Princípios de metalurgia física 2ed reed hill

1.534 visualizações

Publicada em

Manual pr

Publicada em: Engenharia
0 comentários
2 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
1.534
No SlideShare
0
A partir de incorporações
0
Número de incorporações
5
Ações
Compartilhamentos
0
Downloads
276
Comentários
0
Gostaram
2
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Princípios de metalurgia física 2ed reed hill

  1. 1. Princípios de Metalurgia Física Robert E. Reed-Hill Segunda edição GUANABARA DOIS
  2. 2. Titulo do Original em Ingles Physical Metallurgy Principles Second Edition Copyright ©1973 by Litton Educational Publishing, Inc., Publicado por D. Van Nostrand Company/ Direitos exciusivos para a lingua portuguesa Copyright© by EDITORAGUANABARA DOIS S.A. Rio de Janeiro - RJ 1982 Reservados todos os direitos. Eproibida a duplicac;ao ou reproduc;ao deste volume, ou de partes do mesmo, sob quaisquer formas ou por quaisquer meios (eletr?~~o,mC?Alnico,gravac;ao, fotoc6pia, ou outros), sem permissaoexpressa da Editora. Fotocomposierao da Editora Guanabara Koogan S.A. Traduzido por ANTONIO CARLOS GOMES, Eng.o Metalurgista EDUARDO BARCHESE, Eng.o Metalurgista, M. Eng., Dr. Eng., Escola Politecnica da USP HAMILTON LELIS ITO, Eng.o Metalurgista, Faculdade de Engenharia Industrial- FEI JOAQUIM DE OLIVEIRA RAMOS JR., Eng.o Metalurgista, Faculdade de Engenharia Industrial- FEI JOSE FRANCISCO GERMANO, Eng.o Industrial Metalurgista JOSE OCTAvIO ARMANI PASCHOAL, Eng.o de Materiais, M. Eng. LIGIA TERUKO MIYADA, Bacharel em Fisica, M. Fis. SERGIO AUGUSTO DE SOUZA, Eng.o Metalurgista Sob a supervisiio de FRANKLIN EVRARD, Eng.o Metalurgista, Departamento de Engenharia Metalurgica da Faculdade de Engenharia Industrial- FEI
  3. 3. Prefacio o programa basico e a filosofia da edil;ao original prosseguem neste volume. As principais mudanl;as na nova edil;ao sao, em grande parte, 0 resultado de sugestoes construtivase comenmrios do Professor Richard W. Heckel, da Drexel University, de Walter S. Owen, Diretor da Northwestern University, e do Professor Marvin Metz- ger, da University of Illinois. Urn dos resultados dessas sugestoes foi a inclusiio de urn capItulo sobre cinetica da nucleal;ao e do crescimento. 0 esbol;o desse capItulo inspirou-se tambem em anotal;oes de aulas gentilmente cedidas ao autor pelo Profes- sor Heckel. Tambem cabe reconhecer 0 consideravel auxflio do Dr. John Kronsbein na revisiio e expansao do Cap. 3, Teoria Elementar dos Metais. Como conseqiiencia de pedidos para a inclusiio de topicos niio existentes ou en- tao so levemente tratados na primeira edil;iio, 0 novo livro cresceu em cerca de 10%. De uma maneira geral, 0 material adicional se enquadra em duas categorias. A primei- ra compreende topicos que so recentemente se tornaram importantes no campo da me- talurgia. 0 segundo grupo consiste em assuntos bern estabelecidos, niio cobertos na primeiraedil;ao mas que tornaram-se necessarios para uma apresental;iio mais unifica- da. Na primeira categoria estiio microscopia eletr6nica, mecanica da fratura, super- condutividade, superplasticidade, recuperal;iio dinamica, envelhecimento dinamico induzido por deformal;iio, eletrotransporte, migral;iio termica e discordancias emissa- rias. No segundo grupo temos 0 novo capItulo sobre cineticada nucleal;iio e do cresci- mento e topicos como magnetismo, teoria da zona das fases, os cinco graus de liberda- de de urn contorno de griio, a regra das fases, tensiio e deformal;iio verdadeiras, zonea- mento e homogeneizal;iio de fundidos, encruamento e difusiio em sistemas anisomor- fos. o mimero de problemas aumentou substancialmente em relal;iio ao livro origi- nal conforme a tendencia atual em engenharia de dar maior enfase asolUl;iio de pro- blemas. Os exercfcios foram formulados com 0 objetivo de ilustrar pontos do texto, como tambem de expor ao estudante material e conceitos nao cobertos diretamente no livro. ovaliosoauxfliodo Dr. John Hren, Dr. Robert T. DeHoff, Dr. Derek Dove, Dr. Ellis Verinke Dr. F. N. Rhines, todos da University of Florida, que revisaram sel;oes do livro ou deram sugestoes, e registrado e agradecido. Robert E. Reed-Hill
  4. 4. Sumario 1 A Estrutura dos Metais, 1 2 Metodos de Difra~ao, 31 3 Teoria Elementar dos Metais, 50 4 Discordancias e os Fenomenos do Escorregamento, 120 5 Discordancias e Contornos de Grao, 161 6 Lacunas, 204 7 Recozimento, 228 8 Solu~Oes S6lidas, 277 9 Endurecimento por Precipita~ao, 304 10 Difusao em Solul;Oes S6lidas SUbstitucionais, 321 11 Difusao Intersticial, 367 12 Fases, 387 13 Cinetica da Nuclea~ao e do Crescimento, 408 14 Diagramas de Fases Bimirios, 443 15 Solidifica~ao dos Metais, 481 . 16 Deforma~ao por Macla~ao e Rea~Oes Martensiticas, 517 17 0 Sistema Ferro-Carbono, 559 18 A Tempera do A~o, 593 19 Fratura, 635 20 Fluencia, 703 Apendices A - Angulos entre Pianos Cristalognificos do Sistema Ctibico'(graus), 755 B - AngUlos entre Pianos Cristalognificos de Elementos Hexagonais, 757 C - Indices dos Pianos Refletores de Estruturas Ctibicas, 758 D - Fatores de Conversao e Constantes, 759 E - Elementos de Macla~iio de Alguns dos Mais Importantes Modos de Macla- ~iio, 759 F - Valores Selecionados da Energia Intrinseca de Falha de Empilhamento 'Y1, E- nergia de Contorno de Macla 'YM, Energia de Contorno de Griio 'YCG e Energia Superficial Cristal-Vapor 'Y para Diversos Materiais em pJlcm2 , 760 G - 0 Sistema Internacional de Unidades, 760 Lista de Simbolos Importantes, 767 Lista de Simbolos Gregos, 769 Iodice Alfabetico, 770
  5. 5. Principios de Metalurgia Fisica
  6. 6. 1 A Estrutura<dos Metais o aspecto mais importante de qualquer material de uso em engenharia e sua estru- tura, porque suas propriedades estao intimamente relacionadas com essa caracteris- tica. Para ser bem-sucedido, urn engenheiro de"materiais deve ter urn born conhe- cimento das rela~6es entre estruturas e propriedades. A titulo de ilustra~ao, a ma- deira eurn material onde e muito facil de observar a intera~ao fntima entre estrutura e propriedades. Uma estrutura tfpica de madeira, tal como a do pinho, eessencial- mente urn arranjo de longas ceIulas ocas ou fibras. Essas fibras, que sao formadas principalmente de celulose, estao alinhadas aos veios" da madeira e coladas entre si por outro material organico, de menor resistencia, chamado lignina. A estrutura da madeira e, portanto, analoga a urn ma~o de canudos. Ele pode ser facilmente separado ao longo de seus veios, isto e, paralelamente as celulas. A madeira tambem e muito mais resistente a compressao (ou tra~ao) paralela aos seus veios do que a compressao (ou tra~ao) normal a eles. De madeira sao feitas excelentes colunas e vigas, mas ela nao e realmente adequada para componentes de tra~ao, destinados a suportar grandes cargas, pois a baixa resistencia ao cisalhamento paralelamente aos veios dificuIta a sua fixa~ao. Por isso, pontes e outras grandes estruturas de madeira sao geralmente construfdas contendo tirantes de a~o parasuportar as cargas de tra~ao. 1.1 A estrutura dos metais. A estrutura dos metais tern importancia semelhante a da madeira, mas, em geral, de urn modo mais sutil. Os metais sao cristalinos quando estao naforma solida e, embora monocristais muitograndes possam serpreparados, os objetos metalicos normalmente consistem em urn agregado de numerosos pequenos cristais. Os metais sao entao policristalinos. Os cristais desses materiais sao normal- mente denominados como os seus graos. Devido ao pequeno tamanho dos cristais, usualmente utiliza-se urn microscopio optico com aumentos de 100 a 1.000vezes para 0 exame dos aspectos estruturais associados aos graos de urn metal. As estruturas que necessitam desta faixa de aumento para seu exame sao classificadas como microestru- turas. Ocasionalmente pode haver objetos memlicos, tais comope~as fundidas, com cristais de tamanho tal que sao distingufveis a olho nu ou facilmente observaveis sob uma lupa. As estruturas deste tipo sao chamadas de macroestruturas. Finalmente, ha uma estrutura fundamental dentro dos proprios graos, 0 arranjo atomico dos cristais. Essa forma de estrutura echamada de estrutura cristalina. Das varias formas de estrutura, a microestrutura (aquela visfvel sob 0 microsco- pio optico) tern sido historicamente a de maior uso e interesse para 0 metalurgista. Como 0 microscopio metalurgico e operado normalmente com aumentos onde a profundidade de foco e extremamente baixa, a superficie metalica a ser observada deve ser muito plana e, ao mesmo tempo, deve revelar com precisao a natureza da estrutura do metal. A prepara~ao de uma superffcie muito plana e sem deforma- 1
  7. 7. ~ao nao e uma tarefa faciI. Os procedimentos necessarios para alcan~ar esse obje- tivo podem ser intitulados prepara~ao de amostras metalograficas. l':zPrepar~~aode a~ostrasmetalogr~c~. De umaforma l?eral, a prepar~a<? ~e amostras metalograficas e uma arte e as tecmcas tendem a vanar de urn laboratono para outro. As varia~oes nos procedimentos podem ser tambem necessarias, de- pendendo da natureza do metal a ser examinado, visto que os metais vmiam am- plamente em dureza e estrutura. Entretanto, as opera<;oes basicas tendem a ser similares. Com a finalidade de ilustrar a natureza da prepara~ao de amostras meta- lograficas, consideremos a tecnica apropriada para 0 ferro e 0 a~o. 0 que se segue e apenas uma sequencia de procedimentos e, para maiores detalhes, uma referencia conveniente1 deve ser consultada. Amostra metalica Fig. 1.1 Uma amostra metalografica. Disco plastico Suponhamos que uma pequena amostra tenha sido retirada de urn objeto de a~o e que uma superffcie plana apropriada tenha sido preparada em urn dos lados dessa amostra. atraves de corte e esmerilhamento. 0 procedimento normal consiste em montar a amostra em urn pequeno disco plastico (cerca de 25 mm de diametro e 12 mm de espessura), com a superffcie da amostra a ser polida exposta em urn dos lados do disco, como mostra a Fig. 1.1. Uma tecnica de moldar esse disco consiste primeiramente em colocar a amostra dentro de urn molde anular e entao despejar resina epoxi Ifquida ate preenche-Io. A resina endurece em algumas horas, produzindo urn material resistente, conveniente para 0 manuseio e sustenta~ao da amostra durante as etapas subsequentes de prepara~ao da superficie. Estas etapas envoivern quatro opera<;oes basicas: (I) lixamento fino, (2), polimento grosseiro, (3) polimentofinal e (4) ataque. Nos primeiros tres estagios, 0 objetivo basico e reduzir a espessura da camada deformada junto asuperffcie da amostra. Todas as opera~oes de corte e esmerilha- mento deformam bastante 0 metal junto asuperficie, de maneira que a verdadeira estrutura do metal tornar-se-a visfvel somente quando a camada deformada for com- pletamente removida. Urna vez que cada estagio da prepara~ao da amostra tende a deformar a superffcie, e necessario <ltilizar uma sucessao de abrasivos cada vez mais finos. Cada abrasivo age de forma a remover a camada deformada produzida no estagio precedente mais grosseiro, deixando por sua vez uma camada deformada de espessura menor. 'Polishing the Micro Section, Partes 1e 2. TheAB Metal Digest, 11, N.""2 e 3, (1965). Buehler, Ltd., Evanston, Illinois. 2 Lixamento fino . .Neste estagio, a superficie da amostra e lixada em papeis espe- cialmente preparados, contendo po de carboneto de silfcio. A amostra pode ser atritada manualmente sobre 0 papel abrasivo disposto sobre uma superficie plana, como, por exemplo, uma placa de vidro; outro metodo consiste em dispor 0 papel abrasivo sobre urn disco rotativo plano horizontal, apoiando-se sobre ele 0 corpo de prova. Em ambos os casos, a superficie e usualmente lubrificada com agua, que promove uma a<;ao de arraste das partfculas eliminadas da superficie. Tres classes de abrasivos sao usadas: grao 320, grao 400 e grao 600. Os tamanhos das partfculas de carbonetode silfcio sao cercade33, 23 e 17 /Lm, respectivamente. Em cada urn desses estagios de lixamento, 0 corpo de prova e movimentado sobre a superficie de tal maneira que os riscos sejam formados apenas em uma dire<;ao. Na passagem de urn abrasivo para outro, 0 corpo de prova e girado de urn cingulo de cerca de 45°, de forma que os novos riscos se disponham na superficie sob este cingulo com rela<;ao aos riscos produzidos no estagio precedente. 0 lixamento e efetuado ate 0 ponto em que os riscos do estcigio anterior desapare<;am totalmente. Polimento grosseiro. Este e provavelmente 0 estcigio critico. Ate hoje 0 abrasivo mais usado e 0 po de diamante, com tamanho de particula de cerca de 6 /Lm.O po de diamante e contido em uma pasta solIivel em oleo. Uma pequena quantidade desta pasta e colocada sobre urn pano de miilon fixado sobre urn disco rotativo, e 0 lubrificante utilizado e urn oleo especialmente preparado. 0 corpode prova e pressio- nado contra 0 pano do disco rotativo com uma pressao considenivel. Nos estcigios de polimento, 0 corpo de prova nao e mantido em uma posi~ao fixa sobre 0 disco, mas e movimentado em torno dele, na dire~ao oposta ao sentido de rota~ao, 0 que assegura uma a<;ao mais uniforme de polimento. As particulasde diamante tern uma forte a<;ao de corte e podem ser muito efetivas na rem09ao da profunda camada de deforma~ao remanescente da opera<;ao de esmerilhamento fino. 0 fato de que 0 po de diamante de 6 /Lm e capaz de remover os efeitos resultantes do abrasivo de carboneto de silfciode 17 /Lm, usado no ultimo estagio de esmerilhamento fino, mostra a efetividade de corte do diamante. Polimento final. Aqui sao removidos os riscos e a fina camada deformadaprove- nientes do estagio de polimento grosseiro. 0 composto de polimento geralmente usado e a alumina (AI2 0 a) em po (forma gama), com urn tamanho de particula de 0,05 /Lm. Este po e colocado sobre urn disco coberto com pano, eo lubrificante usado e a agua destilada. Ao contrario do pano de nailon sem felpas usado no polimento grosseiro, 0 tecido neste estagio normalmente e felpudo. Se este e os estagios precedentes forem cuidadosamente efetuados, sera obtida uma superficie livre de riscos e uma camada deformada quase imperceptfvel. Ataque. A estrutura granular de urn cOfpO de prova metalografico usualmente nao pode ser vista ao microscopio apos 0 polimento. Os contornos de grao de urn metal tern uma espessura da ordem de poucos dicimetros atomicos, e 0 poder de resolu~ao do microscopio e muito baixo para revelar a sua presen~a. Os contornos serao visfveis somente se urn metalpossuirvarios graos adjacentes de cores diferentes, o que, em urn metal puro, .e impossfvel. A fim de tornar os contornos visfveis, os corpos de prova metalograficos sao geralmente atacados. Na maioria dos casos faz-se a imersao da superficie polida em uma solu<;ao fracamente acida ou alcalina. A solu<;ao mais comumente usada para atacar os a~os e chamadanitale consiste em uma solu<;ao de acido nftrico a 2% em mcool. Em alguns casos, a solu<;ao de ataque e aplicada a superficie do corpo de prova atritando-a com urn chuma<;o de algodao embebido do reativo. Em ambos os casos, 0 efeito resultante e a dissolu<;ao do metal da superficieda amostra. Com uma boa solu<;ao de ataque, a rem09ao de metal da superficie' nao ()sorrera uniformemente. Algumas vezes, 0 reativo atacara os contornos de grao mais rapidamente que 0 interior dos mesmos. Outros reativos dissolverao os graos con- 3
  8. 8. forme a orienta<;aoda superficieem contato com a solu<;ao de ataque.Anaturezid~s~e efeito e mostrada esquematicamente na Fig. 1.2, onde os contornos sao revela10spor se apresentarem como pequenos degraus na superficie da amostra. Essas superficies, aproximadamente verticais, nao refletem a luz, para asobjetivasde ummicros~oI'i(), da mesma maneira que as superficies horizontais lisas do interior dos graos, e; como resultado, a localiza<;ao dos contornos de graopodeni ser observada aomicroscopiO: ~ Superficie antes do ataque ~:'""'"'''.,,0.,...,,, Fig. 1.2 A solU9aode ataque revela os contornos dos cristais. 1;4 Celulas unimrias. A dlula unitaria de urn cristal e 0 menor agrupamento de atomos possuindo a simetria do cristal que, quando repetido em todas as dire<;oes, desenvolvera 0 reticulado cristalino. A Fig. 1.3A mostra a celulaunimria de urncristal cubico de.corpo centrado. Eevidente que 0 seu nome deriva do aspecto da celula uni- taria. Na Fig. 1.3B sao combinadas oito celulas unitarias para mostrar como uma c~lula unimria se situa dentro do reticulado completo. Note que 0 atomoa da Fig. l.3B nao pertence unicamente a llD1a. cellliaunitaria, rna~ faz Parte de todas as oito celulas que 0 cercam. Por isso, po1~-sedi~erqlle apenas 1ID1 oitavo do atomo desse vertice pertence a uma dada celulaunit<iria. E:ste fato pode ser usado para calcular 0 numero de Momos ~or celula unitana em urn cristal cubico de<corpo centrado. Mesmo urn pequeno cnstal contera bilhoes de celulas unitanas. Como as celulas do interior do cristal sao em numero muito maior que as que ficam na superficie estas podem ser desprezadas em nossos calcul()s. No interior de urn cristal,cada atomo do vertice de uma celula e equivalente a()< atomo a da Fig. l.3B e cont.Iii:Jui em urn oitavo de Momo para a celula unitaria. Alemdisso, cada celula tambem possui urn atomo localizado no centro que nao participa de outra celula unit<iria. 0 reticulado cubico de corpo centrado tern, portanto, dois Momos por celula unit<iria, urn fornecido pelos atomos dos vertices e outro localizado no centro da celula. Fig. 1.4 Celula unitliria cUbica.de face centrada. A celula unitaria de urn reticulado cubico de face centrada e mostrada na Fig. 104. Neste caso, a ceIula unitaria tern urn atomo no centro decada face. o numero de atomos por ceIula unitaria do reticulado cubico de face centrada pode ser calculado da mesma maneira usada para 0 reticulado cubico de corpo cen- trado. Novamente, os oito Momos dos vertices contribuem com urn Momo para a celula.Ha tambem seis Momos centrados nas faces a serem considerados, cada urn sendo parte de duas ceIulas unitarias. Estes contribuemcom seis vezes meio atomo, ou tresatomos. 0 reticulado cubico de face centrada temum total dequatro atomos por celula unitaria, ou 0 dobro do reticulado cubico de corpo centrado. 1.5 Aestrutura cubica de corpo centrado. Freqiientemente convern considerar os cristais metaIicos. como estruturas.formadas pe!o empilhamento de esferas rigidas. Isto leva ao chamado modelo de esferas rlgidas de urn reticulado cristalino, onde 0 raio das esferas e tornado como a metade da distancia entre os centros dos Momos mais proximos. Fig. 1.5 mostra 0 modelo de esferas rigidas de uma ceIula unit<iria cubica de corpo centrado.•Um estudo da figura mostra que 0 atomo do centro do.cuba e colinear com cada Momo ~o vertice, isto e, os Momos de cada vertice do cuba diagonalmente opost?S f?rmam b~has ret~s, cada atomo tocando seqiiencialmente 0 seguinte. Esses arran~os lmeares nao termmam nos vertices da ceIula unit<iria, mas continuam atraves do cnstal como uma fileira de contas enfiadas em urn arame (veja Fig. 1.3B). Essas quatro diagonais do cubo constituem as dire<;oes compactas de urn cristalcubico de corpocentrado, que correm continuamente atraves do reticulado e nas quais os Momos estao 0 mais proximo posslvel. As considera<;oes feitasnas Figs. 1.5 e l.3B revelam que todos os atomos em urn 5 ;r.;;~----4-- Atomo a (B)(A) 4 Fig. 1.3 (A) Celula unitliria cubica de corp() centrado. (B) Oito celulas unitarias do reticulado cubico de corpo centrado. Polimento e ataqueeletroliticos. Ha umaserie de metais,tais como a<;o ino- xidavel, titanio e zirconio, nos quais e muito dificil a remo<;ao da camada superficial deformada. 0 polimento mecanico nao ebem-sucedido nesses materiais e,porisso, o esmgiofinal de prepara<;aoe.efetuadoatravesdeuma tecnica de polimentoeletroli- tico. Neste caso, 0 corpo deprova eo anodo de urn banho eletrolitico apropriado, enquanto que 0 catodo.eum.material insoluvel. Se umadensidade de correnteade- quada for usada, sera pOSSIVe! dissolver 0 material do corpo de prova de modo que seja produzidauma superflciefinamentepolida. Nopolimentoeletrolftico, a solu<;ao e a corrente sao controladas de forma a produzir uma superficie regular e sem relevo. Por outro lado, tambem e pOSSIVe! alterar a composi<;ao do eletrolito, e a densidade de corrente, de forma aproduzir nasuperficie 0 relevo exigidono ataque. Este procedi- mento e.chamado de ataqueeletrolftico. 1.3 A estrutura cristalina dos metais. Urn cristale definido como urn arranjo ordenadode ,Homos nOespa<;o. Ha Illuitos tipos diferentesde estrlituras cristalinas, algumas das quais bastante complicadas. FelizmeIlte, a. maioria dos metais cristaliza- se em uma destas tres estruturas relativamente simples: a cubica de face centrada, a cubica de corpo centrado e a hexagonal compacta.
  9. 9. c a-+--+--+--+-lif-+--+--+-a c (e) Fig. 1.6 (A) Celula unitaria cubica de face centrada (modelo de esferas rigidas). (B) A mesma celula com 0 Momo de urn dos vertices removido para mostrar urn plano octaectrico. (C) As seis direc;oes das diagonais das faces. Fig. 1.7 ArrapJo atomico em urn plano octaedrico de urn metal cubico de face centrada. Ob~erva-s~ que os atom,os ppssuem 0 empacotamento mais dense possive!. Esta mesma configu- r~c;ao de atomos tambem e observada no plano basal de cristais hexagonais compactos. As dlrec;oes compactas sao aa, bb e cc. Fig. 1.5 Modelo de esferas rfgidas da celula unitaria cubica de corpo centrado. reticulado cubico de corpo centrado sao equivalentes. Portanto, 0 atomo do centro do cubo da Fig. 1.5 nao tern urn ·significado especial corn rela~ao aqueles que ocuparn os vertices. Qualquer urn dos atomos poderia ter sido escolhido como centro da celula unitaria, tomando todos os atomos dos vertices da Fig. I.3B centros de celuill-se todos os centros de celulas vertices. 1.6 0 numero de coordena..ao do reticulado cubico de corpo centrado. 0 numero de coordenac;:ao de' uma estrutura cristalina e igual ao numero de vizinhos mais pr6ximos que urn atomo possui no reticulado. Na celula unitaria cubica de corpo centrado ha oito vizinhos tocando 0 atomo de centro (veja Fig. 1.5). Ja vimos que todos os atomos desse reticulado sao equivalentes. Por isso, tOOos os atomos da estrutura cubica de corpo centrado, a menos daqueles localizados na superficie extema, pos- suem oito vizinhos mais pr6ximos; assim, 0 mimero de coordena~ao do reticulado e oito. 1.7 0 reticulado cubico de face centrada. 0 modelo de esferas rigidas assume urn significado especial nos cristais cubicos de face centrada, pois, nesta estrutura, os atomos ou esferas estao empilhados da forma mais compacta possivel. A Fig. 1.6A mostra uma ceIula cubica de face centrada completa e a Fig. 1.6B mostra a mesma celula uniffiriacorn 0 atomo de urn vertice removido, afim de revelar 0 plano compacta (plano octaedrico), no qual os atomos estao espa~ados da forma mais dens;! possivel. Uma area maior de urn desses pIanos compactos e mostrada na Fig. 1.7. As tres dire~6es compactas se encontram no plano octaedrico (as dire~6es aa, bb e cc); nestas dire~6es, as esferas que se tocarn sao colineares. Retomando a Fig. 1.6A, vemos que as dire~6es compactas da Fig. 1.7 correspon- dem as diagonais das faces do cubo. Ha seis destas dire~6es compactas no reticulado cubico de face centrada, como e mostrado na Fig. 1.6C. As diagonais que se localizarn nas faces reversas do cubo nao sao contadas neste total, porque sao paralelas adire~ao tonsiderada na face visivel e, cristalograficamente, direc;:6es paralelas sao considera- das como as mesmas. Tambem se pode afirmar que a estrutura cubica de face centrada possui quatro pIanos compactos ou octaedricos, 0 que pode ser verificado pelo· seguinte: se urn atomo for removido de cada urn dos vertices de uma celula unitaria, de maneira semelhante ada Fig. 1.6B, umplano octaedrico sera revelado ern cada caso. Ha oito destes pIanos, mas, uma vez que os pIanos diagonalmente opostos 6 7
  10. 10. sao{>fu-aIelos>eles sao cristalograficamente iguais. Isto reduz a quatro 0 numero de pianos octaedricos distintos. 0 reticulado cubico de face centrada, contudo, eo unico que contem quatro pianos de maxima densidade, cada urn contendo tres dire90es compactas. Nenhum outro reticulado possui urn numero tao grande de pianos e dire90es compactas. Este fato e importante, uma vez que confere aos metais cubicos de face centrada propriedades fisicas diferentes das dos outros metais, entre as quais a capacidade de suportar severa deforma9ao plastica. 1.8 Comparal;iio entre as estruturas ctibica de face centrada e hexa.gonal com· pacta. 0 reticulado cubico de face centrada pode ser construfdo arranJ~ndo-se os atomos em uma serie de pianos compactos semelhantes ao mostrado na FIg. 1.7 e, a seguir, empilhando-se esses pianos em uma sequencia apropriada. Ha uma serie de maneiras pelas quais os pianos compactos podem ser empilhados. Urna sequencia produz 0 reticulado hexagonal compacta e outra, 0 reticulado cubico de face centrada. Ha mais que umaforma de empilhamentodos pianos compactos porque urnplano pode ser assentado sobre 0 anterior de duas formas diferentes. Por exemplo, considere 0 plano compacta da Fig. 1.8. 0 centro de cada Momo e indicado pelo sfmboloA. Agora, se urn Momo for colocado sobre 0 arranjo da Fig. 1.8, ele sera atrafdo por for9as interatomicas para dentro de uma das cavidades naturais que existem entre tres Momos contfguos. Suponha que ele caia na cavidade identificada por B l no lado superior esquerdo da figura; urn segundo atomo nao pode cair em C1 ou C2porque 0 atomo na posi9ao Bl cobre as cavidades nesses dois pontos. Entretanto, 0 segundo atomo pode cair em B2 ou Ba e come9ar a forma9ao de urn segundo plano compacto consistindo de Momos que ocupam todas as posi90es B. Por outro lado, 0 segundo plano poderia ser assentado de forma a preencher apenas as posi90es C. Assim: s~ 0 primeiro plano compacto ocupaa posi9aoA, 0 segundo plano pode ocupar as posI90es B ou C. Admitamos que 0 segundo plano tenha a configura9aoB. Neste caso, metade das cavidades do segundo planofica sobre os centros dos atomos do primeiro plano e a outra metade sobre as cavidades C do primeiro plano. 0 terceiro plano pode agora ser assentadosobre 0 segundo, nas posi90esA ou C. Sefor assentado emA,os atomos da terceira camadaficarao diretamente sobre os atomos daprimeira camada. Esta nao e a ordem de empilhamento da estrutura cubica de face centrada e sim a da hexagonal compacta. A sequencia de empilhamento da estrutura cubica de face centrada e: A para 0 primeiro plano, B para 0 segundo e C para 0 terceiro, 0 que pode ser escrito comoABC. 0 quarto plano no reticulado cubico ge face centrada, entretanto, ocupara a posi9ao A, 0 quinto B e 0 sexto C, de forma que a sequencia de empilhamento para cristais cubicos de face centrada e ABCABCABC etc. Na estrutura hexagonal com- pacta, plano sim plano nao ocupara a mesma posi9ao, correspondendo asequencia de empilhamento ABABAB.... Fig. 1.8 Seqiiencia de empilhamento nas estruturas cristalinas compactas. 8 Nao hi diferen9abasica no empacotamento obtido pelo empilhamentodeesferas, entre 0 arranjo cubico de face centrada e 0 hexagonal compacto, uma vez que ambos produzem a estrutura compacta ideal. Ha, contudo, uma diferen9a acentuada entre as propriedades fisicas dos metais hexagonais compactos (tais como cactmio, zinco e magnesio) e metais cubicos de face centrada, que se relaciona diretamente com a diferen9a de suas estruturas cristalinas. A diferen9a mais noffivel esta no numero de pianos compactos. No reticulado cubico de face centrada hi quatro pianos de maxima densidade, osplanos octal?dricos; mas, no reticulado hexagonal compacto, apenas urn plano, 0plano basal, e equivalente ao plano octaectrico. 0 unico plano compacto do sistema hexagonal gera, entre outros efeitos, propriedades de deforma9ao plastica muito mais direcionais que as encontradas em cristais cubicos. 1.9 Ntimero de coordenal;iio dos sistemas compactos. 0 numero de coordenaf(fio deurn atomofoi definido como 0 numero de seus vizinhos mais proximos. Ele e 12tanto para os cristais cubicos de face centrada como para os hexagonais compactos, como pode serverificado com 0 auxflio da Fig. 1.8. Assim, considere 0 atomoAosituado no plano de Momos desenhados com linhas contfnuas. Seis outros Momos situados no mesmo plano ocupam as posi90es de vizinhan9a mais proxima. 0 atomo A otambem toca tres atomos no plano diretamente acima. Estes tres atomos podem ocupar as posi90esB, como esta indicado pelas linhas tracejadas em tor~o das cavi~a?esBbB2.e Ba, ou as posi90es Cl , C2 e Ca. Em ambos os casos, 0 numero de VIZInhOS mats proximos, no plano logoacima de A o, esta limitado a tres. Da mesma forma pode-se mostrar que 0 atomo Ao possui tres vizinhos mais proximos no plano imediatamente abaixo do que 0 contem. 0 numero de vizinhos mais proximos do atomo A o e, portanto, doze, seis em seu proprio plano, tres no plano imediatamente acima e tres no plano imediatamente abaixo. Uma vez que 0 argumento e valido, nao importa se os Momos dos pianos compactos contfguos a A o estao nas posi90es B ou C, e assim 0 raciocfnio evalido, tanto para a sequencia de empilhamento cubica de face centrada como para a hexagonal compacta. Entiio, conclufmos que 0 numero de coordena9iio desses reticulados e 12. 1.10 A celula unimria do reticulado hexagonal compacto. A configura9ao de Ma- mos mais frequentemente utilizada para representar a estrutura hexagonal compacta e mostrada na Fig. 1.9. Este grupo de Momos contem urn numero maior que 0 mfnimo necessario para construir urn bloco elementar do reticulado e, por isso, nao e uma celula unitaria verdadeira. Contudo, como 0 arranjo da Fig. 1.9 fornece aspectos cristalograficos importantes, inclusive a simetria sextupla da estrutura hexagonal, ele e comumente usado como a celula uniffiria da estrutura hexagonal compacta. Uma compara9ao da Fig. 1.9 com a Fig. 1.7 mostra que os atomos dos pianos de cima, de baixo e do centro pertencem a urn plano compacto, 0 plano basal do cristal. A figura tambem mostra que os Momos nesses pianos basais tern a sequencia de empilhamento propria do reticulado hexagonal compacta (ABA...) e que os atomos do topo da celula estao diretamente sobre os do fundo, enquanto os do centro ocupam urn conjunto diferente de posi90es. o plano basal de urn metal hexagonal tern tres dire90es compactas, da mesma Fig. 1.9 Cclula unitaria hexagonal compacta. 9
  11. 11. forma que 0 plano octaedrico de urn metal cubico de face centrada. Estas dire<;:oes correspondem as linhas aa, bb e cc da Fig. 1.7. 1.11 Anisotropia. Quando as propriedades de uma subsHincia sao independentes da dire<;:ao, ela e chamada de isotropica. Assim, deve-se esperar que urn material isotropico ideal tenha a mesma resistencia em todas as dire<;:oes. Ou; se sua resistivi- dade eletrica fosse medida, 0 mesmo valor seria obtido a despeito de como a amostra fosse retirada do material. As propriedades fisiGas dos cristais, em geral, dependem fortemente da dire<;:ao na qual sao medidas. 1sto significa que, basicamente, os cristais nao sao isotropicos, porem anisotropicos. A respeito disso, considere urn cristal cubico de corpo centrado de ferro. As tres dire<;:oes mais importantes dessecristal sao as denominadas como a, bee na Fig. 1.10. Estas dire<;:oes nao sao equivalentes, pois, ao longo delas, 0 espa<;:amento entre os Momos e diferente, sendo, em termos do parametro cristalino a (co~mento de uma aresta da cHula unitaria), respectiva- mente iguais a a, V'Ifie y3/2I1. As propriedades fisicas do ferro, medidas ao longo destas tres dire<;:oes, tambem tendem a ser diferentes. Por exemplo, considere a curva de magnetiza<;:aoB-H de cristais de ferro. Como pode servisto na Fig. 1.11, aindu<;:ao magneticaB aumenta rapidamente com a intensidade do campo magneticoH ao longo da dire<;:ao a, a uma velocidade intermediaria ao longo de b, e menos rapidamente ao longo de c. 1nterpretando de outra forma, podemos dizer que a e a dire<;:ao onde a magnetiza<;:ao e mais facil e conde emais dificil. 1dealmente, uma amostra policristalina podera ser considerada como isotropica se seus cristais estiverem orientados ao acaso, pois entao,sob 0 ponto de vista macroscopico, a anisotropia dos cristais se compensara mutuamente. Contudo, urn arranjo de cristais verdadeiramente ao acaso e raramente atingido,porque os proces- sos de fabrica<;:ao tendem a alinhar os graos, de forma que suas orienta<;:oes nao estiio uniformemente distribufdas. 0 resultado e 0 que se chama de textura ou orienta<;:ao preferencial. Como a maioria dos metais policristalinos possui uma orienta<;:ao prefe- rencial, eles tendem a ser anisotropicos, a intensidade dessa anisotropia dependendo do grau de alinhamento dos cristais. 25.000 800600 H 400200o 5,000 B Fig. 1.11 Urn crista! deferro magnetiza-se muito mais facilmente nadire~aoa da Fi~. 1.10do que nash ou c. (De Barret, C. S.,Structure ofMetals, p. 453. New York: McGraw-Hill Book Co., 1943. Usado com permissao.) 10,000 1.12 Texturas ou orienta~Oes preferenciais. Os arames saofabricados pela passa- gem sucessiva de barras atraves de matrizes cada vez menores. No caso do ferro, e.sse tipo de deforma<;:ao tende a alinhar uma dire<;:ao b de cada cristal paralelamente.ao eIXO doarame. Nestadire<;:ao, oscristaissao normalmenteconsiderados comoarranJados a~ acaso. Este tipo de arranjo preferencial dos cristais em urn arame de ferro ou de a<;:o e persistente. Mesmo se 0 metal sofrer urn tratamento termic02 que reforme completa- mente a estrutura cristalina, os cristais tendem a manter a dire<;:aob paralela aoelXO do arame. Como a deforma<;:ao que ocorre na conforma<;:ao de chapas tern basicamente urn carMer bidimensional, a orienta<;:ao preferencial e nelas mais limitada do que a observada nos arames. Como esta indicado na Fig. 1.12A, nao apenas se desenvolve 11ll1adire<;:ao b paralela a dire<;:ao de lamina<;:ao ou ao comprime!1to da chapa, m~s M tambem uma forte tendencia para a forma<;:ao de urn plano CUblCO, ou face da celula rinitaria, que se alinha paralelamente ao plano de lamina<;:3.0 ou a superffcie da chapa. o entendimento das propriedades cristalinas, por uma serie de razoes, e impor- tante para 0 metalurgista. Uma delas e que a anisotropia dos materiais cristalinos se reflete nas propriedades de pe<;:as comerciais. Deve-se destacar que isto nem sempre e illdesejavel. •As orienta<;:oes preferenciais podem freqiientemente resultar em mate- riais com propriedades superiores; exemplo interessante e a liga de ferro com quatro por cento de silfcio usada na fabrica<;:ao de bobinas de transformadores. Neste caso, por meio de uma complicada combina<;:ao de seqiiencias de lamina<;:a~e de tratamentos terlTIicos, e possfvel obter uma orienta<;:ao fort~mente prefe~enc~al, na qual uma dire<;:ao ados cristais e alinhada paralelamente adlre<;:ao de lamma<;:ao, enquanto uma c ba Fig. 1.10 As dire~oes mais importantes de urn crista! cubico de corpo centrado. 'A recristali~o que se segue ao trabalho a frio sera discutida no Cap. 7. 10 11
  12. 12. Plano de lamina<;ao Dire<;ao de lamina<;ao ~~.. ' : p- , b I, ,'}) 6- It ----6 Dire<;ao de lamina<;ao x z Fig. 1.13 As dire~6es [IIILe [101] em urn crista! cubico, respectivarnente men. y z y Fig. 1.14 (A) As quatro diagonais de urn reticulado cubico,m,.!!, u ev.(~)As_componentes do vetor q para!eIas adiagonalp sao a, -a ea. Por isso, os indices de q sao [111]. (yeja Fig. I. I3.) Neste sistema de coordenadas, aunidadede medida nos tres eixos e 0 c()mprimento da arestade uma celulaunitaria, designado pelosimbolo a na figura. Os indices de Miller para as dire~6es serao apresentados atraves de alguns exemplos simples. Assim, a diagonal m do cubo na Fig. I. I3 tern a mesma dire~ao que urn vetor t de comprimento igual a diagonal da celula. As componentes do vetor t nos tres eixos coordenados sao iguais aa e, umavez que a unidade de medida em cadaeixo e igual aa, o vetor tern componentes 1, 1 e 1 nos eixosx, y e z respectivamente. Os indices de Miller dadire~aom sao agora escritos [111]. Da mesmamaneira, a dire~aon , que cruza diagonalmente uma face da celula unitaria, tern a mesma dire~ao que urn vetor s de comprimento igual a diagonal daface da celulaunitaria. As componentesx, y e zdeste vetor sao 1,0 e.I, respectivamente; os indices de Miller correspondentes sao [101]. Os indices do eix() x sao [100], do eixoy [010] e do eixo z [001]. Urna regrageral para a obten~ao dos indices de Miller de ~ma air~~ao cristalogra.- fica pode agora ser estabeleeida. Desenhe urn vetor, a partir da ongem, paralelo a dire~ao cujos indices sao desejados. Escolha 0 seu modulo de forma que suas compo- nentes nos tres eixos tenham comprimentos iguais a numeros inteiros. Estes inteiros cl~vem ser os menoresnumeros queforne~am adire~ao desejada. Assim, os inteiros1~ Ie 1, e 2,2 e 2representam a mesmadire~ao no espa~o, mas, porconven~ao, os indices Fig. 1.12 As duas orienta~6es basicas que podem ser obtidas em chapas'Iaminadas de metais cubicos de corpo centrado. face da celula unitana (0 plano cubico), permanece paralela aoplano de lamina~ao. Esta orienta~ao media e mostrada esquematicamente na Fig. 1.12B. 0 aspecto impor- tante desta textura e que nela adire~.ao de magnetiza~ao mais faci! eparalela ao comprimento da chapa. Nafabrica~ao de transformadores, as chapassao colocadas no nucleode forma que essa dire~ao sejaparalela a dire~ao de percurso do fluxo magne- tico. Quando isso e feito, a perda por histerese resultantese torna muito pequena. 1.13 Indices deMiller. Quando alguemse envolve mais profundamente no estudo doscristais, torna-se evidente.a necessidade. de simbolos para descrever as orienta- ~6es no espa~o das dire~6es e planoscristalograficamente importantes. Assim, em- bora as. dire~6es compactas do reticulado cubico. de corpo centrado possam ser descritas como as diagonais da cHula unitaria e as dire~6es correspondentes do reticulado cubico de face centrada como as diagonaisdas faces de urn cubo, e muito mais faeil definir estas dire~6es em termos de alguns numeros inteiros. Para esta finalidade, 0 sistema.de Miller para a designa~ao de .Indices de pIanos e dire~6es cristalograficas e universalmente aceito..Na discussaoque se segue, serao considera- dos~os indices de Miller para os cristais cubico e hexagonal. Nao e dificil desenvolver os indices para outras estruturas cristalinas, mas0 assunto nao sera tratado porfalta de espa~o. indices de dirq;oes no reticulado cubico. Tomemos urn sistema de coordenadas cartesianas com os eixos paralelos as arestas da celula unitaria de urn cristal cubico. x (A) x 12 13
  13. 13. de Miller sao [111] e nao [222]. Apliquemos a regra na determina~ao dos indices de Miller de uma segunda diagonal do cubo, indicada pelo simbolo p na Fig. 1.14. 0 vetor q (que se inicia na origem daFig. I.I4B) e paraleloadire~aop. As componentes deq sao 1, -1 e 1e, pela defini~ao dada, os indices de Miller correspondentes sao [III] onde 0 sinal negativo do indicey esta indicado por uma barra sobre 0 inteiro correspondente. Os indices de Miller da diagonal m na Fig. 1.14A ja foram mostrados como sendo [Ill]; pode tambem ser mostrado que os indices das diagonais u e v sao [111] e [Ill] . As quatro diagonais do cubo tem, portanto, os indices [111], [Ill], [Ill] e [111]. z Fig. 1.15 Os pontos de interse~ao do plano 3 (623) com os eixos coordenados. rela~ao que estas redprocas. Os inteiros desejados sao entao 6, 2 e 3. Os indices de Miller de um plano sao colocados entre parenteses, por exemt:lo <,,623), em vez de colchetes tornando assim possivel a distin~ao entre pIanos e dIre~oes. . Dete~inemos agora os indices de Millerdos pIanos mais importantes d.os cristaIS cubicos. 0 plano dafacea do cubo, mostrado na Fig. 1.16A, eparaleloaos e~xosy e z e, por isso, pode-se dizer que intercepta estes eixos no infinito. Entretanto, I,nt~rcepta o eixox na posi~ao I, e os redprocos das tres interse~6essao 111, 1/co e 1/co' Os mdices de Miller correspondentes sao (100). Os indices da face b sao (010), enquanto os da face c sao (001). 0 plano indicado na Fig. 1.16B tern os indices (OIl), e 0 d~ Fig. 1.16C (Ill). o ultimo plano e urn plano octaedrico-, como ~ que foi v~sto na FIg. 1.7. Os outros pIanos octaedricos tern os indices (111), (Ill) e (Ill), onde a barra so~re os algarismos representa urn valor negativo. A titulo de ilustra~ao, 0 plano (Ill) e mostrado na Fig. 1.17, onde se pode ver que a interse~ao com 0 eixo x e negativa, ao passo que com os eixos y e_ z sao positivas. Esta figura tam?em mO,stra que 0 plano (111) e paralelo ao 12Ia_no (l~9 e epor isso 0 mesmo plano cnstalogrlifico. l?a mesma forma os indices (111) e (1Il) representam os mesmos pIanos, respectIvamente, corre;pondentes aos indices U11) e (111). , . o conjunto de pIanos de mesma especie, tal como os quatro pIanos octaedncos (111), (111), (111) e (111), e representado pelos in~ices d~ urn deles co10cados ~ntre chaves, assim como {Ill}. Entao, se alguem deseJar refenr-se a urn p!ano espe;:lfico de orienta~ao conhecida em um cristal, devera usar parenteses, porem devera usar chaves quando quiser referir-se a uma classe de pIanos. +z Fig. 1.17 Os pIanos (111) e (1 If) sao paralelos e por isso representam 0 mesmo plano cristalogni- fico. -x -z (ffi)+x -y -.<-_~=--~L-.-_+Y Quando umadire~aocristalogrlificaespedfica e estabelecida, os indices de Miller sao colocados entre colchetes. Contudo, algumas vezes e desejavel referir-se a todas as dire~6es de mesma especie. Neste caso, os indices de uma dessas dire~6es sao representados da seguinte forma: <111), e 0 simbolo tem 0 significado extensivo as quatro dire~6es ([Ill], [i11], [111] e [111], que sao consideradas como uma classe. Portanto, pode-se dizer que as dire~6es compactas do reticulado cubico de corpo centrado sao dire~6es <111), ao passo que um cristal espedfi<;:o pode ser tracionado na dire~ao [111] e simultaneamente comprimido na dire~ao [111]. indices de pianos dos reticulados Cllbicos. Os pIanos cristalogrlificos tambem sao identificados porconjuntos de numeros inteiros, obtidos apartirdas interse~6esdos pIanos com os eixos das coordenadas. Assim, na Fig. 1.15,0 plano indicado intercepta os eixos x, y e z aI, 2 e 3 arestas de celulaunitaria, respectivamente. Os indices de Miller nao saoproporcionais a estas interse~6es, mas sim as suas redprocas 111,1/3e 112, e, por defini~ao,os indices de Miller sao os menores inteiros que possuem a mesma Fig. 1.16 (A) PIanos dasfaces de uma celulacubica:a (100);b (010); c (001). (B) Plano (011). (C) Plano (111). Umacaracteristica importante dos indices de Miller de cristais cubicos e que tanto os pIanos quanto as suas dire~6es no:mais tern como i~di~es 0 mesmo co~junto de inteiros. Assim a face a do cubo na Fig. 1. 16A tem os mdices (100), e 0 eIXO x, perpendicular a es~e plano, tern os in~ices.[Ioo]. Da mesma.maneira, 0 plano octae- drico da Fig. 1.16C e sua normal, que e a dIagof.lal do cubo, tern, respectIva~en~e, C!S indices (11l) e [Ill]. Os cristais nao-cubicos, em gera!, nao possuem estaeqUlvalencia entre os indices dos pIanos e os da normal a eles. . _. . indices de Miller dos cristais hext;lgonais. Os planos.e dIr~~o~s nos mt;taIs hexagonais sao definidos quase que umversalm~nte po~ melO de mdices ~e. Miller contendo ~atro al~arismos em. vez de tres. AssIm, no SIstema de quat!o digitOS, ~s pIanos (1120) e (1210) sao eqUlvalentes. Por outro Iado, se usarmos 0 sIs~ema de tr7s algarismos, os pIanos equivalentes nao temo indices semelhantes. Ass1[~, os dOlS pIanos citados teriam como indices, no sistema de tres digitos, (110) e (120). (111) "";;"'--:Y [111] z (C) x (B) zz x 14 15
  14. 14. Fig. 1.18 Os quatro eixos de coordenadas de urn cristal hexagonal. a, +0, +c Unidade de medida em urn eixoa Unidade de medida, eixo c sao: a1 em I,a2 no oo,as em -1 ec no 00. Seus indices de Miller sao, portanto, (010). Outro tipo importante de plano no reticulado hexagonal e mostrado na Fig. 1.19. As interse<roes sao: a1 em 1, a2 no 00, as em -1 e c em 1/2 e os indices de Miller portanto (1012). Os indices de Miller das dire<roes tambem sao expressos por meio de quatro algarismos. Aqui, 0 terceiro algarismo deve ser sempre igual a soma dos dois primei- ros, com 0 sinal invertido. Portanto, se os dois primeiros algarismos sao 3 e 1, 0 terceiro deve ser -4 e a dire<rao [3140]. Investiguemos as dire<roes situadas apenas no plano basal, uma vez que isto simplificani sua apresenta<rao. Caso uma dire<rao se situe no plano basal, nao possuira componente no eixo ceo quarto algarismo dos indices de Miller sera zero. Como no nosso primeiro exemplo, determinemos os indices de Miller do eixoa1' Este eixo tern a mesma dire<rao que a resultante de tres vetores (Fig. 1.20), urn de comprimento +2 no eixoal> outro de comprimento -1 paralelo ao eixoa2 e 0 terceiro de comprimento -1 paralelo ao eixo as. De acordo com isto, os indices dessa dire<rao sao [2IIo]. Este metodo incomodo de obter os indices das dire<roes e necessario, a fim de que a rela<rao entre os dois primeiros e 0 terceiro algarismo, mencionada anteriormente, seja mantida. Os indices correspondentes dos eixosa2e as sao [1210] e [1120]. Essas tres dire<roes sao conhecidas como eixos diagonais do tipo I. Outro conjunto importante de dire<roes localizadas no plano basal sao os eixos diagonais do Interseg80 com 8, =! "- (l ~Intersegaocom8,' = +0031 Fig. 1.19 0 plano (1012) de urn metal hexagonal. Os indices de quatro algarismos do sistema hexagonal sao baseados em urn sistema de coordenadas contendo qu<,tro eixos. Tres eixos correspondem as dire<roes compactas e se situam no plano basal, formando entre si angulos de 120°. 0 quarto eixo e normal ao plano basal~ ~e chamado de eixo~ c, ao passo que os tres eixos~situados no plano basal sao designados por aI, a2 e as. A Fig. 1.18 mostraa celula unitaria do sistema hexagonal superposta ao sistema de quatro coordenadas. E~costume tomar~a unidade~ de medida nos eixos al> a2 e as como a dismncia entre os atomos em uma dire<rao compacta: 0 valor desta unidade e indicado pelo simbolo a. A unidade de medida para 0 eixo c e a altura da celula unitaria e e designada por c. Determinemos agora os indices de Miller dos pIanos mais importantes do· reticulado hexagonal compacto. A superficie superior da ceIula unitaria da Fig. 1.19 correspondeao plano basal do cristal. Urna vez que ele e paralelo aos eixosa1> a2 eaa,deve intercepta-Ios no infinito. A sua interse<rao com 0 eixo c, entretanto, e iguaI a 1. Asreciprocas sao 1/"" 1/"" 1/", e lit; os indices de Miller do plano basal sao enta~ (0001). As seis superficies verticais da celula unimria sao conhecidas como pianos prismaticos do tipo I. Consi- dere 0 plano prismatico queconstitui a face frontal da ceIula, cujas interse<roes 16 Fig. 1.20 Determinac,;ao dos indices de urn eixo diagonal do tipo I [2110]. 01 = [2.110] Fig. 1.21 Determinac,;ao dos indices de urn eixo diagonal do tipo II [1010]. °1 [1010] 17
  15. 15. Plano (111) Plano (110) o clrculo basico e0 plano (100) Plano (111) (120) Plano (120) ~,o I P610 (100) e Iinha de observagao (Al i!.OOI ~:1;;I P610 (110) Direyao [looJ Plano (110) (B) / I Plano (111) Diregao [1001 Diregao [100] Fig. 1.23 Sistema cubico: 0 plano (120), mostrando as projC9oes estereogr:ificas em ambos os hemisferios. Observa9iio: dire9iio [100]. (el Fig. 1.22 Proje90es estereognificas de alguns pIanos importantes de urn crista! cubico. (A) Sistema cubico: plano (100), observado na dire9iio [100]. (B) Sistema cubico: plano (110), observado na dire9iio [100]: (C) Sistema cubico: plano (111), observado na dire9iio [100]. Ferro (abaixo de 9100C e de 1.4000C a 1.5390C) Tungstenio Vamidio Molibdenio Cromo Metais alcalinos (Li, Na, K, Rb, Cs) Cubica de corpo centrado Magnesio Zinco Titanio Zirconio Benlio Cadmio Hexagonal compacta Ferro (9100C a IAOOOC) Cobre Prata Ouro Alumfnio Nfquel Chumbo Platina Cubica de face centrada Tabela 1.1 Estrutura cristalina de alguns dos elementos metalicos mais importantes tipo II, que se constituem em perpendiculares aos eixos diagonais do tipo I. A Fig. 1.21 mostra urn dos eixos do tipo II e indica como os indices de sua dire<;ao sao determina- dos. 0 vetors nafigura determina a dire<;ao desejada e e igual asoma do vetor unitario localizado no eixo at e outro paralelo ao eixo a3, mas me.9ido no sentido negativo. Os indices do eixo diagonal do tipo II sao portanto [1110]. Neste caso, 0 segundo algarismo e zero, porque a proje<;ao do vetor s sobre 0 eixo a2 e nula. 1.14 Estruturas cristalinas dos elementos metalicos. Alguns dos metais mais im- portantes estao classificados, de acordo com sua estrutura cristalina, na Tabela 1.1. Muitos metais sao polim6rficos, isto e, cristalizam-se em mais de uma estrutura. o mais importante destes e 0 ferro, que se cristaliza tanto na forma cubica de corpo centrado como na cubica de face centrada, sendo cada uma destas estruturas estavel em faixas de temperatura diferentes. Assim, para todas as temperaturas abaixo de 910°C e acima de 1.400oC ate 0 ponto de fusao, a estrutura cristalina estavel e a cubic.a de corpo centrado, enquanto que, entre 910°C e l.4OOoC, a estrutura estavel e acubica de face centrada. 1.15 Proj~ao estereografica. A proje9ao estereogrcifica e uma ferramenta util para 0 metalurgista, porque permite 0 mapeamento, em duas dimensoes, dos pianos e das dire90es cristalogrcificas de uma maneira conveniente e clara. 0 valor real do metodo se prende apossibilidade de poder visualizar os aspectos cristalogrcificos diretamente em fun9ao de sua proje9ao estereografica. Nesta Se9ao, a enfase concentrar-se-a na correspondencia geometrica entre pianos e dire<;oes crista10grcifi- cas e sua proje9ao estereografica. Em cada urn dos casos, comparar-se-a urn esquema urn certo aspecto cristalografico, em termos de sua localiza<;ao na celula unitaria, com a proje<;ao estereogrcifica correspondente. Consideraremos alguns exemp10s simples, mas, antes disto ser feito, deve-se chamar a aten9ao para varios pontos importantes. A proje9ao estereogrcifica e urn desenho bidimensional de dados tridimensionais e, assim, a geometria de todos os pianos e dire90es cristalogrcificas sao reduzidas de uma dimensao: os pianos sao desenhados como linhas circulares e as dire90es como pontos. Outro fato e que a normal a urn plano descreve completamente a sua orienta9ao. Como primeiro exemplo, consideremos alguns dos pianos mais importantes do sistema cubico, especificamente os pianos (100), (110) e (111); estes tres pianos sao analisados na Fig. 1.22. Observe que a proje9ao estereogrcifica de cada plano pode ser representada tanto por urn grande cfrculo como por urn ponto mostrando a dire9ao no espa90 que e normal ao plano. Muitos problemas cristalogrcificos podem ser resolvidos considerando as proje- 90es estereogrcificas dos pIanos e dire90es em urn unico hemisferio, normalmente 0 do plano do papel. Os tres exemplos dados na Fig. 1.22foram desenhados desta maneira. 18 19
  16. 16. Plano (211) Pianos (312) e (321) Polo Polo (321) Polo __-IV"" Pianos (132) e (231) Plano (121) Os seis pianos daforma {123} (123) Polo (132)......f--+H:.--~ Polo -L_~'-.+J-t---J (231) Plano (112) Pianos (123) e (213) Ostres pianos da forma {112} (213) tr~s pIanos {IIO} passando atraves da dire~ao [111]. Ha tambem tres pIanos {1l2} e sels {123}, bern como outros pIanos com indices mais altos que tern 0 mesmo eixo de zona. Os pIanos {1l2} e {I23} sao mostrados na Fig. 1.26, ao passo que a proje<;ao estereognmca destes e dos pIanos {1l0} ja mencionados e mostrada na Fig. 1.27. Observe que nesta ultimafigura apenas urn dos polos dos pIanos esta desenhado e ele e represent~tivo de todos os polos sobre 0 grande circulo que representa a proje<;ao estereografica do plano (111). . 1.18 Ar~de de Wulff. Arede deWu(ffe umaproje<;ao estereograficadaslinhas de lat~tute e longItude, na qual 0 eixo nort~-sul eparalelo ao plano do papel. As linhas de latItude e longitude da rede de Wulfftern a mesmafun<;ao que os paralelos e meridianos de urn mapa ou proje~ao geografica, isto e, elas possibilitam medi~6es graficas. Entr~t~nto, na proje<;ao estereografica, estamos principalmente interessados em medlr angulo~, ~nquanto que, sob 0 ponto de vista geografico, as distancias e que sao, ~m geral, maIS Im~ortantes. Uma ~ede de Wulfftfpica ou meridional, desenhada com mtervalos de 2°, e mostrada na FIg. 1.28. . Deve-se chamar.a.aten<;a~ sobre varios fatos a respeito da rede de Wulff. Pri- melro, t~os os mendIanos (hnhas de longitude), inclllsive 0 cfrculo basico, sao gr~ndes c:rculos. Segundo, 0 equador e urn grandedrculo. Todas as outras linhas de latItude sao p:queposcfrculos.Tt:rce~ro, as distancias angulares entre pontos que representam dlre<;oes no espa<;o podera() ser medidas na rede de Wulff somente se os pontos estiverem sobre urn grande circulo .da rede. Fig. 1.26 Os pIanos {112} e {123} que tern como eixo de zona a dire9ao [111]. Fig. 1.25 Sistema ctibico: zona de pIanos onde 0 eixo de zona ea dire9ao [111]. Os tres pIanos {110} que pertencema estazonaestiio ilustrados nas figuras acima. Plano (101) (100) Plano (011) Plano (101) Projeqao estereografica Plano (101) Plano (011) ---''''''-''' Plano (110) P610 (011) _ _~./ Caso se fa~a necessario, a proje<;ao estereognmca no hemisferio posterior pode tambem ser desenhada no mesmo diagrama. Entretanto, e necessario que as proje<;6es nos dois hemisferios sejam distinguidas uma da outra. Isto podera ser feito se as proje~6es estereognmcas dos pIanos e dire~6esno hemisferio frontal forem desenha- das como linhas cheias e pontos, enquanto que as do hemisferio de tras como linhas e circulos tracejados. Como ilustra<;ao, considere a Fig. 1.23, naqual estao mostradas as proje<;6es de urn plano em ambos os hemisferios. Neste exemplo e utilizado urn plano (120) do sistema cubico. 1.16 Dir~oes situadas em urn plano. Freqiientemente deseja-se mostrar as posi~6es de certas dire<;6es cristalognmcas importantes, situadas em urn dado plano de urn crista!. Assim, em urn cristal cubico de corpo centrado, urn dos pIanos mais importantes e 0 {1l0} e, em cada urn destes pIanos, encontram-se duas dire<;6es compactas (Ill). As duas situadas no plano (10I) estao mostradas na Fig. 1.24,onde aparecem como pontos sobre 0 grande circulo que representa 0 plano (l0I). 1.17 PIanos de uma zona. Os pIanos que se interceptam em uma dire<;ao comum formam os pIanos de uma zona, sendo a linha de interse<;ao chamada de eixo da zona. Neste caso,considerea dire<;ao [111] como urn eixo de zona. A Fig. 1.25 mostraque ha Fig. 1.24 Sistema ctibico: 0 plano (101) e as duas dire90es (l11) pertencentes a este plano. Observa9ao: [100]. P610 20 21
  17. 17. Fig. 1.27 Proje~ao estereognlfica da zona que con- tern os 12 pIanos mostrados nas Figs. 1.25 e 1.26. Apenas os polos dos pIanos estao desenhados. Ob- serve que todos os polos dos pIanos estao sobre 0 plano (111). Na resolu9ao de muitos problemas cristalognificos, freqiientemente e necessa- rio girar a proje9ao estereognifica, de uma dada orienta9ao para uma outra orienta9ao diferente. Isto e feito por uma serie de razoes, sendo uma das mais importantes a de colocar dados medidos experimentalmente dentro de uma proje9ao padrao, onde 0 circulo basico e urn plano compacto, tal como (IOO) ou (Ill). Marcas de deforma9ao ou outros fenomenos cristalognificos observados experimentalmente podem, em geral, ser mais facilmente interpretados quando estudados em termos de proje90es padroes. ~" / / " < 1~0 ;> " / " / v~ (A) Fig. 1.29 Rota~ao com rela~ao ao centro da rede de Wulff. (A) Efeito da rota~ao~desejadana celula unitaria cubica. Linha de observa~ao [100]. (B) Vistaem perspectivado plano (Ill) antes e depois darota~ao. (C) Proje~aoestereognlficado plano (111) e seu poloantes e depois darota~ao. Rota~ao, de 45°, honiria em rela~ao It dire~ao [100]. P610 (111) Depois da rota9ao (C) Antes da rota9ao ~".I'''",)-_....;,v 1/ [100]1 [100] (8) Na solu9ao de problemas com 0 auxflio da rede de Wulff e habitual cobri-la com urn peda90 de papel transparente, presQ por urn alfinete exatamente no centro da rede. opapel, assim montado, serve como umafolhade opera9aQ onde os dados cristalogra- ficos sao desenhados. Os dois tipos de rota9ao descritos a seguir sao possiveis de serem feitos. Rola~ao em lorna de um eIXO de observa~ao. Esta rota9ao e facilmente execu- tada pelo simples giro do papel transparente com rela9ao arede. Por exemplo, giremos urn cristal cubico 45° no sentido horario, em torno da dire9ao [100] considerada como eixo. Esta rota9ao tern como efeito 0 posicionamento do polo do plano (Ill), como e mostrado na Fig. 1.22C, sobre 0 equador da rede de Wulff. A Fig. 1.29A mostra 0Fig. 1.28 Rede de Wulff, ou meridional, desenhada com intervalos de 2°. 22 23
  18. 18. 010 011 0110 /111 101 o o101 001 100 o1100 011 010 Plano (110) antes da rotagao (6) efeito destarotagao sobre a orientagao da celula unitana cubica, quando a celula e observada na diregao [100]. Observe que, como 0 cfrculo basico representa 0 plano (100), uma simples rotagao de 45° do papel, em torno do alfinete, produz a rotagao desejada na projegao estereognifica. Fig. 1.30 Rota~ao em torno do eixo norte-suidaredede Wulff. (A) Yistas em perspectivade uma celulaantes edepois da rota~ao, mostrando a orienta~ao do plano (110). (B) Proje~aoestereogni- fica mostrando arota~ao acimadescrita. Afim de termos clareza na apresenta~ao, apenas 0 plano (110) e mostrado. Arota~ao do pOlo nao e mostrada. Os meridianos da rede de Wulff tambCm foram omitidos. J.-- - - Antes da Depois da rotagao / rotagao / / [too]..- !,,--_-::v Plano (110) '- ap6s a rotagao ~~r~g~aOgao" - - • Diregao [100] (AI On 011 Fig. 1.31 A rota~ao dopolocloplano (110) esta apres,mtadaacima. 0 diagrama aesquerda mostra a rota~ao em perspectiva, ao passo que 0 da direita mostra 0 movimento do polo em uma Jinha de latitude de uma proje~ao estereognffica que, neste caso, e 0 equador. Fig. 1.32 Vma proje~ao estereogrwca padrao 100 de urn cristal cubico. As duas rotagoes basicas que podem ser feitas com a rede de Wulff foram exemp1ificadas anteriormente. Todas as rotagoes possfveis de urn cristal em tres dimensoes podem ser duplicadas peIo uso dessas rotagoes naprojegao estereognifica. 1.19 Proj~oes padrao. V rna projegao estereografica na qual uma diregao crista- lograficaproeminente ou polo de urn plano importante superpoe 0 centro da projegao e conhecida como uma projegao estereografica padrao. Para urn cristal cubico, tal projegao e mostrada na Fig. 1.32, onde 0 polo (100) e considerado normal ao plano do papel. Esta figura e chamada de projegao padrao 100 de urn cristal cubico. Nesse diagrama, note que os polos de todos os pianos {loo}, {1I0} e {1I1} foram desenhados com suas orientag6es apropriadas. Cada uma dessas direg6es cristalograficas basicas e representada por urn sfmbolo caracterfstico. Para os po10s {100}, 0 simbolo e urn quadrado, significando que estes polos correspondem a eixos de simetria quadrupla. Se 0 cristal e girado de 90° com rela<;:ao a uma dessas diregoes, ele devera retornar a uma orienta<;:ao equivalente asua orientagao original. Na rota<;:ao de 360° em torno do polo {IOO}, 0 cristal reproduz sua orienta<;:ao original quatro vezes. Do mesmo modo, a dire<;:ao (111) corresponde a eixos de simetria tripla, e essas dire<;:oes sao indicadas na proje<;:ao estereografica por triangulos. Finalmente, a dupla simetria das diregoes (110) e indicada pelo uso de pequenas elipses. Vma projegao padrao 100 mais comp1eta de urn cristal cubico e mostrada na Fig. 1.33. Ela inclui polos de outros pianos com fndices de Miller mais altos. A Fig. 1.33 pode ser considerada como uma proje<;:ao, mostrando tanto as diregoes de urn cristal P610 ap6s a rotagao P610 antes da rotagao Rota9QO da rede de Wulff em tomo do eixo norte-suI. Esta rotagao nao e tao simples de executar quanto a descrita anteriormente, que pode ser efetuada atraves de uma simples rotagao da folha de operagao. As rotagoes deste segundo tipo sao feitas por urn metodo gnifico. Os dados sao de infcio desenhados estereograficamente, girados ao longo das linhas de latitude' e redesenhados de tal forma que cada ponto sofra a mesma mudanga de longitude. 0 metodo se torna evidente se consideramos os desenhos da Fig. 1.30. Neste exemplo e admitido que a face anterior (100) da celula unitana seja girada para a esquerda com relagao adiregao [001]. Considere agor~ 0 efeito dessa rotagao na orientagao espacial e projegao estereognifica do plano (110). Na Fig. 1.30A, os desenhos da direita e da esquerda representam uma celula unitaria cubica antes e depois da rota.gao, respectivamente. 0 efeito da rotagao na projegao estereografica do plano (110) e mostrado na Fig. 1.30B. Cada uma das setas curva<!.as representa uma diferenga de longitude de 900. Nestes desenhos, 0 polo do plano (110) nao e mostrado a fim de simplificar a apresentagao. Contudo, a rotagao que 0 polo (lIO);sofre e mostrada na Fig; 1.31. 24 2S
  19. 19. Fig. 1.35 As dire<;:Oes crista!ognmcasa" a. e a3 mostradas nesta proje.;:ao padrao sao equiva!en- tes porque se situam em posi<;:oes semelhantes dentro dos respectivos triiingulos estereognif'icos padroes. 1.20 0 triangulo es.tereogratico p2drao dos cristais cubicos. Os grandes circulos correspondentes aos pIanos {IOO} e {l1O} de urn cristal cubico sao tambem mostrados nas proje~6es padr6es das Figs. 1.33 e 1.34. Esses grandes circulos passam atraves de todos os polos mostrados nodiagrama, exceto os dos pianos {l23}. Aomesmo tempo, dividem a proje~ao em 24 triangulos esfericos. Todos estes triangulos esfericos estao no hemisferio dafrente da proje~ao.Ha, e claro, 24 triangulos semelhantes no hemisfe- rio posterior. Urn exame dos triangulos nas Figs. 1.33 e 1.34 mostra urn fato interes- sante: emtodos os casos, os tres vertices dos triangulos siioformados porumadire~ao (111), uma dire~ao<11~ e uma dire~ao{l~. Esta observa~aoe muito important~, cubico como os polos de seus pIanos. Isto porque, em urn cristal cubico, urn plano e sempre normal adire~ao com os mesmos indices de Miller. Entretanto, em urn cristal hexagonal compacto, as proje~6es que !l!ostram os polos dos pIanos e as dire~6es cristalognificas nao sao as mesmas. 021 Urna proje~ao padrao III e mostrada na Fig. 1.34. Ela contem os mesmos p6los da proje~ao 100 da Fig. 1.33. A simetria tripla da estrutura cristalina com rela~ao ao polo do plano {Ill} esta claramente evidenciada na figura. Ao mesmo tempo, chama- mos a aten~ao para 0 fato de que a proje~ao 100 da Fig. 1.33 tambem revelaclaramente a simetria qmidrupla com rela~ao ao polo {l00}. 01 001 010 010 DDT Fi!? 1.33 Vma proje<;:ao estereognmca padrao 100 de urn crista! cubico mostrando polos adicio- mus. 123 Fig. 1.34 Vma proje<;:ao padrao 111 de urn crista! cubico. 27
  20. 20. significando quecada trHingulo correspondea uma regHio do cristal que e equivalente. Como conseqiiencia,as tres dire<;oes cristalognificas identificadas comoal,a2' e as, mostradas na Fig. 1.35, sao cristalograficamente equivalentes, porque estao localiza- das nas mesmas posi<;oes relativas dentro dos tres triangulos estereograficos. Para ilustrar este ponto, admitamos que seja possivel preparar tres corpos de prova de tra<;ao, comeixos paralelos aal, a2 eas, de urn monocristal degrandes dimensoes. Se os ensaios fossem efetuados nesses tres cristais menores, esperar-se-ia a obten<;ao de curvas tensao-deforma<;ao identicas. Urn resultado semelhante seria obtido se alguma outra propriedade fisica, tal como a resistividade· eletrica, fosse medida ao longo dessas tres dire<;oes. 0 mapeamento de dados cristalognificos e geralmente simplifi- cado devido a equivalencia dos triangulos estereognificos. Por exemplo, se fosse possivel ter urn grande mimero de cristais longos e cilindricos e se desejasse mapear as orienta<;oes dos eixos de cada cristal, pOder-se-ia utilizar somente urn unico triangulo estereogratlco, tal como mostrado na Fig. 1.36. 111 5. .0 diagrama anterior mostra 0 tetraedro de Thomp~on, que e uma figura geometricaformada por quatro pIanos cubicos {Ill}. Identifique cada plano pormeio dos respectivos indices de Miller. Esta figura e. importante noestudo dos aspectos cristalOgraticos da estrutura cubica de corpo centrado ou da estrutura cubica de face centrada? Explique, considerando tanto as superficiesquant(j asarestas do tetraedro, 6. Os pIanos do sistema hexagonal compacto d()tipo {lOI0} saochal11adosdeplanos prismati- cos dotipo I. Quantos destes pianos ha e quais sao os seus illdices?Qual e a importiincia destes pianos com rela9ao a. celula unit:iriahexagonal mostrada .na Fig. U9? 7. Desenhe uma celula unit:iria hexagonal e mostre a orienta9ao do plano {1120}, que e urn plano prismatico do tipo II. Quantos pianos prismaticos dotipo n ha e quais sao os seus indices? Mostre que urn prisma de. seis lados tambem pode ser formado usando pIanos prismaticos do tipo II.. .. .. . • . . • . . . .. .....•... . 8. Note que a dire9ao (1120) e normal ao plano (1120). Entretanto,{IOI2)nao e perpendicu- lar a (1012).Demonstre geometricamente averacidade dessaafrrma9ao. 9. Desenhe, em uma celulaunitana hexagonal, os pIanos (1012).e (1011). Desenhe tambCm as dire90es [lOTI] e [lOTI]. Como estes pianos e dire90es estao relacionados? 10. Os pianos {1I2l} e {1122}saoimportantes quanto aos mecanismos de d~forll1a9aO plastica de. certos.metais hexagonais compactos,. tais como titanio e zirconio. Mostre, na celula unitaria, a orienta9ao de urn plano de cada tipo. 1 6..100 Problemas •2 8 5 • 3. 4 • 110 Fig. 1.36 Quando e necessano comparar as orienta90es de vanos cristais, desenhe os seus eixos em urn unico triangulo estereogni- fico, como esta indicado. II. Identifique os indices da dire9ao dada pelalinhaa-b mostrada nestacelula unitana. Estalinha pertence a tres pianos importantes. Identifique-os. Projer;:iio estereograjica Os problemas seguintes envolvem 0 desenho de proje90es estereograticas e requerem 0 uso da rede de Wulff mQstrada na Fig. 1.28 e de uma folha de pape! transparente. Em cada caso, coloque 0 papel transparente sobre a rede de Wulff e marque 0 centro desta no papel com urn I. Desenhe uma celula unit:iria mostrando as dire90es compactas de urn cristal cubico de corpo centrado. Identifique todas essas dire90es com seus indices apropriados. 2. Da mesma forma que no Problema I, desenhe uma celulaunitaria na qual estao superpostas as dire90es compactas de urn cristal de estrutura cubica de face centrada. Identifique cada dire9ao com seus indices apropriados. 3. A Fig. 1.25 mostra tres pianos da forma {iIO}. Ao' todo, quantos sao os pIanos deste tipo? Num desenho· semelhante ao da Fig. 1.25, mostre os pIanos {110} restantes e identifique cada urn com seus indices de Miller. 4. Ha doze planosda forma {II2}. Tres destes pIanos sao mostrados dentro de uma celula unit:iria cubida na Fig. 1.26. Fa9a urn desenho mostrando os outros nove. Identifique cada urn deles com os respectivos indices de Miller. z j 28 x y 29
  21. 21. ponto. Em seguida desenhe 0 circulo basico e coloque uma pequena marca vertical no topo do circulo, que servira como um indice. 12. Coloque0 papel transparente de forma que 0 circulo basico se alinhe com 0 perfmetro darede de Wulffe 0 indice coincidacom 0 polo norte darede. Agora admita que um cristal cubico seja observado de cima, sob 0 eixo z, como esta indicado na figura anterior. Desenhe a posi;ao dos polos de todos os pianos {loo} e identifique-os no diagrama. 13. 0 circulo basico do Problema 12 corresponde a qual dos pIanos {loo}? Desenhe nos grandes circulos correspondentes os dois outros pIanos {loo} e identifique-os com os seus indices de Miller. 14. Desenhe os polos de todos os seis pIanos {IIO} e identifique-os. Agora desenhe a proje;ao dos grandes circulos correspondentes a estes pianos. Assim, voce tera feito uma figura semelhante ada Fig. 1.32, que e uma proje;ao padrao 100 do cristal cubico. Qual proje;ao padrao voce desenhou? 15. Como se pode girar 0 cristal mostrado naproje;ao, obtidano final do Problema 14, de forma que ele se coloquena orienta;ao padrao loo? Mostre 0 caminho que cada polo {loo} e {ItO} seguira durante essa rota;ao. 16. Desenhe a proje;ao estereografica padrao (0001) de um cristal hexagonal compacto, mos- trando os pOlos de todos os pIanos prismaticos do tipo I, {IOIO}, e do tipo II, {lliO}, bem como 0 polo de plano basal (0001). 17. No desenho do Problema 16ligue 0 pOlo basal aos pOlos dos pianos prismaticos com grandes circulos (Iinhas retas). Isto dividira a proje;ao estereografica em um conjunto de triiingulos esfericos. Examine esses triiingulos e observe se ha a1gumasemelhan;acom os mostrados na Fig. 1.31 para um cristal cubico. 18. Reconstruaa proje;ao padrao do Problema 16, mas adicione ao diagrama os p§los de todos os pianos {lOll}, {IOI2}, {IOI3}, {IOI4}, {llil}, {lli2}, {lli3} e {1l24}, usando os dados para 0 magnesio dados no Apendice B. Isto produzira uma figura de polo de um metal hexagonal que mostra os pIanos mais importantes dessa estrutura cristalina. 2 Metodos de Difrariio Como os cristais sao arranjos simetricos de atomos contendo direc,:6es e pianos de alta densidade atomica. eles sao capazes de agir como redes tridimensionais de difrac,:ao. Se raios de luz sao eficientemente difratados par uma rede, entao 0 espa- c,:amento da rede (comprimento de uma malha) deve ser aproximadamente igual ao comprimento de onda da luz. No casu de luz visivel. redes com comprimento de malha entre 10.000 e 20.000 A. sao usadas para difratar comprimentos de onda na faixa de 4.000 a 8.000 A.. Nos cristais, contudo. a separac,:ao entre direc,:6es ou pianos atomicos paralelos e igualmente espac,:ados e muito menor. da ardem de poucos A.. Felizmente. raios X de baixa voltagem tern comprimento de onda de tamanho apropriado para serem difratados par cristais, isto e, raios X produzidos por tubos operados entre 20.000 e 50.000 volts, em contraste com os usados em aplicac,:6es medicas, onde as voltagens excedem 100.000 volts. Quando raios X de uma dada freqiiencia atingem urn atomo, eles interagem com seus eletrons. fazendo-os vibrar com a inesma freqiiencia do feixe de raios X. Como os eletrons se tornam cargas eletricas em vibrac,:ao, eles reirradiam os raios X sem mudar a freqiiencia. Esses raios refletidos saem dos atomos em muitas dire- c,:6es. ou. em outras palavras. os eletrons "espalham" 0 feixe de raios X em todas as direc,:6es. Quando atomos espac,:ados regularmente sao atingidos por urn feixe de raios X. os raios refletidos sofrem interferencia. Em certas direc,:6es ocorre interferencia construtiva. enquanto em outras ocorre interferencia destrutiva. Por exemplo, se urn plano atomico isolado e atingido por raios X paralelos, 0 feixe sofre interferencia construtiva quando 0 angulo de incidencia iguala-se ao de reflexao. Desta forma, na Fig. 2.1. os raios indicados por ([ 1 a ([3 representam urn feixe paralelo de raios X. A frente de onda deste feixe, onde todos os raios estao em fase, e representada pela linha AA. A linha BB e trac,:ada perpendicularmente aos raios refletidos pelos ato- A B 30 Fig. 2.1 Um feixe de raios X e refletido com interferencia construtiva quando 0 iingulo de incidencia e igual ao iingulo de reflexao. 31
  22. 22. Quando e~ta rela~a0.f0r'satisfeita, os raios refletidos at e a2 estarao em fase, resul- t~nd? em Interf~rencIaconstrutiva..Alem disso, os angulos nos quais ocorre interfe- renCIa const~tIva, q~ando urn feIxe delgado de raios. X atinge urn cristal nao- ~eformado, sao perfeitamente. definidos porque as reflexoes se originam em milha- I~s de p!anos paralelos d<? retIculado. Sob esta condi<;ao, mesmo urn pequeno des- VI? do an~ulo e que satisfaz a rela<;ao citada causa interferencia destrutiva nos r~?s refle~ldos. Como conseqiiencia, 0 feixe refletido deixa 0 cristal como urn fino lapIs de ra.lOs, capaz de produzir imagens perfeitas da fonte numa chapa fotografica. . Consideraremos agora urn exemplo simples de aplica<;ao da lei de Bragg. Ad- mItamos que os pianos {IIO} de urn cristal cubico de corpo centrado sejam separados de I, lSI f· ~e esses. pIanos forem irradiados com raios X de urn tubo com alvo de cobre 5uJa IIn~a ~aIS forte, 0 Kat> tern urn comprimento de onda de 1,540 A, a reflexao de pnmelra ordem .(n = I) ocorrera para urn angulo e=senI(nl..)= -1 (1) 1,540= 4080 2d sen. 2 (1,181) , U~a reflexao de segunda ordem destes pIanos {ItO} nao e possivel para esse com- pnmento de onda porque 0 argumento do arc sen (fl A/2d) e 2(1,540) _ 2(1;181) - 1,302 ou seja, urn numero maior que a unidade, sendo, portanto a solu<;ao impossivel Por outro l~do, urn alvo de tungstenio num gerador de raios Xproduz uma linha K . co~ co:npnmento de onda de 0,2090 A. Onze ordens de reflexao sao agora possi~ veI~. 0 angulo e, correspondente a varias dessas reflexoes, e mostrado na Tabela 2 I a FIg. 2.3 mostra uma representa<;ao esquemMica dessas reflexoes. . , e Tabela 2.1 mos, numa dire<;ao tal que 0 angulo de incidencia iguala-se ao angulo de reflexao. Como BB encontra-se amesma distancia da frente de onda AA, qualquer que seja 0 raio considerado, todos os pontos em BB devem estar em fase. Ela se constitui, portanto, em uma frente de onda, e a dire<;ao dos raios refletidos e entao uma dire<;ao de interferencia construtiva. 2.1 A lei de Bragg. 0 que foi discutido anteriormente nao dependeda freqiien- cia da radia<;ao. Contudo, quando os raios X sao refletidos nao por uma rede de Momos dispostos num unico plano, mas por ;itomos de varios pianos paralelos igualmente espa<;ados, como os existentes nos cristais, a interferencia construtiva somente ocorre sob condi<;oes altamente restritas. A lei que governa 0 fenomeno e conhecida como lei de Bragg. Deduziremos agora uma expressao dessa importante lei. Para isto, consideremos cada plano atomico de urn cristal como urn espelho semitransparente, ou seja, de forma que cada plano reflita uma parte do feixe de raios X mas tambem permita que outra parte passe atraves dele. Quando raios X atingem urn cristal, 0 feixe e refletido nao apenas por atomos da primeira camada, mas tambem por atomos de camadas subjacentes, ate uma profundidade considera- vel. A Fig. 2.2 mostra urn feixe de raios X que esta sendo refletido por dois pianos paralelos do reticulado. Na realidade, 0 feixe seria refletido nao somente por dois pianos do reticulado, mas por urn grande numero de pIanos paralelos. 0 espa<;a- mento do reticulado cristalino ou distancia entre pianos e representado pela letra d na Fig. 2.2. A linha oA; foi tra<;ada perpendicularmente aos raios incidentes e repre- senta uma frente de onda. Os pontos 0 e m que se encontram nesta frente de onda devem estar em fase. A linha oAr foi tra<;ada perpendicularmente aos raios refleti- dos at e a2, e a condi<;ao para que oAr represente uma frente de onda e a de que os raios refletidos devam estar em fase nos pontos 0 e n. Essa condi<;ao s6 podera ser satisfeita se a distancia mpn for igual a urn multiplo de urn comprimento completo de onda, isto e, essa distancia deve ser igual a A ou 2A ou 3A ou flA,onde A e 0 comprimento de onda dos raios X e n urn numero inteiro qualquer. Ordem de rejlexiio O. lingulo de incidencia ou rejlexiio' 33 2." Ordem Feixes refletidos 5° 5' loo 20' 26° 40' 800 11," Ordem11." Ordem 1 2 5 I1 Feixes incidentes 5." Ordem 2," Ordem Planas {110} ~ig. 2.3 Alguns fmgulo,s nos quais ocorrem reflexoes de' Bragg, utilizando-se de um cristal ({tr;",~)~ espa9amento mterplanar de 1,181 A e raios X de comprimento de onda 0,2090 A Fig. 2.2 A lei de Bragg. 32 onde n = 1,2,3... A = comprimento de onda em A d = distancia interplanar em A e = angulo de incidencia ou reflexao do feixe de raios X fll.. = 2dsen e Urn exame da Fig. 2.2 mostra que as distancias mp e pn sao ambas iguais ad sen e. A distancia mpn e, portanto, 2d sen e. Sendo esse valor igual a flA, temos a lei de Bragg:
  23. 23. ou n'A = 2dsen8 Amostra cristalina Feixe de raios X colimado Anteparo contendo a chapa fotogratica Alvo Fig. 2.5 Camara de retrorreflexao deLaue. Filamento ~ I I I Fig. 2.4, 0 feixe incidente e perpendicular asuperffcie e a urn plano (001), enquanto forma urn angulo·8 com dois pIanos {21O} - (012) e (012). A figura mostra esquemati- ca.mente as reflexoes desses dois pIanos. Pode-se concluir que, quando urn feixe de ralOs X branco a!inge urn cristal, muitos feixes refletidos irao originar-se, cada urn correspondendo a reflexao de urn diferente plano cristalografico. Alem disso, em contraste com 0 feixe incidente que contem comprimento de onda continuo cadafeixe refletido contera somente comprimentos de onda discretos, como previ~t~pela equa- <ao de Bragg. 2.2 Tecni.cas de Laue. Os metodos de difra<ao dos raios X de Laue fazem uso de urn cristal com uma orienuwao fixa com rela<ao ao feixe continuo de raios X como descrito na Se<ao anterior. Existem duas tecnicas basicas de Laue: numa sao ~studa­ dos os raios refletidos em dire<oes pr6ximas ado feixe de raios X incidente; na outra sao estudados os feixes refletidos que passam atraves do crista!. Evidentemente, 0 ultimo metodo mio pode ser aplicado a cristais de maior espessura (l mm ou mais), devido aperda de intensidade por absor<ao dos raios X pelo meta!. 0 primeiro metodo e conhecido como tecnica de retrorreflexiio de Laue; 0 segundo como tecnica de transmissiio de Laue. .. 0 metodo de retrorreflexao de Laue e.especialmente valioso na determina<ao da onenta<ao do reticulado interior de cristais, quando estes sao grandes e portanto opacos aos raios X. Muitas propriedades fisicas e mecanicas variam com a dire<ao dos cristais; assim, 0 estudo dessas propriedades anisotr6picas requer urn conheci- mento da orienta<ao do seureticulado. A Fig. 25 mostra 0 aspecto de uma tipica camara de retrorreflexao de Laue. Raios X provenientes do· alvo •de. um tubode raios X sao colimados num feixe ~elgado por urn tubo de varios centfmetros decomprimentoe com urn diametro mterno de cerca de 1 mm. 0 feixe delgado de raios X atinge 0 cristal adireita da figura, onde e difratado em feixes refletidos que atingem umanteparo contendo uma chapa fotografica. A frente do anteparo e coberta com uma folha fina de material opaco aluz visivel (papel preto, por exemplo), mas transparenteaos feixes de raios X refletidos. Dessa forma, as posi<oes dos feixes refletidos sao registradas na chapa fotografica como urn arranjo de pequenos pontos escuros. A Fig. 2.6A mostra uma figura de retrorreflexao de raios X de urn cristal de magnesioorientado de forma que 0 feixe incidente seja perpendicular ao plano basal do crista!. .Cad~ popto correspon~e a uma reflexao de urn unico plano cristalogra- fico, ea slmetna sextupla do retlculado, observada numa dire<ao normal ao plano Feixe refletido (012) Perpendicular ao (012) /, / " "" Perpendicular ao (012) Feixe refletido Fig. 2.4 Reflexoes de raios X por pianos nao paralelos asuperficie da amostra. n"A.= 2(1) sen 60° = 1,732 Entao, os raios refletidos dos pIanos {100} irao conter os seguintes comprimentos de onda 1,732 A para reflexao de primeira ordem 0,866 Apara reflexao de segunda ordem 0,546 A para reflexao de terceira ordem Todos os outros comprimentos de onda sofrerao interferencia destrutiva. Nos exemplos citados admitiu-se que os pIanos refletores eramparalelos asuper- ficie do crista!. Este nao e urn requisito necessario para a reflexao, pois e sempre possivel obter reflexoes de pIanos que formem angulos quaisquer com a supemcie. Na Considerando 0 exemplo dado, e importante notar que, ainda que existam onze fmgulos para os quais urn feixe de comprimento de onda de 0,2090 Aseja refletido com interferencia construtiva por pIanos {11O}, somente uma leve mudan<a no an- gulo 8,·afastando-o de· algum desses onze valores, causa interferencia destrutiva, anulando 0 feixe refletido. A reflexao de urn feixe de raios X por urn conjunto de pIanos cristalognificos depende do angulo entre 0 feixe eo plano e, portanto, nao s,e deve esperar a ocorrencia de reflexao construtiva toda vez que urn felxe monocroma- tieo atingeum crista!. . . . . . - . Suponha que umcristal seja mantido numa orienta<aofIxa com rela<ao ao felxe de raios X· e que este feixe nao seja monocromatico, mas contenha todos os com- primentos de onda maiores que urn dado valor minimo AQ. Este tipo de feixe de raios .X e chamado feixe de raios X branco. porque e analogo aluz branca que contem todos os comprirnentos de onda doespectro visive!. Embora 0 angulo do feixe seja fixo com rela<ao a urn dado conjunto de pIanos do cristal e portanto 0 angulo 8 da lei de Bragg seja constante, podem ocorrer reflexoes de todos os pIanos como resultado do fato de que 0 feixe de raios X e continuo. 0 ponto em questao pode ser ilustrado com a ajuda de urn reticulado cubico simples. Admita urn feixe de raios X com comprimento de onda minimo de 0,5 A que forme urn angulo de 600 com a superficie do crista!, a qua!, por sua vez, e paralela a urn conjunto de pIanos {IOO}. Admita ainda que esses pIanos estejam separados de 1 A. Substituindo-se esses valores na equa<ao de Bragg, temos 34 35
  24. 24. Fig. 2.6 Fotografias de retrorreflexao de Laue. (A) Fotografia com feixe de raios X perpendi- cular ao plano basal (0001). (B) Fotografia com feixe de raios X perpendicular a urn plano prismatico (1120). As linhas tracejadas da fotografia foram feitas para indicar que os pontos de retrorreflexao se dispoem em hiperboles. nas de retrorreflexao, os pontos se arranjam em hiperboles. (Veja Fig. 2.6B.) As duas tecnicas sao usadas para determinar a orientac;ao dos reticulados cris- talinos. Ambas podem ser utilizadas no estudo do fenomeno chamado asterismo. Urn cristal que tenha sido dobrado teni pIanos cristalinos encurvados que agem da mesma forma que espelhos curvos, formando pontos alongados ou distorcidos em vez de pequenas imagens circulares do feixe de raios X. Urna figura de Laue tipica de urn ciistal distorcido e mostrada na Fig. 2.8. Em muitos casos, a analise do asterismo, ou distorc;ao, dos pontos de fotografias de Laue conduz aobtenc;ao de valiosas informa- c;oes acerca dos mecanismos de deformac;ao plastica. Nos exemplos citados (metodos de Laue), urn cristal e mantido numa orientac;ao fixa com relac;ao ao feixe de raios X. As reflexoes sao obtidas porque 0 feixe e continuo, isto e, 0 comprimento de onda e variavel. Varias tecnicas importantres de difrac;ao que utilizam raios X de.uma unica freqiiencia ou comprimento de onda serao agora consideradas. Nesses metodos, em que A nao efixo, e necessario variar 0 angulo 8 para a o~tenc;ao das. reflexoes. 2.3 0 metodo do cristal girat6rio. No metoda do cristal girat6rio, os pIanos cristalograficos sao levados a posic;6es refletoras pela rotac;ao de urn cristal em torno de urn de seus eixos, enquanto simultaneamente ele e irradiado por urn feixe monocromatico de raios X. As reflexoes sao geralmente registradas numa chapa basal, e facilmente notada. Se 0 cristal e girado numa direc;ao que se afasta daquela que gera a figura mostrada na Fig. 2.6A, ela se modifica (Fig. 2.6B), contudo definindo ainda a orientac;ao do reticulado no espac;o. Portanto, a orientac;ao do cristal pode ser determinada pela fotografia de Laue. . . As figuras da transmissao de Laue podem ser obtidas.com urn arranJo expen- mental semelhante ao usado para a" retrorreflexao, mas a chapa fotognifica e colo- cada no lade oposto daamostra, com relac;ao ao tuba de raios X. As amostras podem ter 0 formate de pequenos bastoes ou placas, mas a sua dimensao paralela ao feixe de raios X deve ser pequena. Enquanto a tecnica de retrorreflexao mostra as reflexoes de planos.aproximadamente perpendiculares ao feixe incide~te, a tec- nica de transmissao mostra asreflexoes de pianos quase paralelos ao felxe, como pode ser visto na Fig. 2.7. Tanto as fotografias de transmissao como as de retrorreflexao de Laue consis- tern de urn arranjo de pontos. Entretanto, esses arranjos diferem para cada metodo. Nas figuras de transmissao, os pontos geralmente se dispoem em elipses, enquanto, Fig. 2.8 Asterismo numa fotografia de retror- reflexao de Laue. As reflexoes de pianos cris- talinos distorcidos ou curvados formam man- chas alongadas. Feixe refletido Feixe de raios X incidente (A) Pianos refletores Feixe de raios X incidente (8) Feixe refletido Pianos refletores Filme circular Orificio no filme --...:: Feixe incidente Plano relletor na amostra cristalina - - Feixe nao-difratado Exposigao no filme " Feixe difratado Eixo rotativo II II " I , I'.. '01 I" , " (8) Fig. 2.7 (A) Fotografias de retrorreflexao de Laue indicam as reflex6es de pianos a1?ro~ima­ damente perpendiculares ao feixe de raios X incidente. (B) Foto~as de .tranSI!I1S~aO de Laue indicam as reflexoes de pianos aproximadamente paralelos ao felxe de ralOs X Jncldente. 36 Fig. 2.9 (A) Diagrama esquematico de uma camara de monocristal rotativo. (B) Representa- erao esquematica de uma figura de difraerao obtida pela camara de cristal rotativo. Feixes refletidos produzem pontos que formam Iinhas horizontais. 37
  25. 25. e para reflexoes de primeira ordem, onde n e igual a urn. temos Feixe de raios X incidente 1 0,4 0 ' (} =sen 2(0,707) = 16 28 Cone circular de feixes difratados pelos pianos {100} (a 23° do feixe nao-difratado) Amostra de po cristalino Feixe nao-difratado (} = senl(~) Esta equa<;ao nos revela que pianos com maioPespa<;amento refletirao com menor angulo (). Se agora e admitido arbitrariamente que 0 comprimento de onda do feixe de raios X e 0,4 A, reflexoes de primeira ordem ocorrerao nos pianos {100} (admitindo-se espa<;amento de I A) quando (} -10,4 -II 11°30'=sen -- =sen - = 2(1) 5 Por outro lado, os pianos {IOO} comespa<;amento de 0,707 A refletem com Fig. 2.10 Reticulado cubico simples. Espa<;amento interplanar relativo dos pianos {IOO} e {Ito}. fotognificaque circunda a amostra. (Veja nas Fig. 2.8 e Fig; 2.9 uma representa<;ao esquematicado metodo.) 2.4 Metodo de Debye-Scherrer on metodo do pO. Neste metodo toma-se 0 cui- dado de que a amostra nao contenha urn unico crista!, mas muitas centenas de cristais orientados ao acaso. A amostra pode ser constituida de urn pequeno arame metalico policristalino ou de urn fino po metalico contido num tubo plastico, de celulose ou vidro. Em ambos os casos, 0 agregado cristalino consiste ern urn cilin- dro com cerca de 0,5 mm de diametro contendo cristais de aproximadamente 0,1 mm de diametro ou menores. No metodo de Debye-Scherrer, como no metodo do cristal giratorio, 0 angulo (} e variavel, enquanto 0 comprimento de onda A perma- nece constante. No metodo do po, a varia<;ao de (} e obtida nao pela rota<;ao de urn cristal em torno de urn de seus eixos, mas pela presen<;a de inumeros pequenos cristais orientados ao acaso na amostra. Os princfpios envolvidos no metodo de Debye-Scherrer podem ser expiicados com a ajuda de urn exemplo. Adoll:~: o,707A / " ./2 "/,"//JdlOO : 1A ". /. . //. .... /. // " / Para simplificar, admitamos uma estrutura cristalina com 0 reticulado cubico simples mostrado na Fig. 2.10, na qual 0 espa<;amento entre os pianos {Ioo} e igual a 1 A. Pode-se facilmente demonstrar que a distancia interplanar dos pianos do tipo {IIO} e igual adismncia dos pianos {100} dividida pela raiz quadrada de dois, sendo, portanto, 0,707 A. (Veja Fig. 2.10.) 0 espa<;amento dos pianos {110} eportanto menor que 0 espa<;amento dos pianos {Ioo}. De fato, todos os outros pianos do reticulado cubico simples tern urn espa<;amento menor que 0 do cubo ou pianos {Ioo}, como e mostrado pela equa<;ao seguinte para 0 espa<;amento de pianos cristalognificos num reticulado cubico, ondeh, k el sao os tres indices de Miller de urn plano no cristal, dhk1 o espa<;amento interplanar do plano e a 0 comprimento de uma aresta da celula unitciria. d - a hkl - -Jh2 +k2 +P Na estrutura cubica simples, a distancia entre os planoscubicos, d lOO ' e igual a a. Portanto, a equa<;ao anterior podeser escrita d - dlOO hkl- .J1z2 +e +z2 Agora, de acordo com a equa<;ao de Bragg nA = 2dsen(} Fig. 2.11 Reflexoes de primeira ordem dos pianos {IOO} de urn reticulado cubico simples hipotetico. Amostra de po cristalino. Todos os outros pIanos com indices maiores (isto e, {Ill}, {234} etc.) refletem com angulos ainda maiores. A Fig. 2.11 mostra como sao encontradas as reflexoes de Debye-Scherrer. Urn feixe monocromatico paraleto de raios X, vindo da esquerda da figura, atinge 0 agregado cristalino. Como a amostra contem centenas de cristais orientados ao acaso na regiao atingida pelofeixe de raios X incidente, muitbs deles terao pianos {Ioo} formando urn angulo de 11°30' com 0 feixe. Cada urn desses cristais ira por- tanto refletir uma parte da radia<;ao incidente numa· dire<;ao que forma urn angulo duasv~es 11°30' com 0 feixeoriginal. Contudo,como os cristais estao orientados aQ acaso no espa<;o, as reflexoes nao saem numa mesma dire<;ao, mas sim ao longo da superficie de urn cone que forma urn angulo de 23° com a dire<;ao original do feixe de raios X" Da mesma forma, pode-se demonstrar que as reflexoes de pri- meira ordem dos plaQos {l1O} produzem uma superffcie conica que forma urn an- gulo de duas vezes 16°28', ou 32°56', com a dire<;ao original do feixe e que os pianos de indices maiores produzem cones de raios refletidos formando maiores angulos com a dire<;ao original do feixe. As camaras mais usadas no metodo do po empregam urn longo filme que e curvado de modo a formar urn cilindro que envolva a amostra, como mostra a Fig. 2.12. Urn aspecto esquematico de urn filme de Debye-Scherrer, apos exposi<;ao e revela<;ao, e mostrado na Fig. 2.13. 38 39
  26. 26. Fig. 2.13 Fotografia da camara de po. As linhas de difra'tao correspondem as reflexoes mos- tradas na Fig. 2.12. Feixe niio-difratado Fig. 2.14 Espectrometro de raios X. {100} 2." Ordem Contador ' Geiger Diffraction Data Index) foi publicada, alistando, para aproximadamente mil elementos e compostos cristalinos, nao somente 0 angulo de Bragg de cada linha de difra<;ao importante de Debye-Scherrer, mas tambem sua intensidade relativa. A identifica<;ao de uma fase cristalina desconhecida de urn metal pode 'ser feita combinando-se os valores dos angulos de Bragg obtidos pelo metodo do po com os valores das intensida- des refletidas da substancia desconhecida e comparando com os valores fichados no lndice. 0 metodo e analogo a urn sistema de identifica<;ao por impressoes digitais e constitui uma importante forma de analise qUlmica qualitativa. 2.5 Espectrometro de raios X. 0 espectrometro de raios X e urn dispositivo que mede a intensidade das reflexoes de raios X produzidas por urn cristal, utili- zando urn aparelho eletronico tal como urn contador Geiger ou uma camara de ioniza<;ao, em vez de uma chapa fotografica. A Fig. 2.14 mostra as partes elementa- res de urn espectrometro - uma amostra cristalina, urn feixe paralelo de raios X e urn contador Geiger. 0 dispositivo e montado de forma que 0 cristal e 0 medidor de intensidade (contador Geiger) girem. 0 contador, entretanto, sempre se move com uma velocidade angular duas vezes maior que a da amostra, 0 que 0 mantem sob angulo adequado durante a rota<;ao do cristal, de forma acaptar a reflexao de Bragg tao logo ela ocorra. Nos instrumentos modernos desse tipo, 0 medidor de intensidade e ligado, atraV;s de urn sistema de amplifica<;ao apropriado, a urn registrador onde a intensidade da re~xao e anotada em urn grafico. Dessamaneira obtem-se urn registro preciso da intensidade em fun<;ao dos angulos de Bragg. Urn grafico tipico de urn espectrometro de raios X e mostrado na Fig. 2.15. o espectrometro de raios X e comumente usado com uma amostra de po na forma de uma placa retangular com dimensoes aproximadas de 25 mm de compri- mento por 12 mm de largura. A amostra pode ser retirada de urn metal policristalino e, em contraste com 0 metoda de Debye-Scherrer, onde a amostra e urn arame fino (aproximadamente 0,5 mm de diametro), a do espectrometro tern urn tamanho maiQr, 0 que a torna de f~cil preparo. Como urn espectrometro de raios X e capaz {100} 2." Ordem S 8=- 2R {111} 2." Ordem Feixe incidente Filme circular S 28 =- R ou Esta ultima. rela<;ao e importante, pois permite a determina<;ao do linguloe. No exemplo citado, o.espa<;amento entre dois pianos paralelos do reticulado foi admi- tidocomo conhecido. Essa suposi<;ao foi feita a fim de explicar os princfpios do metodo de Debye-Scherrer. Em muitos casos: contudo, pode-se nao conhecer os espa<;amentos interplanaresde urn cristal, valores esses que podemser determina- dos medindo-se oslingulos de Bragg. 0 metoda do po e assim uma ferramenta importante para a determina<;ao da estrutura cristalina de urn metal. Em cristais complicados, outros metodos podem ser usados, juntamente com 0 metoda do po, para se obter uma perfeita identifica<;ao. 0 metoda de Debye-Scherrere provavel- mente 0 mais importante de todos os metodos usados nadetermina<;ao de estruturas cristalinas. Urn", outra importante aplica<;ao do metodo do po se baseia no fato de que cada material cristalino tern seu espa<;amento interplanar caracteristico. Assim, cobre, prata e oura tern a mesma estrutura cristalina (cubka de face centrada), mas ceIulas unitarias diferentes em tamanho e, como resultado, espa<;amentos interplana- res e lingulos de Bragg diferentes. Como cada material cristalino tern seulingulo de Bragg caracteristico, e possivel identificar fases cristalinas desconhecidas de metais com a ajuda de suas reflexoes. Para este proposito, urn sistema de fichas (X-ray Fig. 2.12 Representa'tao esquematica da camara de Debye. A amostra esuposta com reticu- lado cubico simples. Nem todas as reflexoes sao mostradas. Neste filme, a distlincia 2S entre dois segmentos circulares do cone {100} esta relacionada com a abertura angular do cone e, portanto', com 0 lingulo e(lingulo de Bragg) entre 0 plano refletor e 0 feixe incidente. Entao, 0 lingulo em radianos entre a superffcie do cone e 0 feixe de raios X e igual a SIR. onde Reo raio do cfrculo formado pelo filme. Contudo, esse mesmo lingulo e igual a 2e e, portanto, 40 41
  27. 27. - Feixe de eletrons A= 2dsene Fig. 2.16. Representa«ao esquematica de urn microsc6pio eletr6nico de transmissao. Imagem da fonte C Objetiva '-;---.....----'0"[ - - 12 Imagem da amostra Como a forma<;ao da image1l1 no microscopio eletronico de transmissao depende da difra<;ao de eletrons, e necessario considerar alguns fatores elementares sobre este tipo de difra<;ao. Como sera demonstrado no Cap. 3, os eletrons nao somente tern caracteristicas de partfculas, como tambempossuem propriedades de onda. Sera tambem demonstrado que 0 comprimento de onda de urn eletron esta relacio- nado com sua velocidade v pela expressao A=!Lmv onde A e 0 comprimento de onda do eletron, mesua massa eh e a constante de Planck, igual a 6,63 x 10-28 I.d. s. Essa expressao mostra que 0 comprimento ~e onda de urn eletron varia inversamente com a sua velocidade. 0 aumento da velocldade acarreta uma diminui<;ao do comprimento de onda. Admitamos que urn eletron seja acelerado por urn potencial de 100.000 volts. Pode-se demonstrar facilmente que ele imprimira ao eletron uma velocidade de aproximadamente 2 x 1010 cm/s e, pela equa<;ao anterior, urn comprimento de ond~ de aproximadamente 4 x 10-10 em, ou aproximadamente 4 x 1O-2 .k Esse valor e aproximadamente duas ordens de grandeza menor que 0 compnmento d.e o~da medio usado na difra<;ao de raios X. Esse fato modlfica a natureza da dlf~a<;ao, como pode ser deduzido considerando-se a lei de Bragg. Suponha que. esteJamos interessados na difra<;ao de primeira ordem, onde n = 1. Entao, pela leI de Bragg, temos Se d, 0 espa<;amento dos planosparalelos pelos quais os eletrons sao refletidos, e suposto da ordem de 2 A, temos 0, ;' 02 c::=+====+=~ Amostra Fig. 2.15 0 espectr6metro de raios X registra num gnifico a intensidade refl~tida e~ fun«ao do angulo de Bragg. Cada pica de intensidade corresponde a urn plano cnstalografico em posi«ao refletora. Angulo 8 de Bragg de medir com grande precIsao as intensidades das reflexoes de Bragg, amilises qufmicas qualitativas equantitativas sao possfveis de ser feitas por este metodo. 2.6 0 microsc6pio eletronico de tran(qrissao. Nos ultimos anos, uma poderosa tecnicatem sido posta adisposi<;ao dos metalurgistas. Ela envolve 0 usa do micros- copio eletronico no estudo. daestrutura interna de finos filmes ou laminas cristali- nas. Estas laminas, que podem ser removidas da maioria das amostras,. tern nor- malIl1ente alguns milhares de A de espessura. 0 valor da espessura.e determinado pela voltagem em que 0 microscopio opera. Nos instrumentos normais, a voltagem e de cerca de 100.000 volts; os eletrons acelerados por esta voltagem produzem uma ima- gem aceitavel se a lamina nao forITaisespessa. que 0 valor indicado. Laminas men()sespessas, por outro lad(),. sao menos. uteis. na rev~la<;aoda. natureza.da estru- tura metalica. Alguns instruITentos foraIT desenyolyidos paraoperar emvoltagens mais altas (da ordem deuIT<milhao de volts), e,neles,as laminas podemser pro- porcionalmente mais espessas. Contudo, esses e,quipamentostem custos .muito mais elevados, razao pela qual eles existem em pequeno numero. Nomicroscopio eletronic()de transmissao, 0 detalhe daiITagem Hormado pela difra<;ao de eletrons pelosplanos cristalOgraficos do objetoque estasendo estudado,.O microscopio eletrollico e, sob muitosaspectos, amilogo a urn micrpscopio optico. A fonte e urn canhao de eletrons em. vez de urn filamento de luz.. As le.ntes. sao magne- ticas, sendocompostas normalmente de .llma bobina cpndutora de .corrente, envol- vida. por umacapade ferro. As lentessao energizadaspor cprrente continua. Uma descri<;ao .excelente do. microsc6pi()el~tronico.e dada no livro de Smallrrlan e Ashbee.1para ° ITpmento qeter-nos-emos na part~ do microscopio que contem a aIT()stra e a. 0Wetiva'F;ssaregiao ~. indicada esqllematic~mentena Fig. 2..16. Esse diagrama mostra 0 feixe. de..eletrons pe~~trando.~a amostrapor cima. .0feixe, ori- ginado nO canhao de eletrons, passa atraves de urn conjunto de lentes condensado- ras antes de alcan<;ar a amostra. Emergindo da amostra, 0 feixe passa atraves do elemento posterior da objetiva do instrumento. Logo ap6s esse elemento, os raios convergem formando urn ponto na posi<;ao a do planoh.Esse ponto e equivalente a uma imagem da fonte. Urn pouco alem, formacse a imagem da amostra no plano 12 , Efeitos semelhantes de dupla imagem sao observados em instrumentos 6pticos sim- ples, onde e possivel a forma<;ao de imagens de uma fonte de luz numa posi<;ao e imagens de urn diafragma ou outro objeto em outras posi<;oes. 'Smallman, R. E. e Ashbee, K. H. G. Modern Metallography. Pergamon Press, Oxford, 1966. e~sen e=0,01 42 43

×