SlideShare uma empresa Scribd logo
1 de 35
Baixar para ler offline
&DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



                              Departamento de Matemática
                                Universidade de Aveiro



                     iOFXOR ,,
± 7%


                               Acetatos de apoio às aulas,
                                      segundo o texto
                         ³iOFXOR FRP IXQo}HV GH XPD YDULiYHO´
                                   de 9LUJtQLD 6DQWRV




                           ZZZPDWXDSWURVDOLDFDGHLUDV,,


                                    Rosália Rodrigues




BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


DStWXOR  ± 6pULHV 1XPpULFDV


Å    RQFHLWRV EiVLFRV


          Como exemplo, recordemos a VXFHVVmR de WHUPR JHUDO  ,              Q∈´0.
                                                                           Q
     x




          Sabemos que a sucessão
é FRQYHUJHQWH e tem OLPLWH igual a .
                                           Q
     x




     x    Pretendemos agora saber o que acontece à VRPD GH WRGRV RV WHUPRV,




          Terá esta soma um valor ILQLWR ou LQILQLWR?
          E se a soma for finita, qual o seu YDORU?




          Ou seja, pretendemos estudar a VpULH QXPpULFD de WHUPR JHUDO  ,            Q∈´0.
                                                                                    Q
     x




     x    Qual é a QDWXUH]D GHVWD VpULH?

     x    Será FRQYHUJHQWH ou GLYHUJHQWH?
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



     x    Para isso, vamos construir a VXFHVVmR das VRPDV SDUFLDLV,




     x    Neste caso, tratando-se de uma SURJUHVVmR JHRPpWULFD, é fácil calcular,




     x    e também é simples calcular o OLPLWH GD VXFHVVmR VQ
GDV VRPDV SDUFLDLV,




     x    Por GHILQLomR de FRQYHUJrQFLD GH XPD VpULH podemos concluir que,




     x    ou seja, esta VpULH p FRQYHUJHQWH e tem VRPD igual a .




BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB


     x    Em termos QXPpULFRV, podemos observar as FRQYHUJrQFLDV do WHUPR JHUDO
          para  e das VRPDV SDUFLDLV para ,



              Q              Q                                   VQ




              ...

              ˆ                                            




     x    Em termos JUiILFRV, podemos visualizar o resultado da VRPD desta série,




BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



     x    Este exemplo é um caso particular de uma VpULH JHRPpWULFD de UD]mR U z 
          que tem forma geral,

                         D  D U  D U  D U    D UQ  


          com VRPDV SDUFLDLV,

                         VQ    D  D U  D U    D UQ

                               D  D UQ U
U
D   UQ
U
Portanto:      Quando            _U_                    VQ
→ D  U
e a série é FRQYHUJHQWH e tem VRPD         V    D  U
Quando            _U_ !                   VQ
→ ˆ
                         e a série é GLYHUJHQWH.



     x    Uma VpULH JHRPpWULFD de UD]mR U            é da forma,
                         D  D  D    D  
          e como as VRPDV SDUFLDLV são,        VQ     Q
D
          então   VQ
→ ˆ      e a série é sempre GLYHUJHQWH.



          Note que, se D!         então   VQ
→ ˆ
                         se D    então   VQ
→ ˆ


     x    Quando U        a série tem a forma,
                         D  D  D  D  
          Neste caso, como VQ RVFLOD entre D e , a sucessão VQ
QmR WHP OLPLWH e a
          série é GLYHUJHQWH.

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



Å    $OJXPDV VpULHV FRQYHUJHQWHV IDPRVDV


     x    Soma dos inversos das potências de 2, mas com VLQDLV DOWHUQDGRV,




     x    Somas dos inversos dos IDFWRULDLV,




     x    Soma dos LQYHUVRV GRV tPSDUHV, com VLQDLV DOWHUQDGRV,




     x    As VpULHV GH (XOHU,




BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB



Å    3URSULHGDGH $ QDWXUH]D GH XPD VpULH QmR GHSHQGH GRV VHXV
                            SULPHLURV WHUPRV


     x    Consideremos uma série qualquer,



          e outra formada pelos seus WHUPRV D SDUWLU GH S      ! ,



     x    Provemos que as duas séries WrP D PHVPD QDWXUH]D.

          Sejam VQ
e V¶Q
Q≥S as respectivas VXFHVV}HV GH VRPDV SDUFLDLV,




          ou seja,

                         VS                                  V¶Q

          D  D    DS  DS  DS    DQ


                                       VQ

          Então,




          e as VXFHVV}HV VQ
e     V¶Q
Q≥S    ou são DPEDV FRQYHUJHQWHV

                                                ou são DPEDV GLYHUJHQWHV.

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,
5RViOLD 5RGULJXHV
DStWXOR  ± 6pULHV 1XPpULFDV                                                                 
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB




     x    Portanto as VpULHV                 e                WrP D PHVPD QDWXUH]D.




     x    No FDVR GH VHUHP DPEDV FRQYHUJHQWHV, atendendo a que,




          podemos concluir que,




     x    3RU H[HPSOR as séries,


          têm todas D PHVPD QDWXUH]D.



     x    E como sabemos que a primeira é FRQYHUJHQWH,
          podemos SURYDU que:




BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

iOFXOR ,,

Mais conteúdo relacionado

Destaque

JI-PARANÁ- O CORAÇÃO DE RONDÔNIA
JI-PARANÁ- O CORAÇÃO DE RONDÔNIAJI-PARANÁ- O CORAÇÃO DE RONDÔNIA
JI-PARANÁ- O CORAÇÃO DE RONDÔNIAAlianeCarvalho
 
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012CBE2012
 
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleo
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleoAuto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleo
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleoABC_Canarias
 
Yuliana angelica silva blanco
Yuliana angelica silva blancoYuliana angelica silva blanco
Yuliana angelica silva blanco212302yuliana
 
How to neutralize vulnerabilities in a mixed cloud- on premise environment
How to neutralize vulnerabilities in a mixed cloud- on premise environmentHow to neutralize vulnerabilities in a mixed cloud- on premise environment
How to neutralize vulnerabilities in a mixed cloud- on premise environmentEstuate, Inc.
 
Daiana rubio a7.
Daiana  rubio a7.Daiana  rubio a7.
Daiana rubio a7.DaiiR
 
Formação multimédia
Formação multimédiaFormação multimédia
Formação multimédiaaxel384256
 
Ciencias del Deporte
Ciencias del DeporteCiencias del Deporte
Ciencias del Deportejohanfer09
 
Bd tema 7 practica 1
Bd tema 7 practica 1Bd tema 7 practica 1
Bd tema 7 practica 1Robert Rondon
 

Destaque (19)

Ing Inc
Ing IncIng Inc
Ing Inc
 
JI-PARANÁ- O CORAÇÃO DE RONDÔNIA
JI-PARANÁ- O CORAÇÃO DE RONDÔNIAJI-PARANÁ- O CORAÇÃO DE RONDÔNIA
JI-PARANÁ- O CORAÇÃO DE RONDÔNIA
 
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012
XIV CBE - MESA 1 - Andre Tosi Furtado - 23 out 2012
 
Separata1 articulando estrategias
Separata1 articulando estrategiasSeparata1 articulando estrategias
Separata1 articulando estrategias
 
Activida guia 1
Activida guia 1Activida guia 1
Activida guia 1
 
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleo
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleoAuto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleo
Auto TSJ de Madrid contra Cabildo de Lanzarote sobre petróleo
 
Majoral ebc granollers (4)
Majoral ebc granollers (4)Majoral ebc granollers (4)
Majoral ebc granollers (4)
 
Yuliana angelica silva blanco
Yuliana angelica silva blancoYuliana angelica silva blanco
Yuliana angelica silva blanco
 
Apresentaçãodouglas
ApresentaçãodouglasApresentaçãodouglas
Apresentaçãodouglas
 
How to neutralize vulnerabilities in a mixed cloud- on premise environment
How to neutralize vulnerabilities in a mixed cloud- on premise environmentHow to neutralize vulnerabilities in a mixed cloud- on premise environment
How to neutralize vulnerabilities in a mixed cloud- on premise environment
 
Origen de la ciencia
Origen de la cienciaOrigen de la ciencia
Origen de la ciencia
 
Daiana rubio a7.
Daiana  rubio a7.Daiana  rubio a7.
Daiana rubio a7.
 
Formação multimédia
Formação multimédiaFormação multimédia
Formação multimédia
 
A guerra fria
A guerra friaA guerra fria
A guerra fria
 
Ciencias del Deporte
Ciencias del DeporteCiencias del Deporte
Ciencias del Deporte
 
T.i.c.s bermudez
T.i.c.s bermudezT.i.c.s bermudez
T.i.c.s bermudez
 
Gensssssssss
GensssssssssGensssssssss
Gensssssssss
 
Procesamiento Cuantico
Procesamiento CuanticoProcesamiento Cuantico
Procesamiento Cuantico
 
Bd tema 7 practica 1
Bd tema 7 practica 1Bd tema 7 practica 1
Bd tema 7 practica 1
 

Semelhante a Calc i icap3

Calculo 2 cap4 sucessoes e Series Universidade de Aveiro
Calculo 2 cap4 sucessoes e Series Universidade de AveiroCalculo 2 cap4 sucessoes e Series Universidade de Aveiro
Calculo 2 cap4 sucessoes e Series Universidade de Aveirocarlaaatome
 
Calendario 2010 final
Calendario 2010 finalCalendario 2010 final
Calendario 2010 finalAdalberto
 
Calendario 2010 final
Calendario 2010 finalCalendario 2010 final
Calendario 2010 finalAdalberto
 
Calendario 2010 Final
Calendario 2010 FinalCalendario 2010 Final
Calendario 2010 FinalAdalberto
 
Presentación de CompuCycle
Presentación de CompuCyclePresentación de CompuCycle
Presentación de CompuCyclegcmartin92261
 
Import IT with CompuCycle
Import IT with CompuCycleImport IT with CompuCycle
Import IT with CompuCyclegcmartin92261
 

Semelhante a Calc i icap3 (20)

Calculo 2 cap4 sucessoes e Series Universidade de Aveiro
Calculo 2 cap4 sucessoes e Series Universidade de AveiroCalculo 2 cap4 sucessoes e Series Universidade de Aveiro
Calculo 2 cap4 sucessoes e Series Universidade de Aveiro
 
Heaven gods beautiful home spanish tract
Heaven gods beautiful home spanish tractHeaven gods beautiful home spanish tract
Heaven gods beautiful home spanish tract
 
Heaven gods beautiful home spanish tract
Heaven gods beautiful home spanish tractHeaven gods beautiful home spanish tract
Heaven gods beautiful home spanish tract
 
God honors joseph the slave spanish cb6
God honors joseph the slave spanish cb6God honors joseph the slave spanish cb6
God honors joseph the slave spanish cb6
 
God honors joseph the slave spanish cb6
God honors joseph the slave spanish cb6God honors joseph the slave spanish cb6
God honors joseph the slave spanish cb6
 
The church meets trouble spanish cb6
The church meets trouble spanish cb6The church meets trouble spanish cb6
The church meets trouble spanish cb6
 
Pauls amazing travels spanish cb6
Pauls amazing travels spanish cb6Pauls amazing travels spanish cb6
Pauls amazing travels spanish cb6
 
Calendario 2010 final
Calendario 2010 finalCalendario 2010 final
Calendario 2010 final
 
Calendario 2010 final
Calendario 2010 finalCalendario 2010 final
Calendario 2010 final
 
Calendario 2010 Final
Calendario 2010 FinalCalendario 2010 Final
Calendario 2010 Final
 
The start of mans sadness spanish cb tract
The start of mans sadness spanish cb tractThe start of mans sadness spanish cb tract
The start of mans sadness spanish cb tract
 
The birth of jesus spanish tract
The birth of jesus spanish tractThe birth of jesus spanish tract
The birth of jesus spanish tract
 
The good samaritan spanish cb6
The good samaritan spanish cb6The good samaritan spanish cb6
The good samaritan spanish cb6
 
The good samaritan spanish cb6
The good samaritan spanish cb6The good samaritan spanish cb6
The good samaritan spanish cb6
 
The start of mans sadness spanish cb tract
The start of mans sadness spanish cb tractThe start of mans sadness spanish cb tract
The start of mans sadness spanish cb tract
 
The start of mans sadness spanish cb tract
The start of mans sadness spanish cb tractThe start of mans sadness spanish cb tract
The start of mans sadness spanish cb tract
 
Joshua takes charge spanish cb6 1
Joshua takes charge spanish cb6 1Joshua takes charge spanish cb6 1
Joshua takes charge spanish cb6 1
 
Joshua takes charge spanish cb6
Joshua takes charge spanish cb6Joshua takes charge spanish cb6
Joshua takes charge spanish cb6
 
Presentación de CompuCycle
Presentación de CompuCyclePresentación de CompuCycle
Presentación de CompuCycle
 
Import IT with CompuCycle
Import IT with CompuCycleImport IT with CompuCycle
Import IT with CompuCycle
 

Calc i icap3

  • 1. &DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Departamento de Matemática Universidade de Aveiro iOFXOR ,,
  • 2. ± 7% Acetatos de apoio às aulas, segundo o texto ³iOFXOR FRP IXQo}HV GH XPD YDULiYHO´ de 9LUJtQLD 6DQWRV ZZZPDWXDSWURVDOLDFDGHLUDV,, Rosália Rodrigues BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 4. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB DStWXOR ± 6pULHV 1XPpULFDV Å RQFHLWRV EiVLFRV Como exemplo, recordemos a VXFHVVmR de WHUPR JHUDO , Q∈´0. Q x Sabemos que a sucessão
  • 5. é FRQYHUJHQWH e tem OLPLWH igual a . Q x x Pretendemos agora saber o que acontece à VRPD GH WRGRV RV WHUPRV, Terá esta soma um valor ILQLWR ou LQILQLWR? E se a soma for finita, qual o seu YDORU? Ou seja, pretendemos estudar a VpULH QXPpULFD de WHUPR JHUDO , Q∈´0. Q x x Qual é a QDWXUH]D GHVWD VpULH? x Será FRQYHUJHQWH ou GLYHUJHQWH? BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 7. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Para isso, vamos construir a VXFHVVmR das VRPDV SDUFLDLV, x Neste caso, tratando-se de uma SURJUHVVmR JHRPpWULFD, é fácil calcular, x e também é simples calcular o OLPLWH GD VXFHVVmR VQ
  • 8. GDV VRPDV SDUFLDLV, x Por GHILQLomR de FRQYHUJrQFLD GH XPD VpULH podemos concluir que, x ou seja, esta VpULH p FRQYHUJHQWH e tem VRPD igual a . BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 10. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Em termos QXPpULFRV, podemos observar as FRQYHUJrQFLDV do WHUPR JHUDO para e das VRPDV SDUFLDLV para , Q Q VQ ... ˆ x Em termos JUiILFRV, podemos visualizar o resultado da VRPD desta série, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 12. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Este exemplo é um caso particular de uma VpULH JHRPpWULFD de UD]mR U z que tem forma geral, D D U D U D U D UQ com VRPDV SDUFLDLV, VQ D D U D U D UQ D D UQ U
  • 13. U
  • 14. D UQ
  • 15. U
  • 16. Portanto: Quando _U_ VQ
  • 17. → D U
  • 18. e a série é FRQYHUJHQWH e tem VRPD V D U
  • 19. Quando _U_ ! VQ
  • 20. → ˆ e a série é GLYHUJHQWH. x Uma VpULH JHRPpWULFD de UD]mR U é da forma, D D D D e como as VRPDV SDUFLDLV são, VQ Q
  • 21. D então VQ
  • 22. → ˆ e a série é sempre GLYHUJHQWH. Note que, se D! então VQ
  • 23. → ˆ se D então VQ
  • 24. → ˆ x Quando U a série tem a forma, D D D D Neste caso, como VQ RVFLOD entre D e , a sucessão VQ
  • 25. QmR WHP OLPLWH e a série é GLYHUJHQWH. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 27. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å $OJXPDV VpULHV FRQYHUJHQWHV IDPRVDV x Soma dos inversos das potências de 2, mas com VLQDLV DOWHUQDGRV, x Somas dos inversos dos IDFWRULDLV, x Soma dos LQYHUVRV GRV tPSDUHV, com VLQDLV DOWHUQDGRV, x As VpULHV GH (XOHU, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 29. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 3URSULHGDGH $ QDWXUH]D GH XPD VpULH QmR GHSHQGH GRV VHXV SULPHLURV WHUPRV x Consideremos uma série qualquer, e outra formada pelos seus WHUPRV D SDUWLU GH S ! , x Provemos que as duas séries WrP D PHVPD QDWXUH]D. Sejam VQ
  • 31. Q≥S as respectivas VXFHVV}HV GH VRPDV SDUFLDLV, ou seja, VS V¶Q D D DS DS DS DQ VQ Então, e as VXFHVV}HV VQ
  • 32. e V¶Q
  • 33. Q≥S ou são DPEDV FRQYHUJHQWHV ou são DPEDV GLYHUJHQWHV. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 35. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Portanto as VpULHV e WrP D PHVPD QDWXUH]D. x No FDVR GH VHUHP DPEDV FRQYHUJHQWHV, atendendo a que, podemos concluir que, x 3RU H[HPSOR as séries, têm todas D PHVPD QDWXUH]D. x E como sabemos que a primeira é FRQYHUJHQWH, podemos SURYDU que: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 37. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å $V VpULHV WHOHVFySLFDV RX VpULHV GH 0HQJROL x Comecemos por estudar a VpULH, que pode ser escrita na forma, x Se calcularmos as VRPDV SDUFLDLV, verificamos que a maior parte dos WHUPRV se FDQFHODP PXWXDPHQWH, só restando o SULPHLUR e o ~OWLPR. Calculando o limite, x e portanto, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 39. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Para toda a VpULH WHOHVFySLFD ou VpULH GH 0HQJROL DQ
  • 41. e um número QDWXUDO S, de modo que o WHUPR JHUDO pode ser escrito numa das formas, DQ XQ ± XQS ou DQ XQS ± XQ x O designação de WHOHVFySLFD procura FDQFHODPHQWR P~WXR da maior parte ilustrar o efeito resultante do dos termos. x No caso em que DQ XQ ± XQS temos, x A maior parte dos termos cancelam-se mutuamente, só restando os S SULPHLURV e os S ~OWLPRV. x Assim, a FRQYHUJrQFLD de VQ
  • 42. depende apenas da FRQYHUJrQFLD da VRPD GRV S ~OWLPRV WHUPRV, que formam uma VXFHVVmR YQ
  • 45. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Portanto, x Se YQ
  • 46. for GLYHUJHQWH, também o serão VQ
  • 47. e a série dada. x Se YQ
  • 48. for FRQYHUJHQWH, podemos calcular, e então, x Aplicando directamente o UHVXOWDGR DQWHULRU, podemos verificar que, porque, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 50. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 3URSRVLomR 8PD FRQGLomR QHFHVViULD GH FRQYHUJrQFLD 6H uma série for convergente, HQWmR x Se a VpULH é convergente, também o é a VXFHVVmR VQ
  • 51. , ou seja, x E se a VXFHVVmR VQ
  • 52. é convergente, também o é a sua VXEVXFHVVmR VQ
  • 53. , x e VXEWUDLQGR termo a termo, x mas como temos que, que é o mesmo que, x Portanto: VpULH FRQYHUJHQWH w WHUPRV WHQGHP SDUD ]HUR e por consequência: WHUPRV QmR WHQGHP SDUD ]HUR w VpULH GLYHUJHQWH BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 55. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB WHUPRV QmR WHQGHP SDUD ]HUR w VpULH GLYHUJHQWH x Por exemplo, nos casos de uma VpULH JHRPpWULFD em que a UD]mR _ U _ t como o termo geral tem a forma, DQ D UQ a sucessão DQ
  • 56. ou GLYHUJH ou QmR WHP OLPLWH, pelo que a série é GLYHUJHQWH. x Na série, como o termo geral tem a forma, DQ
  • 57. é uma VXFHVVmR RVFLODWyULD, pelo que o OLPLWH QmR H[LVWH e portanto a série dada é GLYHUJHQWH. x A série de termo geral, é também GLYHUJHQWH porque, x Note que, do facto da sucessão DQ
  • 58. QDGD VH SRGH FRQFOXLU. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 60. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å $V
  • 63. x A VpULH KDUPyQLFD mais simples tem a forma, x O nome tem origem na P~VLFD, onde representa as GLIHUHQWHV IUHTXrQFLDV obtidas pela vibração de uma corda, pressionada em diferentes pontos. x Uma simples simulação numérica sugere que, DSHVDU GD VXFHVVmR GRV WHUPRV FRQYHUJLU para , a VpULH KDUPyQLFD p GLYHUJHQWH. Q Q VQ ... BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 65. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Existem GH]HQDV GH GHPRQVWUDo}HV da GLYHUJrQFLD GD VpULH KDUPyQLFD. x O raciocínio seguinte data de cerca do DQR . x Como veremos, foi utilizado o FULWpULR GH FRPSDUDomR. x Já datando de existe uma elegante GHPRQVWUDomR SRU DEVXUGR. 6XSRQKDPRV que a série harmónica era FRQYHUJHQWH e tinha soma 6. Então, donde concluiríamos que 6 ! 6, o que é DEVXUGR. x Mas veremos mais... BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 67. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å RPELQDomR OLQHDU GH GXDV VpULHV x Dadas GXDV VpULHV e e GRLV Q~PHURV UHDLV D e E, podemos construir a FRPELQDomR OLQHDU, x A QDWXUH]D desta série depende naturalmente da natureza das séries dadas.
  • 68. Se ambas as VpULHV GDGDV forem FRQYHUJHQWHV, com somas V e V, x sendo, x Calculemos a sucessão VQ
  • 69. das somas parciais da nova série. Para WRGR o Q∈´ e WRGRV os D, E∈¸, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 71. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x e calculemos o seu OLPLWH, aplicando propriedades dos limites, x Portanto, a VpULH FRPELQDomR OLQHDU é também FRQYHUJHQWH e sabemos o valor da sua VRPD,
  • 72. Se for FRQYHUJHQWH e for GLYHUJHQWH, com E z . x se a SULPHLUD p FRQYHUJHQWH, então tem uma soma V, x se a VHJXQGD p GLYHUJHQWH, então o limite, ou QmR H[LVWH ou é LQILQLWR (+ˆ ou -ˆ). x Assim, se calcularmos a sucessão VQ
  • 73. das somas parciais da nova série. Para WRGR o Q∈´ e WRGRV os D, E∈¸, com E z , BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 75. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x e calcularmos o OLPLWH, aplicando propriedades dos limites, verificamos que o limite ou QmR H[LVWH ou é LQILQLWR. x Portanto a VpULH FRPELQDomR OLQHDU é GLYHUJHQWH.
  • 76. Se forem DPEDV GLYHUJHQWHV nada podemos afirmar. Na maior parte dos casos a série combinação linear será divergente, mas podem ocorrer efeitos de cancelamento por subtracção que tornam o resultado convergente. x Analisemos alguns FDVRV SDUWLFXODUHV da combinação linear de duas séries. x 6RPD GH GXDV VpULHV: Basta fazer D = E = . Se forem ambas FRQYHUJHQWHV, então a soma é FRQYHUJHQWH. Se uma for FRQYHUJHQWH e a outra GLYHUJHQWH, então a soma é GLYHUJHQWH. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 78. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x 3URGXWR GH XPD VpULH SRU XP Q~PHUR UHDO: Basta fazer E = . Se a série for FRQYHUJHQWH, então o seu produto por D é FRQYHUJHQWH. Se a série for GLYHUJHQWH e D z , então o seu produto por D é GLYHUJHQWH. x Estes resultados são de grande XWLOLGDGH SUiWLFD, como por exemplo: x x O SURGXWR da série por permite transformar o problema no estudo de uma série geométrica de razão , BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 80. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x x Decompondo na GLIHUHQoD GH GXDV VpULHV, x como a primeira é divergente e a segunda convergente, com soma = , a série dada é GLYHUJHQWH. x x Escrevendo na forma de uma combinação linear, facilmente calculamos, x Podemos observar o comportamento das primeiras VRPDV SDUFLDLV das duas séries, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 82. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 6pULHV GH WHUPRV QmR QHJDWLYRV x Analisemos as séries com WHUPR JHUDO DQ ≥ ,∀ Q∈´ . x Neste caso, a VXFHVVmR GDV VRPDV SDUFLDLV VQ
  • 83. é PRQyWRQD FUHVFHQWH pois, VQ = VQ + DQ ≥ VQ x E como uma sucessão monótona crescente é convergente se e só se for limitada superiormente, então, Uma VpULH GH WHUPRV QmR QHJDWLYRV é FRQYHUJHQWH se e só se a VXFHVVmR GDV VRPDV SDUFLDLV for OLPLWDGD VXSHULRUPHQWH. x Por exemplo, na série geométrica de WHUPRV QmR QHJDWLYRV, x a VXFHVVmR GDV VRPDV SDUFLDLV é OLPLWDGD VXSHULRUPHQWH SRU , x como já vimos, nesta série o PDMRUDQWH é também o OLPLWH da sucessão VQ
  • 86. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Utilizemos agora esta série para estudar outra VpULH GH WHUPRV QmR QHJDWLYRV, Porque sabemos que N ≥ N x para todos os N Q, podemos encontrar um PDMRUDQWH para a sucessão das somas parciais desta série, x Portanto esta série é também FRQYHUJHQWH. x Neste caso, o PDMRUDQWH não é o OLPLWH da sucessão VQ
  • 87. que, como veremos mais tarde, é igual a H ± . x Observemos o comportamento das primeiras VRPDV SDUFLDLV das duas séries, x Este raciocínio está na origem do seguinte critério ... BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 89. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å ULWpULR GH RPSDUDomR SDUD VpULHV GH WHUPRV QmR QHJDWLYRV x x Sejam: VQ
  • 90. a sucessão das somas parciais de 6 DQ V¶Q
  • 91. a sucessão das somas parciais de 6 EQ x como DQ ≤ EQ , ∀ Q∈´, temos que ≤ VQ ≤ V¶Q L
  • 92. x Se por hipótese 6 EQ for FRQYHUJHQWH, então a sucessão V¶Q
  • 93. é OLPLWDGD VXSHULRUPHQWH. x Portanto, como VQ ≤ V¶Q , a sucessão VQ
  • 94. é também OLPLWDGD VXSHULRUPHQWH e a série 6 DQ é também FRQYHUJHQWH. LL
  • 95. x Se por hipótese 6 DQ for GLYHUJHQWH, então a sucessão VQ
  • 96. QmR p OLPLWDGD VXSHULRUPHQWH. x Portanto, como VQ ≤ V¶Q , a sucessão V¶Q
  • 97. também QmR p OLPLWDGD VXSHULRUPHQWH e a série 6 EQ é também GLYHUJHQWH. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 99. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Retomemos as duas séries de WHUPRV QmR QHJDWLYRV, x Sabendo que a SULPHLUD p FRQYHUJHQWH, utilizemos o FULWpULR GH FRPSDUDomR para estudar a segunda. x Basta FRPSDUDU WHUPR D WHUPR, pois como, então a segunda série é também FRQYHUJHQWH. x Observemos o comportamento dos SULPHLURV WHUPRV das duas séries, x Note como ambas as sucessões tendem necessariamente para ]HUR. x DSHQDV para séries de WHUPRV QmR QHJDWLYRV. Verifique também por que razão do critério de comparação é estabelecido BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 101. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Consideremos agora as duas séries de WHUPRV QmR QHJDWLYRV, x A primeira é a série harmónica básica, que sabemos ser GLYHUJHQWH. Utilizemos o FULWpULR GH FRPSDUDomR para estudar a segunda. x RPSDUDQGR WHUPR D WHUPR, como, concluímos que a segunda é também GLYHUJHQWH. x Observemos o comportamento dos SULPHLURV WHUPRV das duas séries, x Por comparação com uma das anteriores, estude a série, x O critério de comparação está na origem do seguinte ... BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 103. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å ULWpULR GH RPSDUDomR SRU 3DVVDJHP DR /LPLWH SDUD VpULHV GH WHUPRV QmR QHJDWLYRV x BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 105. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Consideremos de novo as duas séries, Atendendo a que, pelo critério da SDVVDJHP DR OLPLWH, podemos concluir que WrP D PHVPD QDWXUH]D. x Para estudar a série, começamos por confirmar que se trata de uma série de WHUPRV QmR QHJDWLYRV. Efectivamente, para Q ≥ tem-se Q ≤ , pelo que o valor desta função seno é sempre positivo. Podemos então FRPSDUDU SRU SDVVDJHP DR OLPLWH com a série harmónica básica, donde concluímos que as duas séries WrP D PHVPD QDWXUH]D. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 107. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Consideremos agora as duas séries, das quais sabemos que D SULPHLUD p FRQYHUJHQWH. Sendo ambas de termos positivos, calculemos, Podemos então concluir SRU SDVVDJHP DR OLPLWH que a segunda série é também FRQYHUJHQWH. x Por FRPSDUDomR SRU SDVVDJHP DR OLPLWH com a série harmónica básica, confirme a divergência a série, x HVWUHLWD UHODomR entre as noções GH LQWHJUDO LPSUySULR GH  HVSpFLH O critério seguinte tem por base o critério de comparação, bem como a e de soma infinita ou VpULH. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 109. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å ULWpULR GR ,QWHJUDO SDUD VpULHV GH WHUPRV QmR QHJDWLYRV x x Observemos por exemplo a UHODomR entre a série harmónica básica e o integral impróprio, que sabemos ser divergente, Como a área limitada pela curva é LQILQLWD, a soma das áreas dos rectângulos também é LQILQLWD. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 111. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Aplicando o FULWpULR GR LQWHJUDO, estudemos a série, x Como referência, consideremos a IXQomR, x Verifiquemos se é GHFUHVFHQWH no intervalo, x Sendo o denominador sempre positivo, o numerador será negativo quando OQ [ ! , ou seja, [ ! H | ... Então, para [ t , a derivada é sempre negativa e a IXQomR VHPSUH GHFUHVFHQWH. x Portanto, segundo o critério do integral, a série dada tem D PHVPD QDWXUH]D do integral impróprio, x Estudando o LQWHJUDO, x Verificamos que R LQWHJUDO LPSUySULR p FRQYHUJHQWH pelo que podemos finalmente concluir que D VpULH GDGD p FRQYHUJHQWH. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 113. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å $ VpULH KDUPyQLFD GH RUGHP S x Para todo o S  ¹ existe uma VpULH KDUPyQLFD com a forma, cuja QDWXUH]D depende do valor de S. x Para S d , a VXFHVVmR GRV WHUPRV QS
  • 114. → +ˆ , pelo que a série harmónica é GLYHUJHQWH. x Para S , trata-se da VpULH KDUPyQLFD EiVLFD. Como a função I[
  • 115. [ definida em [ ˆ[ é sempre decrescente, pelo FULWpULR GR LQWHJUDO, esta série tem a mesma natureza do integral impróprio, que sabemos ser divergente. E assim, mais uma vez provamos que a série harmónica básica é GLYHUJHQWH. x Para S ! , consideremos a função, que é sempre decrescente em [ ˆ[ , porque neste intervalo, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 117. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Então, pelo critério do integral, a série harmónica de ordem S tem a natureza do integral impróprio, x Tal como foi provado (pp. 300-301), converge se S diverge se S x Podemos portanto concluir que a VpULH KDUPyQLFD GH RUGHP S, FRQYHUJH se S GLYHUJH se Sd x Por exemplo: x para S , já vimos que é divergente a série, x para S , /HRQKDUG (XOHU provou que, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 119. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 1RWD VREUH R FRPSRUWDPHQWR DVVLPSWyWLFR GD VpULH KDUPyQLFD x Sabendo que uma dada série é GLYHUJHQWH, em diversas aplicações práticas interessa também saber FRPR GLYHUJH, isto é, qual o seu JUDX GH GLYHUJrQFLD. x Vejamos FRPR GLYHUJH a VpULH KDUPyQLFD EiVLFD. x /HRQKDUG (XOHU mostrou que, ou seja, que as sucessivas VRPDV KDUPyQLFDV VQ têm o mesmo JUDX GH FUHVFLPHQWR que a IXQomR ORJDULWPR x Significa isto que a série GLYHUJH sim, mas ³PXLWR OHQWDPHQWH´ Por exemplo, para que uma soma parcial atinja o valor VQ ≈ são necessários termos e para que VQ ≈ são necessários mais de termos! BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 121. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Para d S d , quanto PHQRU for o valor de S tanto PDLRU é o JUDX GH GLYHUJrQFLD, que varia entre OQ Q e Q, para S . x Para valores de S , a divergência torna-se evidentemente ³PXLWR UiSLGD´, porque são séries do tipo, onde T S . x Uma curiosidade: Demonstra-se que é possível empilhar uma torre inclinada de blocos iguais (tijolos, livros, CDs, ...) de tamanho (teoricamente) infinito, se os blocos estiverem sucessivamente desalinhados segundo os termos da série harmónica básica. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,
  • 123. DStWXOR ± 6pULHV 1XPpULFDV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å ULWpULRV GH FRQYHUJrQFLD SDUD VpULHV GH WHUPRV QmR SRVLWLYRV x Como vimos, para determinar a natureza de séries numéricas de WHUPRV QmR QHJDWLYRV podemos utilizar: x ULWpULR GH FRPSDUDomR x ULWpULR GH FRPSDUDomR SRU SDVVDJHP DR OLPLWH x ULWpULR GR LQWHJUDO x Como estudar então uma série GH WHUPRV QmR SRVLWLYRV? Como por exemplo, x Obviamente que, e como o SURGXWR de uma série por um número real não nulo PDQWpP D VXD QDWXUH]D, basta estudar a série de termos não negativos. x Portanto a designação ³SDUD VpULHV GH WHUPRV QmR QHJDWLYRV´, deve ser entendida no sentido de ³SDUD VpULHV GH WHUPRV GR PHVPR VLQDO´. x A seguir vamos ver o que fazer quando os termos não têm sinal constante. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB iOFXOR ,,