SlideShare uma empresa Scribd logo
1 de 66
Baixar para ler offline
EURO-­‐BASIN,	
  www.euro-­‐basin.eu	
     Introduc)on	
  to	
  Sta)s)cal	
  Modelling	
  Tools	
  for	
  Habitat	
  Models	
  Development,	
  26-­‐28th	
  Oct	
  2011	
  
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development




     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Introduction

             ƒlides ˜—sed m—inly in ‡itten —nd pr—nk @PHHSAY €érez et —lF
             @PHHSAY ellen @PHHWAY pern—ndes @PHIIA
             y˜je™tiveX to me—sure how well — model represents truthF
             „ruth ™—nnot ˜e —™™ur—tely me—suredX o˜serv—tionsF

             uestionsX
                 How well the model ts the observations (goodness-of-t)?
                 How well the model forecast new events (generalisation)?
                 How superior is one model compared to another?
                 Which is more important, precision or trend?

             enswersX
                 Validation procedures.
                 Metrics or performance measures.
                 Statistical tests.
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Model prediction (P), observations (O), true state (T)




             —A model with no skill
             ˜A ide—l model
             ‚eprodu™ed from ƒtow et —lF @PHHWA —nd ellen @PHHWA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Goodness-of-t vs generalisation

             pittingX
                                              N: Total number of cases

                                                     Training-set
                                                       Test-set


                    Chances of over-tting.

             qener—liz—tion → tr—inEtest splitX
                                              N: Total number of cases

                                                      Training-set            Test-set



                    Hold-out (commonly 66%-33% split) (Larson, 1931)
                    Hold-out depends on how fortunate the train-test split is.
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     K-fold cross-validation (CV)




             €erform—n™e is the —ver—ge of k models @v—™hen˜ru™h —nd
             wi™keyD IWTVY ƒtoneD IWURAF
             ell d—t— is eventu—lly used for testingF
             ƒtill sensitive to d—t— splitX str—ti(edD repe—ted @fou™k—ert —nd
             pr—nkD PHHRAF
             ‚eprodu™ed from €érez et —lF @PHHSAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Leave-one-out cross-validation (LOOCV)
                                              N: Total number of cases

                                                   ...
                                                   ...
                                                   ...
                         ...



                                                      ...



                                                                                    ...
                                                   ...
                                                   ...
             x modelsD xEI ™—ses for tr—ining —nd I ™—se for testing
             @wosteller —nd „ukeyD IWTVAF
             ƒuit—˜le for sm—ll d—t—setsD more ™omput—tion—lly expensiveF
             †—ri—n™e of the error is the l—rgestD ˜ut less ˜i—sedF
             st ™—n ˜e used for more st—˜le p—r—meters @less v—ri—n™eA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Bootstrapping (0.632 bootstrap)




             e ™—se h—s — HFTQP pro˜—˜ility of ˜eing pi™ked for tr—iningEset
             @ifronD IWUWAF
             error a H.TQP ∗ etest @gener—lis—tionA C H.QTV ∗ etraining @(tAF
             et le—st IHH res—mplingsD some studies suggest IHHHHF
             ‚eprodu™ed from €érez et —lF @PHHSAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Sumarizing

               Real performance                                  Real performance
                           Estimated performance
                         Accuracy                                           Estimated performance




                                   Precision



             sn™re—sing d—t— p—rtitions le—ds to FFF
                  more accurate performance estimation (+).
                  more variance in the performance estimation, less precise (-).
                  more computationally expensive (-).
             uEfold ™rossEv—lid—tionX tr—deEo' @‚odríguez et —lFD PHIHAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in lter methods




                                Discretize                     Factor
                                 Factors                      Selection

                                                             Naive Bayes
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in lter methods


                                         Discretize      Factor
                                          Factors       Selection

                                                       Naive Bayes
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in lter methods


                                         Discretize      Factor
                                          Factors       Selection

                                                       Naive Bayes




        Full     10x5cv
       Dataset
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in lter methods


                                         Discretize      Factor
                              Train 1
                                          Factors       Selection
                                                                      Performance
                              Test 1                   Naive Bayes     estimation




                                             ...
                                                                        (Fold 1)




                                                           ...
                                ...

                                         Discretize      Factor




                                                                          ...
                              Train 5
                                          Factors       Selection
                                                                      Performance
                                                                                        Performance estimation
                              Test 5                   Naive Bayes     estimation
        Full     10x5cv                                                 (Fold 5)
       Dataset
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in lter methods


                                          Discretize     Factor
                               Train 1
                          R                Factors      Selection
                          E                                           Performance
                          P    Test 1                  Naive Bayes     estimation
                          E



                                              ...
                                                                        (Fold 1)




                                                           ...
                                    ...
                          A
                                          Discretize     Factor




                                                                          ...
                          T    Train 5
                                           Factors      Selection
                          1                                           Performance
                                                                                        Performance estimation
                               Test 5                  Naive Bayes     estimation
                                                                                              (Repeat 1)
        Full     10x5cv                                                 (Fold 5)
                              ...




       Dataset
                               Train 1                                                  Whole methodology
                          R                                                            performance estimation
                                                       .
                                                       .
                                                       .
                          E                                                             10 repeats average
                          P    Test 1
                          E
                                    ...




                          A
                                                                                        Performance estimation
                          T    Train 5
                                                                                              (Repeat 10)
                          10
                                                       .
                                                       .
                                                       .


                               Test 5
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodel†—lid—tion


     Pipeline validation in wrapper methods
          Model validation
                                                                      Train 1
                                                                                            Discretize           Discretize           CFS with                                  Model building
                                                                                              Class              Predictors           LOOCV


                                                                      Test 1                                                         Naive Bayes       Performance estimation
                                              Bootstrapping                                                                                                 (Bootstrap 1)




                                                                                                                    ...
                                                                                               ...
                                                 (100)




                                                                                                                                         ...
                                                                        ...
                                                                                            Discretize           Discretize           CFS with                                          Class
                                                                     Train 100
                                                                                              Class              Predictors           LOOCV                                            cut-off
                                                                                                                                                                                       points
                                                                                                                                                       Performance estimation
                                                                     Test 100                                                        Naive Bayes                                     evaluation
                                                                                                                                                           (Bootstrap 100)




                                                Apply selected
                                              class discretization
                                    Train 1
                                                                               Discretize            CFS with
                                                                               Predictors            LOOCV
                              R
                              E                                                                                        Performance
                              P     Test 1                                                         Naive Bayes          estimation
                              E                                                                                          (Fold 1)
                                      ...




                              A
                              T     Train 5
                              1
                                              .
                                              .
                                              .




                                                                                                                       Performance       Performance estimation
                                    Test 5                                                                              estimation              (Repeat 1)
                                                                                                                         (Fold 5)            5 folds average
            Full     10x5cv
                                   ...




           Dataset
                                    Train 1
                                                                                                                                                        Whole methodology
                              R
                                                 .
                                                 .
                                                 .




                              E                                                                                                                        performance estimation
                              P     Test 1                                                                                                               10 repeats average
                              E
                                      ...




                              A
                              T     Train 5                                                                                              Performance estimation
                              10                                                                                                               (Repeat 10)
                                                 .
                                                 .
                                                 .




                                                                                                                                             5 folds average
                                    Test 5
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures


     Introduction to metrics


             i—™h metri™ shows — di'erent property of the model @rolt
             et —lFD PHHSY pern—ndes et —lFD PHIHA
             vow vs highX
                   Lower is better (error)
                   Higher is better (performance)
             foundsX
                   Boundless
                   Between 0 and 1
                   Between 0 and 100%
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Numeric prediction metrics




             ‡here      p   —re predi™ted v—lues —nd           a   —re the —™tu—l v—luesF
             we—nEsqu—red errorX outliers → me—n —˜solute errorF
             ‚el—tive squ—red errorX rel—tive to the me—n of —™tu—l v—luesF
             gorrel—tion ™oe(™ientX ˜ounded ˜etween I —nd EIF
             ‚eprodu™ed from ‡itten —nd pr—nk @PHHSAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Root Mean Squared Error (RMSE)



                                                            (p − a)2
                                       RMSE       =
                                                               n


             qoodness of (t ˜etween model —nd o˜serv—tionsF
             „he ™loser to H the ˜etter is the (tF
             sf ‚wƒi gre—ter th—n v—ri—n™e of o˜serv—tionsX poor modelF
             ‚eprodu™ed from ellen @PHHWA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Nash Sutclie Model Eciency)



                                                        N              2
                                   ME     =I−           n=1 (an − pn )
                                                        N             2
                                                        n=1 (an − a))

             ‚—tio of the model error to d—t— v—ri—˜ilityF
             vevelsX bHFTS ex™ellentD bHFS very goodD bHFP goodD `HFP
             poor wáre™h—l @PHHRAF
             €roposed in x—sh —nd ƒut™li'e @IWUHAD reprodu™ed from ellen
             @PHHWA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Percentage Model Bias



                                                  N
                                 Pbias    =       n=1 (an − pn ) ∗ IHH
                                                    N
                                                    n=1 (an )

             ƒum of model error norm—lised ˜y the d—t—F
             we—sure of underestim—tion or overestim—tion of o˜serv—tionsF
             vevelsX `IH ex™ellentD `PH very goodD `RH goodD bRH poor
             wáre™h—l @PHHRAF
             ‚eprodu™ed from ellen @PHHWA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Pearson correlation coecient (R)


                                        N
                       R   =            n=1 (an − a)(pn − p )       ∗ IHH
                                     N           2   N            2
                                     n=1 (an − a)    n=1 (pn − p )


             u—lity of (t of — model to o˜serv—tionsF
             ‚ a HD no rel—tionshipF
             ‚ a ID perfe™t (tF
             ƒqu—re of the ™orrel—tion ™oe0™ient @R2 AX
             per™ent—ge of the v—ri—˜ility in d—t— —™™ounted for ˜y the
             modelF
             ‚eprodu™ed from ellen @PHHWAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Reliability Index (RI)



                                                           N
                                                      I                 an
                                    RI   = exp                   (log        )2
                                                      n                 pn
                                                          n =1


             p—™tor of divergen™e ˜etween predi™tions —nd d—t—F
             ‚s a PD me—ns — divergen™e on —ver—ge within of —
             multipli™—tive f—™tor of PF
             ‚s the ™loser to I the ˜etterF
             ‚eprodu™ed from ellen @PHHWA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Cost functions
             ho —ll errors h—ve the s—me weightD ™ost or impli™—tionsc
             ƒ™—ling of di'eren™es ˜etween                p   —nd aF
             iFgF ‚wƒi s™—led ˜y the v—ri—n™e of d—t— @rolt et —lFD PHHSAF
             hi'erent ™ost v—lues depending on the type of errorF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Confusion matrix: accuracy and true positive




             Accuracy       = TPcases
                              #
                                 +TN

             True Positive Rate  = TPTPFN
                                       +
             righer is ˜etter for ˜othF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                       yK = 1
                        l

                       Actual
                        High
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                       yK = 1
                        l
                                      yK = 0
                                       l

                       Actual     Otherwise
                        High     Medium Low
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                       yK = 1
                        l
                                      yK = 0
                                       l

                       Actual     Otherwise
                        High     Medium Low
                  p1     0.7        0.2        0.1    (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                          yK = 1
                           l
                                      yK = 0
                                       l

                          Actual    Otherwise
                           High    Medium Low
                  p1       0.7      0.2        0.1    (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
                  p   2
                           0.8      0.1        0.1    (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                          yK = 1
                           l
                                      yK = 0
                                       l

                          Actual    Otherwise
                           High    Medium Low
                  p1       0.7      0.2        0.1    (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
                  p   2
                           0.8      0.1        0.1    (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06
                  p3       0.1      0.5        0.4    (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                          yK = 1
                           l
                                      yK = 0
                                       l

                          Actual    Otherwise
                           High    Medium Low
                  p1       0.7      0.2        0.1    (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
                  p   2
                           0.8      0.1        0.1    (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06
                  p3       0.1      0.5        0.4    (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22
                  p   4
                           0.4      0.5        0.1    (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Brier Score
             @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA
                                     #cases   #classes k
             Brier Score =
                               1
                            #cases   k =1     l =1    (pl − ylk )2
             vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA
             vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS
             —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA

                          yK = 1
                           l
                                      yK = 0
                                       l

                          Actual    Otherwise
                           High    Medium Low
                  p1       0.7      0.2        0.1    (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
                  p   2
                           0.8      0.1        0.1    (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06
                  p3       0.1      0.5        0.4    (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22
                  p   4
                           0.4      0.5        0.1    (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62
                                     Brier Score:     (0.14 + 0.06 +1.22 + 0.62) / 4 = 0.51
                          Normalized Brier Score:     0.51 / 2 = 0.255
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Percent Reduction in Error (PRE)


             „he relev—n™e of — perform—n™e g—inF
             e P7 g—in of —n —lre—dy highly —™™ur—te ™l—ssi(er @WH7A
             FFF more relev—nt th—n with low st—rting —™™ur—™y @SH7A

                                                              EB    − EA
                                          PRE     = IHH ·
                                                                   EB

             if is the error in the (rst method @irror feforeA
             ie is in the se™ond method @irror efterA
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Accuracy paradox




             w—inly with un˜—l—n™ed d—t—sets @hu —nd h—vidsonD PHHUY
             e˜m—D PHHWAF
             ‚eprodu™ed from ‡ikipedi— @PHIIAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Minimum Description Length (MDL) principle

             uiss ruleX ueep st ƒimple FFF y™™—m9s ‚—zorX
             „he simplest expl—n—tion is the most likely to ˜e true FFF
             FFF —nd is more e—sily —™™epted ˜y others FFF
             FFF ˜utD it is not ne™ess—rily the truthF

             „he more — sequen™e of d—t— ™—n ˜e ™ompressedD FFF
             FFF the more regul—rity h—s ˜een dete™ted in the d—t—X
             whvX winimum hes™ription vength @‚iss—nenD IWUVA

             „r—deEo' ˜etween perform—n™e —nd ™omplexityF
             ss whv f—lsec homingos @IWWWAY qrünw—ld et —lF @PHHSA
             „r—deEo' ˜etween me™h—nism —nd ro˜ust p—r—metersF
             sf two models h—ve s—me perform—n™e then keep the simplestF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Example complex vs simple
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 €erform—n™ewe—sures
   €erform—n™ewe—sures

     Lift chart, ROC curve, recall-precision curve
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Corrected paired t-test
             ƒt—tisti™—l ™omp—risons of the perform—n™eF
             sde—lX test over sever—l d—t—sets of size                 NF

             xull hypothesis th—t the me—n di'eren™e is zeroF irrorsX
             „ype sX pro˜F the test reje™ts the null hypothesis in™orre™tly
             „ype ssX pro˜F the null hypotF is not reje™ted with di'eren™eF
             ‚e—lityX only one d—t—set of size               N   to get —ll estim—tesF
             €ro˜lemX „ype s errors ex™eed the signi(™—n™e level
             ƒolutionX heuristi™ versions of the                t-testF

      @x—de—u —nd fengioD PHHQY w™gluskey —nd v—lkhenD PHHUY
      uotsi—ntisD PHHUY pern—ndesD PHIIA
             gomp—ring w…v„s€vi methods over yxi d—t—setsF
             gomp—ring yxi methods over w…v„s€vi d—t—setsF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Critical dierence diagrams




                           §
             €roposed ˜y hems—r @PHHTA
             ‚evised priedm—n plus ƒh—'er9s st—ti™ postEho™ test @q—r™í—
             —nd rerrer—D PHHVAF
             gomp—ring w…v„s€vi methods over w…v„s€vi d—t—setsF
             ƒhows —ver—ge r—nk of methods superiority in d—t—setsF
             xo signi(™—nt di'eren™eX line ™onne™ting methodsF
             wore d—t—setsX more e—sy to (nd signi(™—nt diferen™esF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Taylor diagrams




                      2
                  E       = σf + σr − Pσf σr R ; c 2 = a2 + b2 − Pab ™os ϕ
                             2    2




             ƒimult—neouslyX ‚wƒ di'eren™eD ™orrel—tion —nd stdF devF
             ‚X ™orrel—tion p  aY E X ‚wƒ di'FY σf  σr X v—ri—n™es p  aF
                                                  2    2

             €roposed in „—ylor @PHHIAD reprodu™ed from ellen @PHHWAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Target diagrams




             ‚wƒi in ˆE—xisY fi—s in ‰E—xisF
             p ƒtdF hevF l—rger @xbHA th—n aY fi—s positive @‰bHA or notF

             ‚eprodu™ed from tolli' et —lF @PHHWA —nd ellen @PHHWAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 wodelgomp—rison


     Multivariate aproaches

             …niEv—ri—te  multiEv—ri—te metri™s summ—rize model skillF
             wultiEv—ri—te —ppro—™hesX simult—neous ex—min—tion of sever—l
             v—ri—˜les v—ri—tion to e—™h other sp—ti—lly —nd tempor—llyF


      €rin™ip—l gomponet en—lysis @€geA @tolli'eD PHHPAF
             ƒhow the rel—tionship ˜etween sever—l v—ri—˜les in Ph sp—™eF

      wulti himension—l ƒ™—lling @whƒA @forg —nd qroenenD PHHSAF
             ixploring simil—rities or dissimil—rities in d—t—

      ƒelf org—nizing w—ps @ƒywA @uohonen —nd w—psD PHHIAF
             €rodu™e — lowEdimension—l dis™retized represent—tion of the
             o˜serv—tionsF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ix—mples


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ix—mples


     Zooplankton biomass models




             ƒever—l models (ts with squ—red errorF
             ‚eprodu™ed from srigoien et —lF @PHHWAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ix—mples


     An example of anchovy recruitment




             €erform—n™e reported depending on v—lid—tion s™hem—F
             ‚eprodu™ed from pern—ndes et —lF @PHIHAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ix—mples


     Phytoplankton classication




             ‡ithout @„—˜le sssA —nd with @„—˜le ssA st—tisti™—l di'eren™es
             @™orre™ted p—ired tEtestAF
             ‚eprodu™ed from —r—uz et —lF @PHHWA —nd —r—uz et —lF
             @PHHVAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ix—mples


     Zooplankton classication




             ‚eprodu™ed from pern—ndes et —lF @PHHWAF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‡ek—


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‡ek—


     Weka explorer
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‡ek—


     Weka experimenter
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‡ek—


     Weka knowledge ow
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‚eferen™es


     Outline

      1   wodel v—lid—tion

      2   €erform—n™e me—sures or metri™s
            wetri™s in numeri™ predi™tion
            wetri™s in ™l—ssi(™—tion

      3   gomp—ring methodologies —nd models

      4   ix—mples

      5   ‡ek—X open sour™e d—t— mining tool

      6   ‚eferen™es
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‚eferen™es



      e˜m—D fF @PHHWAF Evaluation of requirements management tools with support for traceability-based
          change impact analysisF €hh thesisD …niversity of „wenteD ins™hedeD „he xetherl—ndsF
      ellenD tF @PHHWAF hPFU user guide —nd report outlining v—lid—tion methodologyF Deliverable in project
         Marine Ecosystem Evolution in a Changing Enviroment (MEECE).
      forgD sF —nd qroenenD €F @PHHSAF Modern multidimensional scaling: Theory and applicationsF ƒpringer
          †erl—gF
      fou™k—ertD ‚F ‚F —nd pr—nkD iF @PHHRAF iv—lu—ting the repli™—˜ility of signi(™—n™e tests for ™omp—ring
          le—rning —lgorithmsF Lect. Notes Artif. Int.D p—ges Q!IPF
      frierD qF ‡F @IWSHAF †eri(™—tion of fore™—sts expressed in terms of pro˜—˜ilityF Month. Weather Rev.D
          UV@IAXI!QF
      hems—rD tF @PHHTAF ƒt—tisti™—l ™omp—risons of ™l—ssi(ers over multiple d—t— setsF J. Mach. Learn. Res.D
         §
          UXI!QHF
      homingosD €F @IWWWAF „he role of y™™—m9s r—zor in knowledge dis™overyF Data Min. Knowl. DiscD
          Q@RAXRHW!RPSF
      ifronD fF @IWUWAF footstr—p methodsX —nother look —t the j—™kknifeF Ann. Stat.D U@IAXI!PTF
      pern—ndesD tF @PHIIAF Data analysis advances in marine science for sheries management: Supervised
          classication applicationsF €hh thesisD …niversity of the f—sque gountryD ƒ—n ƒe˜—sti—nD quipuzko—D
          ƒp—inF
      pern—ndesD tF eFD srigoienD ˆFD foyr—D qFD voz—noD tF eFD —nd snz—D sF @PHHWAF yptimizing the num˜er of
          ™l—sses in —utom—ted zoopl—nkton ™l—ssi(™—tionF J. Plankton Res.D QI@IAXIW!PWF
      pern—ndesD tF eFD srigoienD ˆFD qoikoetxe—D xFD voz—noD tF eFD snz—D sFD €érezD eFD —nd fodeD eF @PHIHAF
          pish re™ruitment predi™tionD using ro˜ust supervised ™l—ssi(™—tion methodsF Ecol. Model.D
          PPI@PAXQQV!QSPF
      pr—n™isD ‚F sF gF @PHHTAF we—suring the strength of environmentEre™ruitment rel—tionshipsX the
          import—n™e of in™luding predi™tor s™reening within ™rossEv—lid—tionsF ICES J. Mar. Sci.D TQ@RAXSWRF
      q—r™í—D ƒF —nd rerrer—D pF @PHHVAF en extension on 9st—tisti™—l ™omp—risons of ™l—ssi(ers over multiple
          d—t— sets9 for —ll p—irwise ™omp—risonsF J. Mach. Learn. Res.D WXPTUU!PTWRF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‚eferen™es



      qrünw—ldD €FD wyungD sFD —nd €ittD wF @PHHSAF Advances in minimum description length: Theory and
          applicationsF „he ws„ €ressF
      roltD tFD ellenD tFD €ro™torD ‚FD —nd qil˜ertD pF @PHHSAF irror qu—nti(™—tion of — highEresolution ™oupled
          hydrodyn—mi™Ee™osystem ™o—st—lEo™e—n modelX €—rt I model overview —nd —ssessment of the
          hydrodyn—mi™sF Journal of Marine SystemsD SU@IEPAXITU!IVVF
      srigoienD ˆFD pern—ndesD tFD qrosje—nD €FD henisD uFD el˜—in—D eFD —nd ƒ—ntosD wF @PHHWAF ƒpring
          zoopl—nkton distri˜ution in the f—y of fis™—y from IWWV to PHHT in rel—tion with —n™hovy
          re™ruitmentF J. Plankton Res.D QI@IAXI!IUF
      tolli'D tFD uindleD tFD ƒhulm—nD sFD €ent—D fFD priedri™hsD wFD rel˜erD ‚FD —nd ernoneD ‚F @PHHWAF
          ƒumm—ry di—gr—ms for ™oupled hydrodyn—mi™Ee™osystem model skill —ssessmentF Journal of Marine
          SystemsD UT@IEPAXTR!VPF
      tolli'eD sF @PHHPAF €rin™ip—l ™omponent —n—lysisF Encyclopedia of Statistics in Behavioral ScienceF
      uohonenD „F —nd w—psD ƒF @PHHIAF ƒpringer series in inform—tion s™ien™esF New York, New YorkF
      uotsi—ntisD ƒF @PHHUAF ƒupervised w—™hine ve—rningX e ‚eview of gl—ssi(™—tion „e™hniquesF Inform.D
          QIXPRW!PTVF
      v—™hen˜ru™hD €F —nd wi™keyD wF @IWTVAF istim—tion of error r—tes in dis™rimin—nt —n—lysisF
          TechnometricsD p—ges I!IIF
      v—rsonD ƒF gF @IWQIAF „he shrink—ge of the ™oe0™ient of multiple ™orrel—tionF J. Educ. Psychol.D
          PP@IAXRS!SSF
      wáre™h—lD hF @PHHRAF A soil-based approach to rainfall-runo modelling in ungauged catchments for
          England and WalesF €hh thesisD gr—n(eld …niversityD gr—n(eldD …uF
      w™gluskeyD eF —nd v—lkhenD eF qF @PHHUAF ƒt—tisti™s ivX snterpreting the results of st—tisti™—l testsF
          Continuing Education in Anaesthesia, Critical Care  PainD U@TAXPHV!PIPF
      wostellerD pF —nd „ukeyD tF pF @IWTVAF Data Analysis, Including StatisticsF sn qF vindzey —nd iF eronsonD
          editorsF r—nd˜ook of ƒo™i—l €sy™hologyD †olF ssF eddisonE‡esleyD ‚e—dingD weD …ƒeF
      x—de—uD gF —nd fengioD ‰F @PHHQAF snferen™e for the gener—liz—tion errorF Mach. Learn.D SP@QAXPQW!PVIF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‚eferen™es



      x—shD tF —nd ƒut™li'eD tF @IWUHAF ‚iver )ow fore™—sting through ™on™eptu—l models p—rt i!— dis™ussion of
          prin™iplesF Journal of hydrologyD IH@QAXPVP!PWHF
      €érezD eFD v—rr—ñ—g—D €FD —nd sFD sF @PHHSAF istim—rD des™omponer y ™omp—r—r el error de m—l—
          ™l—si(™—™iónF sn Primer Congreso Español de InformáticaF
      ‚iss—nenD tF @IWUVAF wodeling ˜y the shortest d—t— des™riptionF AutomaticaD IRXRTS!RUIF
      ‚odríguezD tF hFD €érezD eFD —nd voz—noD tF eF @PHIHAF ƒensitivity —n—lysis of kEfold ™rossEv—lid—tion in
          predi™tion error estim—tionF IEEE Trans. Pattern Anal. Mach. Intell.D QP@QAXSTW!SUSF
      ƒ™hirrip—D wF tF —nd gol˜ertD tF tF @PHHTAF snter—nnu—l ™h—nges in s—˜le(sh @enoplopom— (m˜ri—A
          re™ruitment in rel—tion to o™e—nogr—phi™ ™onditions within the g—liforni— gurrent ƒystemF Fish.
          Oceanogr.D IS@IAXPS!QTF
      ƒtoneD wF @IWURAF grossEv—lid—tory ™hoi™e —nd —ssessment of st—tisti™—l predi™tionsF J. Roy. Statistical
          Society, Series BD QTF
      ƒtowD gFD tolli'D tFD w™qilli™uddy trD hFD honeyD ƒFD ellenD tFD priedri™hsD wFD —nd ‚oseD uF @PHHWAF ƒkill
          —ssessment for ™oupled ˜iologi™—lGphysi™—l models of m—rine systemsF Journal of Marine SystemsD
          UT@IEPAXR!ISF
      „—ylorD uF @PHHIAF ƒumm—rizing multiple —spe™ts of model perform—n™e in — single di—gr—mF J. Geophys.
          ResD IHT@hUAXUIVQ!UIWPF
      v—n der q——gD vF gFD ‚enooijD ƒFD ‡ittem—nD gF vF wFD elem—nD fF wF €FD —nd „——lD fF qF @PHHPAF
          €ro˜—˜ilities for — pro˜—˜ilisti™ networkX — ™—se study in oesoph—ge—l ™—n™erF Artif. Intell. Med.D
          PS@PAXIPQ!IRVF
      ‡ikipedi— @PHIIAF e™™ur—™y p—r—doxF ‘ynlineY —™™essed ISEƒeptem˜erEPHII“F
      ‡ittenD sF rF —nd pr—nkD iF @PHHSAF Data mining: Practical Machine Learning Tools and Techniques
          with Java Implementations, Morgan Kaufmann, San Francisco, CA, USAF
      ‰eungD uF ‰FD fumg—rnerD ‚F iFD —nd ‚—fteryD eF iF @PHHSAF f—yesi—n model —ver—gingX development of
          —n improved multiE™l—ssD gene sele™tion —nd ™l—ssi(™—tion tool for mi™ro—rr—y d—t—F BioinformaticsD
          PI@IHAXPQWR!PRHPF
i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development
 ‚eferen™es




      —r—uzD vFD srigoienD ˆFD —nd pern—ndesD tF @PHHVAF wodelling the in)uen™e of —˜ioti™ —nd ˜ioti™ f—™tors
         on pl—nkton distri˜ution in the f—y of fis™—yD during three ™onse™utive ye—rs @PHHREHTAF J. Plankton
         Res.D QH@VAXVSUF
      —r—uzD vFD srigoienD ˆFD —nd pern—ndesD tF @PHHWAF gh—nges in pl—nkton size stru™ture —nd ™ompositionD
         during the gener—tion of — phytopl—nkton ˜loomD in the ™entr—l g—nt—˜ri—n se—F J. Plankton Res.D
         QI@PAXIWQ!PHUF
      huD ˆF —nd h—vidsonD sF @PHHUAF Knowledge discovery and data mining: challenges and realitiesF sgi
         qlo˜—lF
EURO-­‐BASIN,	
  www.euro-­‐basin.eu	
     Introduc)on	
  to	
  Sta)s)cal	
  Modelling	
  Tools	
  for	
  Habitat	
  Models	
  Development,	
  26-­‐28th	
  Oct	
  2011	
  

Mais conteúdo relacionado

Semelhante a Model Validation, performance measures, models comparison and Weka (open source software for data mining) by JA Fernandes

Presentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data MiningPresentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data Miningbutest
 
01 traditional analytics
01 traditional analytics01 traditional analytics
01 traditional analyticsMeasureWorks
 
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...cvpaper. challenge
 
Testing in the Oil & Gas Market“
Testing in the Oil & Gas Market“Testing in the Oil & Gas Market“
Testing in the Oil & Gas Market“Ernesto Kiszkurno
 
Tool wear monitoring and alarm system based on pattern recognition with logic...
Tool wear monitoring and alarm system based on pattern recognition with logic...Tool wear monitoring and alarm system based on pattern recognition with logic...
Tool wear monitoring and alarm system based on pattern recognition with logic...Nehem Tudu
 
Puneet Singla
Puneet SinglaPuneet Singla
Puneet Singlapsingla
 
Nanometer Testing: Challenges and Solutions
Nanometer Testing: Challenges and SolutionsNanometer Testing: Challenges and Solutions
Nanometer Testing: Challenges and SolutionsDVClub
 
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)Memes & Fitness Landscapes - analogies of testing with sci evol (2011)
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)Neil Thompson
 
01 software test engineering (manual testing)
01 software test engineering (manual testing)01 software test engineering (manual testing)
01 software test engineering (manual testing)Siddireddy Balu
 
LAK13 linkedup tutorial_evaluation_framework
LAK13 linkedup tutorial_evaluation_frameworkLAK13 linkedup tutorial_evaluation_framework
LAK13 linkedup tutorial_evaluation_frameworkHendrik Drachsler
 
MLOps - Build pipelines with Tensor Flow Extended & Kubeflow
MLOps - Build pipelines with Tensor Flow Extended & KubeflowMLOps - Build pipelines with Tensor Flow Extended & Kubeflow
MLOps - Build pipelines with Tensor Flow Extended & KubeflowJan Kirenz
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用CHENHuiMei
 
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...cscpconf
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionActiveEon
 
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...Eric Stephan
 
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab Management
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab ManagementAccelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab Management
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab ManagementBIOVIA
 
統計在半導體產業的應用 -- Basic Statistic Methods
統計在半導體產業的應用 -- Basic Statistic Methods統計在半導體產業的應用 -- Basic Statistic Methods
統計在半導體產業的應用 -- Basic Statistic Methodschunhung chou
 

Semelhante a Model Validation, performance measures, models comparison and Weka (open source software for data mining) by JA Fernandes (20)

Presentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data MiningPresentation on Machine Learning and Data Mining
Presentation on Machine Learning and Data Mining
 
01 traditional analytics
01 traditional analytics01 traditional analytics
01 traditional analytics
 
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
教師なし画像特徴表現学習の動向 {Un, Self} supervised representation learning (CVPR 2018 完全読破...
 
Testing in the Oil & Gas Market“
Testing in the Oil & Gas Market“Testing in the Oil & Gas Market“
Testing in the Oil & Gas Market“
 
Tool wear monitoring and alarm system based on pattern recognition with logic...
Tool wear monitoring and alarm system based on pattern recognition with logic...Tool wear monitoring and alarm system based on pattern recognition with logic...
Tool wear monitoring and alarm system based on pattern recognition with logic...
 
Puneet Singla
Puneet SinglaPuneet Singla
Puneet Singla
 
Nanometer Testing: Challenges and Solutions
Nanometer Testing: Challenges and SolutionsNanometer Testing: Challenges and Solutions
Nanometer Testing: Challenges and Solutions
 
Abraham q3 2008
Abraham q3 2008Abraham q3 2008
Abraham q3 2008
 
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)Memes & Fitness Landscapes - analogies of testing with sci evol (2011)
Memes & Fitness Landscapes - analogies of testing with sci evol (2011)
 
01 software test engineering (manual testing)
01 software test engineering (manual testing)01 software test engineering (manual testing)
01 software test engineering (manual testing)
 
LAK13 linkedup tutorial_evaluation_framework
LAK13 linkedup tutorial_evaluation_frameworkLAK13 linkedup tutorial_evaluation_framework
LAK13 linkedup tutorial_evaluation_framework
 
Icsm08a.ppt
Icsm08a.pptIcsm08a.ppt
Icsm08a.ppt
 
MLOps - Build pipelines with Tensor Flow Extended & Kubeflow
MLOps - Build pipelines with Tensor Flow Extended & KubeflowMLOps - Build pipelines with Tensor Flow Extended & Kubeflow
MLOps - Build pipelines with Tensor Flow Extended & Kubeflow
 
深度學習在AOI的應用
深度學習在AOI的應用深度學習在AOI的應用
深度學習在AOI的應用
 
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...
AN ALTERNATIVE APPROACH FOR SELECTION OF PSEUDO RANDOM NUMBERS FOR ONLINE EXA...
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...
Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate...
 
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab Management
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab ManagementAccelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab Management
Accelrys Announces Experiment Knowledge Base (EKB) for Enterprise Lab Management
 
Test for AI model
Test for AI modelTest for AI model
Test for AI model
 
統計在半導體產業的應用 -- Basic Statistic Methods
統計在半導體產業的應用 -- Basic Statistic Methods統計在半導體產業的應用 -- Basic Statistic Methods
統計在半導體產業的應用 -- Basic Statistic Methods
 

Mais de DTU - Technical University of Denmark

Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...
Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...
Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...DTU - Technical University of Denmark
 
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...DTU - Technical University of Denmark
 
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine Felden
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine FeldenIntroduction to PANGAEA & EURO-BASIN Data Management, by Janine Felden
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine FeldenDTU - Technical University of Denmark
 

Mais de DTU - Technical University of Denmark (12)

Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...
Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...
Open Science Advocay & e-infrastructures, Getting the mix right EGI2014, Hels...
 
Open Marine Science: Can we afford NOT to?
Open Marine Science: Can we afford NOT to?Open Marine Science: Can we afford NOT to?
Open Marine Science: Can we afford NOT to?
 
"Why an OPEN attittude" at OpenByDefault, DTU 2012
"Why an OPEN attittude" at OpenByDefault, DTU 2012 "Why an OPEN attittude" at OpenByDefault, DTU 2012
"Why an OPEN attittude" at OpenByDefault, DTU 2012
 
FP7 Euro-Basin Brochure 2012
FP7 Euro-Basin Brochure 2012FP7 Euro-Basin Brochure 2012
FP7 Euro-Basin Brochure 2012
 
Open Access For Global Climate Change Factsheet 2011
Open Access For Global Climate Change Factsheet 2011Open Access For Global Climate Change Factsheet 2011
Open Access For Global Climate Change Factsheet 2011
 
Introduction to gis by ibon gasparsoro euro basin training
Introduction to gis by ibon gasparsoro euro basin trainingIntroduction to gis by ibon gasparsoro euro basin training
Introduction to gis by ibon gasparsoro euro basin training
 
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...
Predicting suitable habitat for the european lobster, by Ibon Galparsoro, EUR...
 
Predictive Habitat Distribution Models, Leire Ibaibarriaga
Predictive Habitat Distribution Models, Leire IbaibarriagaPredictive Habitat Distribution Models, Leire Ibaibarriaga
Predictive Habitat Distribution Models, Leire Ibaibarriaga
 
Introduction to R software, by Leire ibaibarriaga
Introduction to R software, by Leire ibaibarriaga Introduction to R software, by Leire ibaibarriaga
Introduction to R software, by Leire ibaibarriaga
 
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine Felden
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine FeldenIntroduction to PANGAEA & EURO-BASIN Data Management, by Janine Felden
Introduction to PANGAEA & EURO-BASIN Data Management, by Janine Felden
 
Modelling Spatial Distribution of fish, by Benjamin Planque
Modelling Spatial Distribution of fish, by Benjamin PlanqueModelling Spatial Distribution of fish, by Benjamin Planque
Modelling Spatial Distribution of fish, by Benjamin Planque
 
Habitat Modelling, by Guillem Chust
Habitat Modelling, by Guillem ChustHabitat Modelling, by Guillem Chust
Habitat Modelling, by Guillem Chust
 

Último

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 

Último (20)

Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 

Model Validation, performance measures, models comparison and Weka (open source software for data mining) by JA Fernandes

  • 1. EURO-­‐BASIN,  www.euro-­‐basin.eu   Introduc)on  to  Sta)s)cal  Modelling  Tools  for  Habitat  Models  Development,  26-­‐28th  Oct  2011  
  • 2. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 3. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 4. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Introduction ƒlides ˜—sed m—inly in ‡itten —nd pr—nk @PHHSAY €érez et —lF @PHHSAY ellen @PHHWAY pern—ndes @PHIIA y˜je™tiveX to me—sure how well — model represents truthF „ruth ™—nnot ˜e —™™ur—tely me—suredX o˜serv—tionsF uestionsX How well the model ts the observations (goodness-of-t)? How well the model forecast new events (generalisation)? How superior is one model compared to another? Which is more important, precision or trend? enswersX Validation procedures. Metrics or performance measures. Statistical tests.
  • 5. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Model prediction (P), observations (O), true state (T) —A model with no skill ˜A ide—l model ‚eprodu™ed from ƒtow et —lF @PHHWA —nd ellen @PHHWA
  • 6. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Goodness-of-t vs generalisation pittingX N: Total number of cases Training-set Test-set Chances of over-tting. qener—liz—tion → tr—inEtest splitX N: Total number of cases Training-set Test-set Hold-out (commonly 66%-33% split) (Larson, 1931) Hold-out depends on how fortunate the train-test split is.
  • 7. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion K-fold cross-validation (CV) €erform—n™e is the —ver—ge of k models @v—™hen˜ru™h —nd wi™keyD IWTVY ƒtoneD IWURAF ell d—t— is eventu—lly used for testingF ƒtill sensitive to d—t— splitX str—ti(edD repe—ted @fou™k—ert —nd pr—nkD PHHRAF ‚eprodu™ed from €érez et —lF @PHHSAF
  • 8. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Leave-one-out cross-validation (LOOCV) N: Total number of cases ... ... ... ... ... ... ... ... x modelsD xEI ™—ses for tr—ining —nd I ™—se for testing @wosteller —nd „ukeyD IWTVAF ƒuit—˜le for sm—ll d—t—setsD more ™omput—tion—lly expensiveF †—ri—n™e of the error is the l—rgestD ˜ut less ˜i—sedF st ™—n ˜e used for more st—˜le p—r—meters @less v—ri—n™eA
  • 9. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Bootstrapping (0.632 bootstrap) e ™—se h—s — HFTQP pro˜—˜ility of ˜eing pi™ked for tr—iningEset @ifronD IWUWAF error a H.TQP ∗ etest @gener—lis—tionA C H.QTV ∗ etraining @(tAF et le—st IHH res—mplingsD some studies suggest IHHHHF ‚eprodu™ed from €érez et —lF @PHHSAF
  • 10. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Sumarizing Real performance Real performance Estimated performance Accuracy Estimated performance Precision sn™re—sing d—t— p—rtitions le—ds to FFF more accurate performance estimation (+). more variance in the performance estimation, less precise (-). more computationally expensive (-). uEfold ™rossEv—lid—tionX tr—deEo' @‚odríguez et —lFD PHIHAF
  • 11. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in lter methods Discretize Factor Factors Selection Naive Bayes
  • 12. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in lter methods Discretize Factor Factors Selection Naive Bayes
  • 13. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in lter methods Discretize Factor Factors Selection Naive Bayes Full 10x5cv Dataset
  • 14. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in lter methods Discretize Factor Train 1 Factors Selection Performance Test 1 Naive Bayes estimation ... (Fold 1) ... ... Discretize Factor ... Train 5 Factors Selection Performance Performance estimation Test 5 Naive Bayes estimation Full 10x5cv (Fold 5) Dataset
  • 15. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in lter methods Discretize Factor Train 1 R Factors Selection E Performance P Test 1 Naive Bayes estimation E ... (Fold 1) ... ... A Discretize Factor ... T Train 5 Factors Selection 1 Performance Performance estimation Test 5 Naive Bayes estimation (Repeat 1) Full 10x5cv (Fold 5) ... Dataset Train 1 Whole methodology R performance estimation . . . E 10 repeats average P Test 1 E ... A Performance estimation T Train 5 (Repeat 10) 10 . . . Test 5
  • 16. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodel†—lid—tion Pipeline validation in wrapper methods Model validation Train 1 Discretize Discretize CFS with Model building Class Predictors LOOCV Test 1 Naive Bayes Performance estimation Bootstrapping (Bootstrap 1) ... ... (100) ... ... Discretize Discretize CFS with Class Train 100 Class Predictors LOOCV cut-off points Performance estimation Test 100 Naive Bayes evaluation (Bootstrap 100) Apply selected class discretization Train 1 Discretize CFS with Predictors LOOCV R E Performance P Test 1 Naive Bayes estimation E (Fold 1) ... A T Train 5 1 . . . Performance Performance estimation Test 5 estimation (Repeat 1) (Fold 5) 5 folds average Full 10x5cv ... Dataset Train 1 Whole methodology R . . . E performance estimation P Test 1 10 repeats average E ... A T Train 5 Performance estimation 10 (Repeat 10) . . . 5 folds average Test 5
  • 17. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 18. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures Introduction to metrics i—™h metri™ shows — di'erent property of the model @rolt et —lFD PHHSY pern—ndes et —lFD PHIHA vow vs highX Lower is better (error) Higher is better (performance) foundsX Boundless Between 0 and 1 Between 0 and 100%
  • 19. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 20. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Numeric prediction metrics ‡here p —re predi™ted v—lues —nd a —re the —™tu—l v—luesF we—nEsqu—red errorX outliers → me—n —˜solute errorF ‚el—tive squ—red errorX rel—tive to the me—n of —™tu—l v—luesF gorrel—tion ™oe(™ientX ˜ounded ˜etween I —nd EIF ‚eprodu™ed from ‡itten —nd pr—nk @PHHSAF
  • 21. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Root Mean Squared Error (RMSE) (p − a)2 RMSE = n qoodness of (t ˜etween model —nd o˜serv—tionsF „he ™loser to H the ˜etter is the (tF sf ‚wƒi gre—ter th—n v—ri—n™e of o˜serv—tionsX poor modelF ‚eprodu™ed from ellen @PHHWA
  • 22. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Nash Sutclie Model Eciency) N 2 ME =I− n=1 (an − pn ) N 2 n=1 (an − a)) ‚—tio of the model error to d—t— v—ri—˜ilityF vevelsX bHFTS ex™ellentD bHFS very goodD bHFP goodD `HFP poor wáre™h—l @PHHRAF €roposed in x—sh —nd ƒut™li'e @IWUHAD reprodu™ed from ellen @PHHWA
  • 23. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Percentage Model Bias N Pbias = n=1 (an − pn ) ∗ IHH N n=1 (an ) ƒum of model error norm—lised ˜y the d—t—F we—sure of underestim—tion or overestim—tion of o˜serv—tionsF vevelsX `IH ex™ellentD `PH very goodD `RH goodD bRH poor wáre™h—l @PHHRAF ‚eprodu™ed from ellen @PHHWA
  • 24. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Pearson correlation coecient (R) N R = n=1 (an − a)(pn − p ) ∗ IHH N 2 N 2 n=1 (an − a) n=1 (pn − p ) u—lity of (t of — model to o˜serv—tionsF ‚ a HD no rel—tionshipF ‚ a ID perfe™t (tF ƒqu—re of the ™orrel—tion ™oe0™ient @R2 AX per™ent—ge of the v—ri—˜ility in d—t— —™™ounted for ˜y the modelF ‚eprodu™ed from ellen @PHHWAF
  • 25. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Reliability Index (RI) N I an RI = exp (log )2 n pn n =1 p—™tor of divergen™e ˜etween predi™tions —nd d—t—F ‚s a PD me—ns — divergen™e on —ver—ge within of — multipli™—tive f—™tor of PF ‚s the ™loser to I the ˜etterF ‚eprodu™ed from ellen @PHHWA
  • 26. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Cost functions ho —ll errors h—ve the s—me weightD ™ost or impli™—tionsc ƒ™—ling of di'eren™es ˜etween p —nd aF iFgF ‚wƒi s™—led ˜y the v—ri—n™e of d—t— @rolt et —lFD PHHSAF hi'erent ™ost v—lues depending on the type of errorF
  • 27. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 28. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 29. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 30. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 31. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 32. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 33. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Confusion matrix: accuracy and true positive Accuracy = TPcases # +TN True Positive Rate = TPTPFN + righer is ˜etter for ˜othF
  • 34. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l Actual High
  • 35. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low
  • 36. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low p1 0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14
  • 37. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low p1 0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14 p 2 0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06
  • 38. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low p1 0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14 p 2 0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06 p3 0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22
  • 39. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low p1 0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14 p 2 0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06 p3 0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22 p 4 0.4 0.5 0.1 (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62
  • 40. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Brier Score @frierD IWSHY v—n der q——g et —lFD PHHPY ‰eung et —lFD PHHSA #cases #classes k Brier Score = 1 #cases k =1 l =1 (pl − ylk )2 vower is ˜etter @™ontr—ry to —™™ur—™y 8 true positiveA vevelsX `HFIH ex™ellentD `PH superiorD `HFQH —dequ—teD `HFQS —™™ept—˜leD bHFQS insu(™ient @pern—ndesD PHIIA yK = 1 l yK = 0 l Actual Otherwise High Medium Low p1 0.7 0.2 0.1 (0.7-1)2 + (0.2-0)2 + (0.1-0)2 = 0.14 p 2 0.8 0.1 0.1 (0.8-1)2 + (0.1-0)2 + (0.1-0)2 = 0.06 p3 0.1 0.5 0.4 (0.1-1)2 + (0.5-0)2 + (0.4-0)2 = 1.22 p 4 0.4 0.5 0.1 (0.4-1)2 + (0.5-0)2 + (0.1-0)2 = 0.62 Brier Score: (0.14 + 0.06 +1.22 + 0.62) / 4 = 0.51 Normalized Brier Score: 0.51 / 2 = 0.255
  • 41. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Percent Reduction in Error (PRE) „he relev—n™e of — perform—n™e g—inF e P7 g—in of —n —lre—dy highly —™™ur—te ™l—ssi(er @WH7A FFF more relev—nt th—n with low st—rting —™™ur—™y @SH7A EB − EA PRE = IHH · EB if is the error in the (rst method @irror feforeA ie is in the se™ond method @irror efterA
  • 42. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Accuracy paradox w—inly with un˜—l—n™ed d—t—sets @hu —nd h—vidsonD PHHUY e˜m—D PHHWAF ‚eprodu™ed from ‡ikipedi— @PHIIAF
  • 43. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Minimum Description Length (MDL) principle uiss ruleX ueep st ƒimple FFF y™™—m9s ‚—zorX „he simplest expl—n—tion is the most likely to ˜e true FFF FFF —nd is more e—sily —™™epted ˜y others FFF FFF ˜utD it is not ne™ess—rily the truthF „he more — sequen™e of d—t— ™—n ˜e ™ompressedD FFF FFF the more regul—rity h—s ˜een dete™ted in the d—t—X whvX winimum hes™ription vength @‚iss—nenD IWUVA „r—deEo' ˜etween perform—n™e —nd ™omplexityF ss whv f—lsec homingos @IWWWAY qrünw—ld et —lF @PHHSA „r—deEo' ˜etween me™h—nism —nd ro˜ust p—r—metersF sf two models h—ve s—me perform—n™e then keep the simplestF
  • 44. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Example complex vs simple
  • 45. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development €erform—n™ewe—sures €erform—n™ewe—sures Lift chart, ROC curve, recall-precision curve
  • 46. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 47. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Corrected paired t-test ƒt—tisti™—l ™omp—risons of the perform—n™eF sde—lX test over sever—l d—t—sets of size NF xull hypothesis th—t the me—n di'eren™e is zeroF irrorsX „ype sX pro˜F the test reje™ts the null hypothesis in™orre™tly „ype ssX pro˜F the null hypotF is not reje™ted with di'eren™eF ‚e—lityX only one d—t—set of size N to get —ll estim—tesF €ro˜lemX „ype s errors ex™eed the signi(™—n™e level ƒolutionX heuristi™ versions of the t-testF @x—de—u —nd fengioD PHHQY w™gluskey —nd v—lkhenD PHHUY uotsi—ntisD PHHUY pern—ndesD PHIIA gomp—ring w…v„s€vi methods over yxi d—t—setsF gomp—ring yxi methods over w…v„s€vi d—t—setsF
  • 48. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Critical dierence diagrams § €roposed ˜y hems—r @PHHTA ‚evised priedm—n plus ƒh—'er9s st—ti™ postEho™ test @q—r™í— —nd rerrer—D PHHVAF gomp—ring w…v„s€vi methods over w…v„s€vi d—t—setsF ƒhows —ver—ge r—nk of methods superiority in d—t—setsF xo signi(™—nt di'eren™eX line ™onne™ting methodsF wore d—t—setsX more e—sy to (nd signi(™—nt diferen™esF
  • 49. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Taylor diagrams 2 E = σf + σr − Pσf σr R ; c 2 = a2 + b2 − Pab ™os ϕ 2 2 ƒimult—neouslyX ‚wƒ di'eren™eD ™orrel—tion —nd stdF devF ‚X ™orrel—tion p aY E X ‚wƒ di'FY σf σr X v—ri—n™es p aF 2 2 €roposed in „—ylor @PHHIAD reprodu™ed from ellen @PHHWAF
  • 50. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Target diagrams ‚wƒi in ˆE—xisY fi—s in ‰E—xisF p ƒtdF hevF l—rger @xbHA th—n aY fi—s positive @‰bHA or notF ‚eprodu™ed from tolli' et —lF @PHHWA —nd ellen @PHHWAF
  • 51. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development wodelgomp—rison Multivariate aproaches …niEv—ri—te multiEv—ri—te metri™s summ—rize model skillF wultiEv—ri—te —ppro—™hesX simult—neous ex—min—tion of sever—l v—ri—˜les v—ri—tion to e—™h other sp—ti—lly —nd tempor—llyF €rin™ip—l gomponet en—lysis @€geA @tolli'eD PHHPAF ƒhow the rel—tionship ˜etween sever—l v—ri—˜les in Ph sp—™eF wulti himension—l ƒ™—lling @whƒA @forg —nd qroenenD PHHSAF ixploring simil—rities or dissimil—rities in d—t— ƒelf org—nizing w—ps @ƒywA @uohonen —nd w—psD PHHIAF €rodu™e — lowEdimension—l dis™retized represent—tion of the o˜serv—tionsF
  • 52. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ix—mples Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 53. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ix—mples Zooplankton biomass models ƒever—l models (ts with squ—red errorF ‚eprodu™ed from srigoien et —lF @PHHWAF
  • 54. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ix—mples An example of anchovy recruitment €erform—n™e reported depending on v—lid—tion s™hem—F ‚eprodu™ed from pern—ndes et —lF @PHIHAF
  • 55. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ix—mples Phytoplankton classication ‡ithout @„—˜le sssA —nd with @„—˜le ssA st—tisti™—l di'eren™es @™orre™ted p—ired tEtestAF ‚eprodu™ed from —r—uz et —lF @PHHWA —nd —r—uz et —lF @PHHVAF
  • 56. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ix—mples Zooplankton classication ‚eprodu™ed from pern—ndes et —lF @PHHWAF
  • 57. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‡ek— Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 58. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‡ek— Weka explorer
  • 59. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‡ek— Weka experimenter
  • 60. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‡ek— Weka knowledge ow
  • 61. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‚eferen™es Outline 1 wodel v—lid—tion 2 €erform—n™e me—sures or metri™s wetri™s in numeri™ predi™tion wetri™s in ™l—ssi(™—tion 3 gomp—ring methodologies —nd models 4 ix—mples 5 ‡ek—X open sour™e d—t— mining tool 6 ‚eferen™es
  • 62. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‚eferen™es e˜m—D fF @PHHWAF Evaluation of requirements management tools with support for traceability-based change impact analysisF €hh thesisD …niversity of „wenteD ins™hedeD „he xetherl—ndsF ellenD tF @PHHWAF hPFU user guide —nd report outlining v—lid—tion methodologyF Deliverable in project Marine Ecosystem Evolution in a Changing Enviroment (MEECE). forgD sF —nd qroenenD €F @PHHSAF Modern multidimensional scaling: Theory and applicationsF ƒpringer †erl—gF fou™k—ertD ‚F ‚F —nd pr—nkD iF @PHHRAF iv—lu—ting the repli™—˜ility of signi(™—n™e tests for ™omp—ring le—rning —lgorithmsF Lect. Notes Artif. Int.D p—ges Q!IPF frierD qF ‡F @IWSHAF †eri(™—tion of fore™—sts expressed in terms of pro˜—˜ilityF Month. Weather Rev.D UV@IAXI!QF hems—rD tF @PHHTAF ƒt—tisti™—l ™omp—risons of ™l—ssi(ers over multiple d—t— setsF J. Mach. Learn. Res.D § UXI!QHF homingosD €F @IWWWAF „he role of y™™—m9s r—zor in knowledge dis™overyF Data Min. Knowl. DiscD Q@RAXRHW!RPSF ifronD fF @IWUWAF footstr—p methodsX —nother look —t the j—™kknifeF Ann. Stat.D U@IAXI!PTF pern—ndesD tF @PHIIAF Data analysis advances in marine science for sheries management: Supervised classication applicationsF €hh thesisD …niversity of the f—sque gountryD ƒ—n ƒe˜—sti—nD quipuzko—D ƒp—inF pern—ndesD tF eFD srigoienD ˆFD foyr—D qFD voz—noD tF eFD —nd snz—D sF @PHHWAF yptimizing the num˜er of ™l—sses in —utom—ted zoopl—nkton ™l—ssi(™—tionF J. Plankton Res.D QI@IAXIW!PWF pern—ndesD tF eFD srigoienD ˆFD qoikoetxe—D xFD voz—noD tF eFD snz—D sFD €érezD eFD —nd fodeD eF @PHIHAF pish re™ruitment predi™tionD using ro˜ust supervised ™l—ssi(™—tion methodsF Ecol. Model.D PPI@PAXQQV!QSPF pr—n™isD ‚F sF gF @PHHTAF we—suring the strength of environmentEre™ruitment rel—tionshipsX the import—n™e of in™luding predi™tor s™reening within ™rossEv—lid—tionsF ICES J. Mar. Sci.D TQ@RAXSWRF q—r™í—D ƒF —nd rerrer—D pF @PHHVAF en extension on 9st—tisti™—l ™omp—risons of ™l—ssi(ers over multiple d—t— sets9 for —ll p—irwise ™omp—risonsF J. Mach. Learn. Res.D WXPTUU!PTWRF
  • 63. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‚eferen™es qrünw—ldD €FD wyungD sFD —nd €ittD wF @PHHSAF Advances in minimum description length: Theory and applicationsF „he ws„ €ressF roltD tFD ellenD tFD €ro™torD ‚FD —nd qil˜ertD pF @PHHSAF irror qu—nti(™—tion of — highEresolution ™oupled hydrodyn—mi™Ee™osystem ™o—st—lEo™e—n modelX €—rt I model overview —nd —ssessment of the hydrodyn—mi™sF Journal of Marine SystemsD SU@IEPAXITU!IVVF srigoienD ˆFD pern—ndesD tFD qrosje—nD €FD henisD uFD el˜—in—D eFD —nd ƒ—ntosD wF @PHHWAF ƒpring zoopl—nkton distri˜ution in the f—y of fis™—y from IWWV to PHHT in rel—tion with —n™hovy re™ruitmentF J. Plankton Res.D QI@IAXI!IUF tolli'D tFD uindleD tFD ƒhulm—nD sFD €ent—D fFD priedri™hsD wFD rel˜erD ‚FD —nd ernoneD ‚F @PHHWAF ƒumm—ry di—gr—ms for ™oupled hydrodyn—mi™Ee™osystem model skill —ssessmentF Journal of Marine SystemsD UT@IEPAXTR!VPF tolli'eD sF @PHHPAF €rin™ip—l ™omponent —n—lysisF Encyclopedia of Statistics in Behavioral ScienceF uohonenD „F —nd w—psD ƒF @PHHIAF ƒpringer series in inform—tion s™ien™esF New York, New YorkF uotsi—ntisD ƒF @PHHUAF ƒupervised w—™hine ve—rningX e ‚eview of gl—ssi(™—tion „e™hniquesF Inform.D QIXPRW!PTVF v—™hen˜ru™hD €F —nd wi™keyD wF @IWTVAF istim—tion of error r—tes in dis™rimin—nt —n—lysisF TechnometricsD p—ges I!IIF v—rsonD ƒF gF @IWQIAF „he shrink—ge of the ™oe0™ient of multiple ™orrel—tionF J. Educ. Psychol.D PP@IAXRS!SSF wáre™h—lD hF @PHHRAF A soil-based approach to rainfall-runo modelling in ungauged catchments for England and WalesF €hh thesisD gr—n(eld …niversityD gr—n(eldD …uF w™gluskeyD eF —nd v—lkhenD eF qF @PHHUAF ƒt—tisti™s ivX snterpreting the results of st—tisti™—l testsF Continuing Education in Anaesthesia, Critical Care PainD U@TAXPHV!PIPF wostellerD pF —nd „ukeyD tF pF @IWTVAF Data Analysis, Including StatisticsF sn qF vindzey —nd iF eronsonD editorsF r—nd˜ook of ƒo™i—l €sy™hologyD †olF ssF eddisonE‡esleyD ‚e—dingD weD …ƒeF x—de—uD gF —nd fengioD ‰F @PHHQAF snferen™e for the gener—liz—tion errorF Mach. Learn.D SP@QAXPQW!PVIF
  • 64. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‚eferen™es x—shD tF —nd ƒut™li'eD tF @IWUHAF ‚iver )ow fore™—sting through ™on™eptu—l models p—rt i!— dis™ussion of prin™iplesF Journal of hydrologyD IH@QAXPVP!PWHF €érezD eFD v—rr—ñ—g—D €FD —nd sFD sF @PHHSAF istim—rD des™omponer y ™omp—r—r el error de m—l— ™l—si(™—™iónF sn Primer Congreso Español de InformáticaF ‚iss—nenD tF @IWUVAF wodeling ˜y the shortest d—t— des™riptionF AutomaticaD IRXRTS!RUIF ‚odríguezD tF hFD €érezD eFD —nd voz—noD tF eF @PHIHAF ƒensitivity —n—lysis of kEfold ™rossEv—lid—tion in predi™tion error estim—tionF IEEE Trans. Pattern Anal. Mach. Intell.D QP@QAXSTW!SUSF ƒ™hirrip—D wF tF —nd gol˜ertD tF tF @PHHTAF snter—nnu—l ™h—nges in s—˜le(sh @enoplopom— (m˜ri—A re™ruitment in rel—tion to o™e—nogr—phi™ ™onditions within the g—liforni— gurrent ƒystemF Fish. Oceanogr.D IS@IAXPS!QTF ƒtoneD wF @IWURAF grossEv—lid—tory ™hoi™e —nd —ssessment of st—tisti™—l predi™tionsF J. Roy. Statistical Society, Series BD QTF ƒtowD gFD tolli'D tFD w™qilli™uddy trD hFD honeyD ƒFD ellenD tFD priedri™hsD wFD —nd ‚oseD uF @PHHWAF ƒkill —ssessment for ™oupled ˜iologi™—lGphysi™—l models of m—rine systemsF Journal of Marine SystemsD UT@IEPAXR!ISF „—ylorD uF @PHHIAF ƒumm—rizing multiple —spe™ts of model perform—n™e in — single di—gr—mF J. Geophys. ResD IHT@hUAXUIVQ!UIWPF v—n der q——gD vF gFD ‚enooijD ƒFD ‡ittem—nD gF vF wFD elem—nD fF wF €FD —nd „——lD fF qF @PHHPAF €ro˜—˜ilities for — pro˜—˜ilisti™ networkX — ™—se study in oesoph—ge—l ™—n™erF Artif. Intell. Med.D PS@PAXIPQ!IRVF ‡ikipedi— @PHIIAF e™™ur—™y p—r—doxF ‘ynlineY —™™essed ISEƒeptem˜erEPHII“F ‡ittenD sF rF —nd pr—nkD iF @PHHSAF Data mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, San Francisco, CA, USAF ‰eungD uF ‰FD fumg—rnerD ‚F iFD —nd ‚—fteryD eF iF @PHHSAF f—yesi—n model —ver—gingX development of —n improved multiE™l—ssD gene sele™tion —nd ™l—ssi(™—tion tool for mi™ro—rr—y d—t—F BioinformaticsD PI@IHAXPQWR!PRHPF
  • 65. i…‚yEfeƒsx „r—ining ‡orkshop on sntrodu™tion to st—tisti™—l modelling toolsD for h—˜it—t models development ‚eferen™es —r—uzD vFD srigoienD ˆFD —nd pern—ndesD tF @PHHVAF wodelling the in)uen™e of —˜ioti™ —nd ˜ioti™ f—™tors on pl—nkton distri˜ution in the f—y of fis™—yD during three ™onse™utive ye—rs @PHHREHTAF J. Plankton Res.D QH@VAXVSUF —r—uzD vFD srigoienD ˆFD —nd pern—ndesD tF @PHHWAF gh—nges in pl—nkton size stru™ture —nd ™ompositionD during the gener—tion of — phytopl—nkton ˜loomD in the ™entr—l g—nt—˜ri—n se—F J. Plankton Res.D QI@PAXIWQ!PHUF huD ˆF —nd h—vidsonD sF @PHHUAF Knowledge discovery and data mining: challenges and realitiesF sgi qlo˜—lF
  • 66. EURO-­‐BASIN,  www.euro-­‐basin.eu   Introduc)on  to  Sta)s)cal  Modelling  Tools  for  Habitat  Models  Development,  26-­‐28th  Oct  2011