Curvas de nível

18.810 visualizações

Publicada em

Conceito teórico sobre curvas de nível

2 comentários
6 gostaram
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
18.810
No SlideShare
0
A partir de incorporações
0
Número de incorporações
13
Ações
Compartilhamentos
0
Downloads
292
Comentários
2
Gostaram
6
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Curvas de nível

  1. 1. Curvas de nível Professor : Walmir E. Pottiter Aluno: Fernando T. Niekawa Curso: Licenciatura em química Disciplina: Cálculo II
  2. 2. Curvas de Nível Uma forma de se visualizar funções de duas variáveis é um método semelhante ao da representação de uma paisagem tridimensional por meio de um mapa topográfico bidimensional. Vamos supor que a superfície z = f(x,y) seja interceptada por um plano z = k , e a curva de intersecção seja projetada no plano xOy . Essa curva tem equação f(x,y) = k e é chamada de curva de nível (ou curva de contorno) da função f em k .
  3. 3. As curvas de nível de uma função f de duas variáveis são gráficos no plano xOy de equações da forma f(x,y) = k . O conjunto de curvas de nível é chamado mapa de contorno. Todos os pontos (x,y) que estão na mesma curva de nível têm a mesma imagem z. No caso de f(x,y) representar uma grandeza física, as curvas de nível ganham particular importância, recebendo inclusive denominações específicas.
  4. 4. Se f(x,y) é a temperatura no ponto (x,y) de uma chapa plana, as curvas f(x,y) = k são chamadas de isotérmicas ou isotermas.  Se f(x,y) é a pressão de um gás de volume x e temperatura y , as curvas são chamadas de isobáricas ou isóbaras.  Se f(x,y) é o potencial (elétrico ou gravitacional) na região D do plano xOy então as curvas f(x,y) = k são chamadas equipotenciais.
  5. 5. Exemplo Seja a função dada por z = x2 + y2 As curvas de nível para z = 0, z =1, z = 2 e z = 4 são: z = 0 ⇒ x2 + y2 = 0 (x = y = 0 ) z = 1 ⇒ x2 + y2 = 1 (circunferência de centro C(0,0) e raio 1) z = 2 ⇒ x2 + y2 = 2 (circunferência de centro C(0,0) e raio 2 ) z = 4 ⇒ x2 + y2 = 4 (circunferência de centro C(0,0) e raio 2) Observação: As curvas de nível nunca se interceptam
  6. 6. Gráfico da Função (Parabolóide Elíptico) Observação: As funções de três ou mais variáveis não podem ser representadas graficamente.
  7. 7. Exercícios resolvidos: I) f(x, y) = x2 + y2 Curvas de nível Seja a equação x2 + y2 = k. Como x2 ³ 0 e y2 ³ 0 então se k < 0 a equação não tem solução. Ou seja, para qualquer k < 0 (abaixo do plano XOY) a curva de nível correspondente é o f .
  8. 8. Fazendo k = 0 (intersecção com o plano XOY), a equação x2 + y2 = 0 tem solução x = 0 e y = 0. A curva de nível em z = 0 é (0, 0). Fazendo k > 0, a equação x2 + y2 = k pode ser escrita como x2 y2 ( k )2 k Portanto para qualquer k > 0 a curva de nível correspondente é um círculo de raio k e centro na origem do ( R² ).
  9. 9. Representação gráfica das curvas de nível Como todas as curvas de nível são círculos com centros em (0, 0) concluímos que o gráfico de f(x,y) é uma superfície de revolução em torno de OZ.
  10. 10. Exercício II) f (x, y) = y2 - x2 Curvas de nível Seja a equação y2 - x2 = k. Se k = 0, temos x2 = y2 Û x = y ou x = -y, ou seja, as retas 1a e 2a bissetrizes. Se k > 0, podemos escrever a equação y2 - x2 = k como y2 ( k) x2 2 ( k) 2 1
  11. 11. Neste caso temos uma hipérbole com focos sobre o eixo OY Se k < 0 então – k > 0 , podemos escrever a equação (*) como x ( 2 k) y 2 ( 2 k) 2 1 Neste caso temos também uma hipérbole com focos sobre o eixo OX.
  12. 12. Representação gráfica
  13. 13. Referências: http://www.pucrs.br/famat/demat/facin/calcb/material_200502/Topico_08_Funcoes _de_duas_ou_mais_variaveis.pdf http://www.mat.ufba.br/mat042/aula24/aula24.htm#ind

×