416 unidades por minutos min/unid unid/dia min/dia TC 40,2 200 480 == unid/min min/dia unid/dia TX 416,0 480 200 ≈=
  • 18. 18 Balanceamento de Linhas de Montagem Ordem T min ROP T.op. T.mov. Total 1 0,132 2 0,648 3 0,527 4 0,156 5 0,196 6 0,102 7 0,074 8 0,351 9 0,345 10 0,370 11 0,207 12 0,415 13 0,593 14 0,611 15 0,590 Posto 5 0,590 0,100 0,690 16 1,030 Posto 6 1,030 0,100 1,130 Posto 1 Posto 2 Posto 3 Posto 4 0,100 0,992 1,3041,204 1,224 0,100 1,324 0,100 1,092 1,307 0,100 1,407 Operação-padrão Linha Retilínea Para TC 1,5 min (320 unid/dia) Está se admitindo que cada posto de trabalho tenha que pegar a carcaça do motor (0,050 min) na bancada e, após as operações-padrão, recolocá-la (0,050 min) para o próximo operador
  • 19. 19 Atividade: Balanceamento de uma Linha de Montagem  Admitindo-se que um produto é montado em uma linha que trabalha 480 minutos por dia (8 horas) a partir de seis operações seqüenciais, com os seguintes tempos unitários: Operação 1 Operação 2 Operação 3 Operação 4 Operação 5 Operação 6 0,8 min. 1,0 min. 0,5 min. 1,0 min. 0,5 min. 0,7 min. CP= TP TC CP = Capacidade de produção por dia; TP = Tempo disponível para a produção por dia; TC = Tempo de ciclo em minutos por unidade; D = Demanda esperada por dia. TC TP D = Calcule a capacidade máxima teórica de produção da linha e o número de postos de trabalho para uma produção de 240 unidades.
  • 20. 20 Balanceamento de Fluxo de produção A C H B F E G D I 0,2 0,4 0,7 0,6 0,5 0,4 0,1 0,3 0,6
  • 21. 21 Balanceamento de Fluxo de produção A C H B F E G D I 0,2 0,4 0,7 0,6 0,5 0,4 0,1 0,3 0,6 1° Passo – Calcular o tempo total necessário para a produção: Tempo total de Produção = 0,2 + 0,6 + 0,4 + 0,7 + 0,3 + 0,5 + 0,6 + 0,1+ 0,4 = 3,80 2° Passo – Calcular a quantidade de operadores / estágios necessários Qtde. Operadores = Tempo de produção / tempo de ciclo = 3,80Minutos / 1 min = Qtde. Operadores = 3,8 ~ 4 operadores
  • 22. 22 3° Passo – Balancear o fluxo usando 4 operadores Operador Tarefa Tempo 1 Tempo 2 Tempo 3 Tempo Total 1 A e B 0,2 0,6 0,8 2 C e F e H 0,4 0,5 0,1 1,0 3 D e E 0,7 0,3 1,0 4 G e I 0,6 0,4 1,0 Balanceamento de Fluxo de produção
  • 23. 23 Atividade: Balanceamento de um fluxo de produção. A C HB F E G D 3,0 1,0 4,0 3,0 5,0 9,0 3,0 2,0 Faça o balanceamento do fluxo de produção abaixo para uma produção de 12 unidades de produto por hora.
  • 24. 24 Seqüenciamento na Produção em lotes  Quanto à escolha da ordem a ser processada  regras normalmente baseadas nas características do item ou lote a ser produzido, como, por exemplo, tempo da operação-padrão, cobertura do estoque, importância do cliente, etc.  Quanto à escolha do recurso a ser utilizado  o foco das regras de seqüenciamento é o recurso, como, por exemplo, tempo de setup, taxa de produção, capacidade disponível, etc. Ordem 1 Ordem 2 Ordem n Fila de Espera Regras para escolha da ordem Ordem Escolhida Regras para escolha do recurso Recurso 1 Recurso 2 Recurso m Grupo de Recursos Recurso Escolhido Decisão 1 Decisão 2
  • 25. 25 Seqüenciamento  O Seqüenciamento tem por objetivo minimizar o tempo total exigido para executar um conjunto de tarefas ou satisfazer um prazo previsto para a entrega de um produto, ou mesmo minimizar os custos de produção.  A seqüência de produção deve ser estabelecida tendo em vista os seguintes objetivos:  - Cumprir datas previstas de término  - Reduzir custos de preparação  - Otimizar a utilização das máquinas
  • 26. 26 Cronograma de Fabricação dos Produtos  O cronograma de fabricação do produto mostra contra uma escala de tempo a seqüência de atividades pela qual os produtos acabados são fabricados.  O tempo de cada atividade inclui não só o tempo para processar o trabalho, mas também o tempo de espera antes e depois da operação.  O cronograma de fabricação do produto têm basicamente dois objetivos:  (1) Estabelecer como uma política da empresa, quais atividades precisam ser iniciadas antes do recebimento do pedido do cliente para o produto ao qual elas se relacionam.  (2) Prover uma base para a programação das datas de começo e fim de cada atividade, contra as quais se possa iniciar a atividade e testar o seu progresso.
  • 27. 27 1 2 3 4 5 6 Projeto, fabricação e montagem Transporte Espera Preparação Operação Espera Atividade 3 Cronograma de Fabricação dos Produtos As atividade consideradas podem envolver, além das de produção, as de projeto, preparação de planos e programas, processamento de dados, emissão de ordens, compra e recebimento de itens, e qualquer outra atividade relevante.
  • 28. 28 Seqüenciamento e Cronograma de Fabricação Espera Processamento Inspeção Transporte P1E1 I1 T1 Lead Time Cada Processo ou Centro de Trabalho P3E3 I3 T3P2E2 I2 T2 PnEn In Tn Para Programação da Produção Nas Filas de Entrada dos CT Para Conclusão do Lote + + Pode chagar a 80% do LT da Cadeia de Valor Tem relação direta com o seqüenciamento
  • 29. 29 Seqüenciamento na Produção em Lotes Estoques PC e MP Estoques de PA SM SM SM SM SM PA SM PC SM MP SM PC TC TC TC TC TC Layout Departamental Seqüenciamento por Máquina Layout Celular Seqüenciamento por Célula
  • 30. 30  O gráfico de Gantt é um instrumento para a visualização de um programa de produção, auxiliando na análise de diferentes alternativas de seqüenciamento deste programa.  O Gráfico de GANTT é uma tabela de dupla entrada na qual listam-se os fatores de produção na vertical e uma escala de tempo na no eixo horizontal. Gráfico de Gantt
  • 31. 31 Com uma simbologia adequada demarcamos ao longo das linhas um segmento proporcional ao intervalo de tempo necessário para cada atividade, de modo que não haja mais de uma atividade simultaneamente designadas para o mesmo fator de produção e que seja condizente com a seqüência das atividades do cronograma de fabricação do produto. Exemplo de uma gráfico de GANTT Seção de Usinagem Trabalhos 02/11 03/11 04/11 05/11 06/11 09/11 10/11 OP 043 Torno AB1 FREZA GT3 Montagem OP 047 Freza GT3 Furadeira T5 OP050 Freza GT2 OP045 Torno AB1 Freza GT2 OP046 Montagem OP052 Torno AB 2 Freza GT2 OP044 Montagem
  • 32. 32 Problemas de Seqüenciamento Os problemas de seqüenciamento podem ser classificados em dois grupos: 1. N tarefas processadas em M diferentes máquinas. 2. M máquinas para uma lista de tarefas (cada vez que uma máquina completa uma tarefa tem-se que decidir sobre a próxima tarefa da lista. A lista de tarefas muda com novas encomendas) As hipóteses básicas para formulação do problema são:  As ordens de produção (OP) devem seguir a seqüência de A para B, isto é, nenhuma das OP tem a primeira operação na máquina B.  Os tempos para passar da máquina A para a máquina B estão incluídos no tempo de processamento.  Não há prioridades, ou seja, as ordens podem ser programadas em qualquer seqüência.
  • 33. 33 N Tarefas através de M Máquinas Cada trabalho obedece uma ordem de processamento A, B, ...,N (onde A, B,...,N representam as máquinas através dos quais a tarefa tem que passar). O problema é encontrar uma seqüência de processamento tal que o tempo total gasto para efetuar o conjunto de tarefas seja o mínimo possível. Atualmente só existem soluções ótimas para os três casos especiais: o N trabalhos e 2 máquinas o N trabalhos e 3 máquinas o 2 trabalhos e M máquinas Para problemas que não admitem uma solução ótima emprega-se as Regras de Seqüenciamento.
  • 34. 34 Regras de Seqüenciamento  As regras de seqüenciamento são heurísticas usadas para selecionar qual dos lotes esperando na fila de um grupo de recursos terá prioridade de processamento, bem como qual recurso deste grupo será carregado com esta ordem.  Geralmente, as informações mais importantes estão relacionadas com o tempo de processamento (lead time) e a data de entrega.  As regras para definição da seqüência das atividades não garantem a obtenção da seqüência ótima, mas ajudam estabelecer prioridades na execução das tarefas, são elas:
  • 35. 35 Regras de Seqüenciamento  Primeiro as rotinas com maior número de operações.  Primeiro as rotinas com maior soma de tempos de operação.  Primeiro as rotinas com a primeira operação mais curta seguida pela operação mais longa.  Programar em seqüência todas as rotinas que seguem fluxo de produção semelhantes.  Programar por último as rotinas com uma só operação.  Programar por último as rotinas com duas operações em que a última é mais curta que a primeira.
  • 36. 36 Regras de Seqüenciamento Sigla Especificação Definição PEPS Primeira que entra primeira que sai Os lotes serão processados de acordo com sua chegada no recurso. MTP Menor tempo de processamento Os lotes serão processados de acordo com os menores tempos de processamento no recurso. MDE Menor data de entrega Os lotes serão processados de acordo com as menores datas de entrega. IPI Índice de prioridade Os lotes serão processados de acordo com o valor da prioridade atribuída ao cliente ou ao produto. ICR Índice crítico Os lotes serão processados de acordo com o menor valor de: IFO Índice de folga Os lotes serão processados de acordo com o menor valor de: IFA Índice de falta Os lotes serão processados de acordo com o menor valor de: quantidade em estoque / taxa de demanda
  • 37. 37 Características das Regras de Seqüenciamento Simplicidade: As regras devem ser simples e rápidas de entender e aplicar. Transparência: A lógica por trás das regras deve estar clara, caso contrário o usuário não verá sentido em aplicá-la. Interatividade: Devem facilitar a comunicação entre os agentes do processo produtivo. Gerar prioridades palpáveis: As regras aplicadas devem gerar prioridades de fácil interpretação. Facilitar o processo de avaliação: As regras de seqüenciamento devem promover, simultaneamente à programação, a avaliação de desempenho de utilização dos recursos produtivos.
  • 38. 38 Exemplo de Seqüenciamento Ordem de Produção (OP) Tempo de Processamento Máquina A Máquina B 1 3 6 2 6 2 3 7 4 4 5 3 5 4 7 Gráfico de GANTT – Primeiro que entra é o primeiro que sai. Seção de Usinagem Máquinas 5 10 15 20 25 30 35 A OP 01- 3 OP 02 - 6 OP03 – 7 OP 04 - 5 OP 05 - 4 B OP-01 - 6 OP 02 - 2 OP03 - 4 OP04 - 3 OP05 - 7 32 h
  • 39. 39 Seqüenciamento para o caso de N trabalhos e 2 máquinas  A Regra de Johnson é um algoritmo minimiza o leadtime total de um conjunto de ordens processadas em dois recursos sucessivos (N trabalhos em 2 recursos).  O algoritmo de Johnson consiste em: 1. Selecionar o menor tempo entre todos os tempos de processamento da lista de ordens a serem programadas nas máquinas A (1°máquina) e B (2° máquina), no caso de empate escolha qualquer um; 2. Se o tempo escolhido for na máquina A, programe esta ordem no início. Se o tempo escolhido for na máquina B, programe esta ordem para o final. 3. Elimine a ordem escolhida da lista de ordens a serem programadas e retorne ao passo 1 até programar todas as ordens.
  • 40. 40 Regra de Johnson  A primeira vista o caso de duas máquinas parece sem importância, entretanto em geral, tem-se poucas máquinas de grande custo, a qual desejamos utilizar o máximo.  Aplicando-se a regra de JOHNSON para o exemplo anterior o gráfico de GANTT desta seqüência mostra que a duração deste programa será de 27 horas, a qual é a mínima possível Seção de Usinagem Máquinas 5 10 15 20 25 30 35 A OP 01- 3 OP 05 - 4 OP 03 - 7 OP 04 - 5 OP 02 - 6 B OP-01 - 6 OP 05 - 7 OP 03 - 4 OP 04 - 3 OP 02 - 2 27 h
  • 41. 41 Seqüenciamento para o caso de N Trabalhos Através de 3 Máquinas Não existe nenhuma solução geral para o caso de 3 máquinas (A, B e C) com uma ordem preestabelecida (A -> B -> C) para cada trabalho e sem alteração nas ordens de produção. Entretanto, se qualquer uma das duas condições abaixo for satisfeita haverá solução.  O menor tempo de processamento na máquina A ser maior ou igual ao maior tempo de processamento na máquina B.  O menor tempo de processamento da máquina C ser maior ou igual ao maior tempo de processamento da máquina B. O método consiste em substituir este problema por um problema equivalente envolvendo N trabalhos e 2 máquinas, ou seja, criar duas máquinas fictícias G e H, cujo tempo de processamento da máquina G seria a soma dos tempos de processamento das máquinas A e B, e o tempo de processamento da máquina H seria a soma dos tempos de processamento das máquinas B e C.
  • 42. 42 Exemplo para o Caso de N Trabalhos Através de 3 Máquinas Ordem de Produção Tempo de Processamento Máquina A Máquina B Máquina C 1 4 5 8 2 9 6 10 3 8 2 6 4 6 3 7 5 5 5 11 Suponha-se o seguinte exemplo: tem-se 5 trabalhos, cada um dos quais devendo passar pelas máquinas A, B e C na ordem A->B->C. Os tempos de processamento são dados abaixo:
  • 43. 43 Exemplo para o Caso de N Trabalhos Através de 3 Máquinas Tem-se que Min Ai = 4, Máx. Bi = 6 e Min Ci = 6. 1a. Condição Min Ai >= Max Bi --> não satisfeita 2a. Condição Min Ci >= Max Bi --> satisfeita Ordem de Produção Tempo de Processamento Máquina G Máquina H 1 9 13 2 15 16 3 10 8 4 9 10 5 9 15 Então podemos transformar este problema num equivalente de N trabalhos e 2 máquinas. Os tempos de processamento são dados abaixo:
  • 44. 44 Exemplo para o Caso de N Trabalhos Através de 3 Máquinas 5 -> 4 -> 1 -> 2 -> 3 1 -> 4 -> 5 -> 2 -> 3 1 -> 5 -> 4 -> 2 -> 3 4 -> 5 -> 1 -> 2 -> 3 4 -> 1 -> 5 -> 2 -> 3 5 -> 1 -> 4 -> 2 -> 3 Neste caso, o número de seqüências ótimas (6) deve-se ao fato de haver ocorrido muitos empates. Aplicando-se a regra de JOHSON, obtém-se as seguintes seqüências:
  • 45. 45 Atividade: Aplicação das Regras de Seqüenciamento  Cinco ordens de fabricação precisam ser estampadas na máquina A e, em seguida, usinadas na máquina B. Os tempos de processamento (incluindo os setups), as datas de entrega (em número de horas a partir da programação) e as prioridades atribuídas a cada ordem são apresentados na tabela abaixo. Ordens Processamento (horas) Entrega (horas) Prioridade Máquina A Máquina B OF1 5 5 15 4 OF2 8 6 20 1 OF3 4 5 13 3 OF4 2 4 10 2 OF5 4 3 9 5  Use as regras: PEPS, MTP, MDE,IPI, ICR, IFO e Johnson.  Calcule os tempos totais de processamento para cada regra.
  • 46. 46 Seqüenciamento em Processos por Projetos  Os processos por projeto são aqueles que buscam atender a demanda específica de um determinado cliente.  O PCP de processos por projetos busca seqüenciar as diferentes atividades do projeto de forma que cada uma delas tenha seu início e conclusão encadeados com as demais atividades que estarão ocorrendo em seqüência e/ou paralelo com a mesma.  A técnica mais empregada para planejar, seqüenciar e acompanhar projetos é a técnica conhecida como PERT/CPM (Program Evaluation and Review Technique / Critical Path Method)
  • 47. 47 Seqüenciamento em Processos por Projetos  Esta técnica permite que os gestores do projeto tenham:  Uma visão gráfica das atividades que compõem o projeto;  Uma estimativa de quanto tempo o projeto consumirá;  Uma visão de quais atividades são críticas para o atendimento do prazo de conclusão do projeto;  Uma visão de quanto tempo de folga dispomos nas atividades não-críticas.
  • 48. 48 A rede PERT/CPM  Uma rede PERT/CPM é formada por um conjunto interligado de setas e nós.  As setas representam as atividades do projeto que consomem determinados recursos (mão-de-obra, máquinas, etc.) e/ou tempo, já os nós representam o momento de início e fim das atividades, os quais são chamados de eventos.  Os eventos são pontos no tempo (nós) que demarcam o projeto e, diferente das atividades, não consomem recursos nem tempo.  Os nós são numerados da esquerda para a direita e de cima para baixo. O nome da atividade aparece em cima da seta e sua duração em baixo. A direção da seta caracteriza o sentido de execução da atividade.
  • 49. 49 A rede PERT/CPM Atividade Dependência Nós Duração A - 1-2 10 B - 1-3 6 C A 2-4 7 D B 3-4 5 E B 3-5 9 F C e D 4-6 5 G E 5-6 4 1 2 3 4 5 6 A B C D E F G 10 6 7 5 9 5 4 Cada ligação entre o nó inicial e o final é chamada de caminho.
  • 50. 50 A rede PERT/CPM K X Y W X Y W Fantasma K W X Y L Fantasma  As atividades fantasmas não consomem tempo nem recursos.
  • 51. 51 Cálculo dos tempos da rede  Para cada nó ou evento de uma rede que representa um projeto podemos calcular dois tempos que definirão os limites no tempo que as atividades que partem deste evento dispõem para serem iniciadas.  O Cedo de um evento é o tempo necessário para que o evento seja atingido desde que não haja atrasos imprevistos nas atividades antecedentes deste evento.  O Tarde de um evento é a última data de início das atividades que partem deste evento de forma a não atrasar a conclusão do projeto.
  • 52. 52 Cálculo dos tempos da rede 1 2 3 4 5 6 A B C D E F G 10 6 7 5 9 5 4 0 10 6 15 17 22 22 17 189 10 0 Cedo Tarde
  • 53. 53 Cálculo dos tempos da rede  Podemos definir para cada atividade integrante de um projeto quatro tempos que se referem as datas de início e término da atividade, quais sejam:  PDI - Primeira data de início;  PDT - Primeira data de término;  UDI - Última data de início;  UDT - Última data de término.  O tempo disponível (TD) é o intervalo de tempo que existe entre a primeira data de início (PDI) e a última data de término (UDT) de uma atividade.  O tempo disponível (TD) é o maior intervalo de tempo que uma atividade dispõem para ser realizada, sem alterar o Cedo do evento inicial nem o Tarde do evento final.
  • 54. 54 Cálculo dos tempos da rede  Para cada atividade constante de um projeto podemos definir quatro tipos de folgas:  Folga Total (FT) = TD - t  Folga Livre (FL) = (Cedof - Cedoi) - t  Folga Dependente (FD) = (Tardef - Tardei) - t  Folga Independente (FI) = (Cedof - Tardei) - t) Atividade t Cedo Tarde FT FL FD FI i f i f A 10 0 10 0 10 0 0 0 0 B 6 0 6 0 9 3 0 3 0 C 7 10 17 10 17 0 0 0 0 D 5 6 17 9 17 6 6 3 3 E 9 6 15 9 18 3 0 0 0 F 5 17 22 17 22 0 0 0 0 G 4 15 22 18 22 3 3 0 0
  • 55. 55 Caminho Crítico  O caminho crítico é a seqüência de atividades que possuem folga total nula e que determina o tempo total de duração do projeto.  As atividades pertencentes ao caminho crítico são chamadas de atividades críticas.  A identificação do caminho crítico de um projeto é importe para o gerenciamento do mesmo, pois o PCP pode concentrar seus esforços para que estas atividades tenham prioridade na alocação dos recursos produtivos.
  • 56. 56 Seqüenciamento de Projetos PERT/CPM Caminho Crítico 1 2 4 3 5 6 C 7 E 9 B 6 F 5 G 4 A 10 D 5 0 0 10 10 6 9 17 17 15 18 22 22
  • 57. 57 Atividade: Calcule o caminho crítico da rede abaixo. 1 2 3 5 8 7 10 4 6 9 7 6 3 8 8 8 8 5 1 3 1 2 1 A L D C G E F J I H B N K
  • 58. 58  Quando as estimativas dos tempos das atividades estão sujeitas à variações aleatórias, se diz que as estimativas são probabilísticas, devendo incluir uma indicação do grau de variabilidade das previsões. Tempos probabilísticos t t t t e p m o = + ⋅ +4 6 σ 2 2 6 = −      t tp o Tempo médio esperado Variância
  • 59. 59 Tempos probabilísticos  Podemos montar a rede e proceder os cálculos dos Cedos, Tardes, folgas e caminho crítico da mesma forma como foi feito no tópico anterior para os tempos determinísticos, considerando que o tempo médio esperado é o tempo da atividade.  Dado que a média da soma de variáveis aleatórias é igual à soma das médias destas variáveis, podemos considerar como a variância total do projeto, a soma das variâncias das atividades que compõem o caminho crítico.  Caso ocorram dois, ou mais, caminhos críticos, adotamos como variância total do projeto aquela que for menor.
  • 60. 60 Seqüenciamento de Projetos PERT/CPM Rede com Tempos Probabilísticos 6 4 omp e ttt t +⋅+ = 2 2 6         − = op tt σ Atividade Dependência Nós Duração to tm tp te σ2 A - 1-2 8 10 11 9,83 0,25 B - 1-3 4 6 7 5,83 0,25 C A 2-4 5 7 7,5 6,75 0,17 D B 3-4 4,5 5 6 5,08 0,06 E B 3-5 8 9 11 9,16 0,25 F C e D 4-6 4,5 5 6,5 5,16 0,11 G E 5-6 2 4 5 3,83 0,25 Quando as estimativas estão sujeitas a variações aleatórias, se diz que as estimativas são probabilísticas Emprega-se a Função Beta
  • 61. 61 Tempos probabilísticos Atividade Dependência Nós Duração to tm tp te σ2 A - 1-2 8 10 11 9,83 0,25 B - 1-3 4 6 7 5,83 0,25 C A 2-4 5 7 7,5 6,75 0,17 D B 3-4 4,5 5 6 5,08 0,06 E B 3-5 8 9 11 9,16 0,25 F C e D 4-6 4,5 5 6,5 5,16 0,11 G E 5-6 2 4 5 3,83 0,25 1 2 3 4 5 6 A B C D E F G 9,83 5,83 6,75 5,08 9,16 5,16 3,83 16,58 21,74 21,74 16,58 14,99 17,91 5,83 8,75 9,83 9,83 0 0 Caminho Crítico A-C-F Tempo Esperado 21,74 Variância (0,25+0,17+0,11) 0,53
  • 62. 62 Seqüenciamento de Projetos PERT/CPM Atividade t Cedo Tarde FT FL FD FI i f i f A 9,83 0 9,83 0 9,83 0 0 0 0 B 5,83 0 5,83 0 8,75 2,92 0 2,92 0 C 6,75 9,83 16,58 9,83 16,58 0 0 0 0 D 5,08 5,83 16,58 8,75 16,58 5,67 5,67 2,75 2,75 E 9,16 5,83 14,99 8,75 17,91 2,82 0 0 0 F 5,16 16,58 21,74 16,58 21,74 0 0 0 0 G 3,83 14,99 21,74 17,91 21,74 2,92 2,92 0 0 σ totaltt K − = 73,1 53,0 74,2123 = − =K probabilidade de 95,6% do projeto ser concluído neste prazo 1 2 4 3 5 6 C 6,75 E 9,16 B 5,83 F 5,16 G 3,83 A 9,83 D 5,08 0 0 9,83 9,83 5,83 8,75 16,58 16,58 14,99 17,91 21,74 21,74
  • 63. 63 Tempos probabilísticos  Como os tempos de realização das atividades são probabilísticos, é importante podermos estimar qual a probabilidade que temos do projeto ficar concluído em determinado prazo.  Por exemplo, digamos que queremos saber qual a probabilidade deste projeto ser concluído em 23 unidades de tempo, aplicando a fórmula achamos o valor de K = 1,73. Entrando com este valor na tabela da função de distribuição da curva normal, verificamos que existe uma probabilidade de 95,6% do projeto ser concluído neste prazo. K t ttotal = − σ K = − = 23 21 74 0 53 1 73 , , ,
  • 64. 64 0 1 2 3 4 5 6 7 8 9 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Distribuição Normal : Valores de P( Z < z ) = A(z) Segunda decimal de z Parteinteiraeprimeiradecimaldez
  • 65. 65 Aceleração de uma rede  As estimativas de tempo das atividades de um projeto estão relacionadas à quantidade de recursos (homens, equipamentos, dinheiro, etc.) alocados para cada atividade.  Geralmente, é possível adicionar, ou retirar, recursos alocados à uma atividade de forma a acelerar, ou desacelerar, seu prazo de conclusão.  Desta forma, uma vez montada a rede e identificado o caminho crítico, duas análises de custos podem ser realizadas:  podemos analisar as folgas das atividades não críticas e verificar a possibilidade de reduzir os recursos, e conseqüentemente os custos, alocados as mesmas;  podemos analisar as atividades do caminho crítico e verificar a possibilidade de reduzir, ou aumentar, o prazo de conclusão do projeto.
  • 66. 66  Com relação à primeira análise, pode-se estudar a possibilidade de resseqüenciar os recursos alocados as atividades não críticas, dado que isto não afetaria o prazo de conclusão do projeto  A atividade B teoricamente poderia ser desacelerada em 3 unidades de tempo, a atividade D em 6, a atividade E em 3, e a atividade G em 3  Deve-se prestar atenção que ao se ir retirando as folgas das atividades não críticas, novos caminhos críticos surgirão Seqüenciamento de Projetos PERT/CPM 1 2 4 3 5 6 C 7 E 9 B 6 F 5 G 4 A 10 D 5 0 0 10 10 6 9 17 17 15 18 22 22
  • 67. 67 Aceleração de uma rede  O segundo tipo de análise, aceleração ou desaceleração do prazo de conclusão do projeto, é mais trabalhosa, pois envolve a relação custo-benefício que temos em alterar os prazos das atividades do caminho crítico, bem como a possibilidade de, em dado momento, outros caminhos se tornarem também críticos e entrarem nesta análise. Atividade Tempo Normal Tempo Acelerado Custo por Unidade de Tempo Reduzida A 10 8 $100 B 6 5 $600 C 7 6 $500 D 5 5 - E 9 7 $300 F 5 2 $300 G 4 3 $500
  • 68. 68 Seqüenciamento de Projetos PERT/CPM Aceleração da Rede Atividade Tempo Normal Tempo Acelerado Custo por Unidade de Tempo Reduzida A 10 8 $100 B 6 5 $600 C 7 6 $500 D 5 5 - E 9 7 $300 F 5 2 $300 G 4 3 $500 22 para 18 ACF 2 x A = $200 18 para 17 ACF 1 x F = $300 17 para 16 ACF 1 x F = $300 BEG 1x E = $300 22 para 16 Total = $1100