Treinamento Six Sigma LG Electronics

4.270 visualizações

Publicada em

Treinamento Six Sigma LG Electronics

Publicada em: Negócios
  • Seja o primeiro a comentar

Treinamento Six Sigma LG Electronics

  1. 1. Treinamento 6σ
  2. 2. 2 Inovação Real Inovar Verificar Executar 1º. Rápido 2º. Forte 3º. Inteligente Discurso do CEO Vamos mostrar ao mundo do que somos capazes. Juntos reconquistaremos a glória da LG Electronics. - Continuo Desenvolvimento de Produtos - Assegurar a Melhor Qualidade -Estratégia de Negócios Focada na Perspectiva do Cliente - Nutrir os Excelentes Talentos - Cultura Organizacional Baseada em Criatividade e Autonomia Outubro/2010 (Vice Chairman Bon Joon Koo)
  3. 3.  Índice 3 LG Electronics Green Belt [Mfg] Introdução 05 Estatística Básica 19 SIPOC 21 Coleta de Dados (amostragem) 22 Tipos de Dados (discretos e contínuos) 23 - Dados Contínuos Média 25 Mediana 27 Moda 28 Desvio Padrão 29 Variância 30 Amplitude 31 - Dados Discretos Proporção e Moda 32 Variação Natural 33 Distribuição Normal 34 Z-Table 36 Normality Test 38 Deslocamento da Média 40 Definição 41 Resumo Seleção do Projeto 43 Extração do Y 44 Registro do Projeto 45 Ferramentas 46 Brainstorming 47 Mapeamento do Processo 49 FMEA 54 Gráfico de Pareto 57 QFD 61 Meta & Cronograma 64 Estimativa de Ganho e Registro 65 Medição 66 Resumo Verificar as propriedades do Y do Projeto 68 Verificar nível atual (Z-value) 69 Entendendo o Z-value 70 Coleta de Dados (Rational Subgrouping) 71 Tipos de Gage 72 Gage R&R 73 Repetibilidade / Reprodutibilidade 74 Bias / Estbilidade 75 Linearidade 76 Regra de Thumb 78 Exemplo 79 Gráficos 83 Gage Attribute 84 Exemplo MInitab 85
  4. 4.  Índice 4 LG Electronics Green Belt [Mfg] Cálculos 87 Exemplo feito manualmente 88 Calculando o Z-value 90 Dados Contínuos Capability Analysis 91 Fórmulas CP/PP/Cpk/Ppk 92 Calculo ZST/ZLT/ZShift no Minitab 93 Diagrama de 4 Blocos 97 Calculo Cp/Cpk/Pp/Ppk no Minitab 99 Dados Discretos DPU/DPO/DPMO 102 Exemplo 103 Análise 107 Resumo Selecionar o fator Vital 109 Examinar a causa raiz 110 Vital Few 111 Introdução 112 Introdução ao Minitab 113 Extrair Possíveis X’s 125 Espinha de Peixe (Fish Bone) 126 Logic Tree (MECE) 127 Análise dos Possíveis X’s 129 Análise Gráfica 130 - Dados Discretos Bar Chart 131 - Dados Contínuos Dot Plot 133 Histograma 136 Bar Chart 138 Box Plot 139 Descriptive Statistics 141 Graphical Summary 143 Scatter Plot 144 Correlation 145 Matrix Plot 146 Probability Plot 148 Testes de Hipótese 150 Definição 151 Erros (α e β) 152 Tipos de Teste 153 - Dados Discretos 1 Proportion 154 2 Proportion 155 Chi-Square Test 156
  5. 5.  Índice 5 LG Electronics Green Belt [Mfg] Dados Contínuos Normality Test 157 1 Sample T 159 Test for Equal Variances 161 2 Sample T 162 ANOVA 164 Correlação e Analise de Regressão 167 Correlação 167 Exemplo 168 Equação de Regressão 169 Gráfico 171 Melhoria 172 Resumo Estabelecer o plano otimizado 174 Executar e inspecionar 175 Escolha do Plano de Melhoria 176 DOE (Design of Experiment) 179 3 Princípios de um Experimento 181 Exemplo 182 Identificando o Main Effect 187 Identificando as Interações 190 Identificando o melhor Ponto (Cube Plot) 191 DOE com 3 Fatores 192 DOE Fracionado 199 Execução e inspeção das Melhorias 201 Controle 203 Resumo Padronizar 204 Monitorar 204 Compartilhar o Resultado 204 Padronizar 205 Sistema a prova de falhas Poka Yoke 206 Sistema de Monitoramento 207 Cartas de Controle 209 Regras da Carta 210 Tipos de cartas 211 - Dados Contínuos XBar-R 212 - Dados Discretos NP 215 P 218 C 221 U 224 Revisão Geral 227
  6. 6. INTRODUÇÃO 6 1 - Entender o conceito de inovação e a importância da atividade da Inovação. - Entender o propósito do gerenciamento 6σ na LGE. - Entender a filosofia e princípio do 6σ bem como o método de apresentação. Objetivos LG Electronics Green Belt [Mfg]
  7. 7. 7 Introdução  6σ é a linguagem comum para nossa companhia.  Se você conversa em CTQ e Z-value, as conversações tornam-se simples e claras.  Inspecionar e tomar decisão no campo imediatamente.  Comunicação baseado nos dados (fatos).  6σ contém ferramentas para identificar os problemas e as soluções, e ferramentas de validação.  Testes através de 6σ podem adicionar segurança para resultados. “ ..6σ é uma ferramenta inovadora..…”
  8. 8. 1987 Galvin CEO Mikel J Harry, Ph.D 1997 1995 3M 2001 SSA 1994 AT&T Jack Welch 1996 História doHistória do 66σσ 8 LG Electronics Green Belt [Mfg]
  9. 9. 9 ’96 (GE Benchmarking) ‘99 ’04 MFG R&D TQ ‘98 …..‘97 Crescimento6σ CAGR (25%)* Crescimento FMI Sobrevivência Global Player No.1 LG Six SigmaSix Sigma *CAGR : Compound Annual Growth Rate 66σσ na LG Electronicsna LG Electronics
  10. 10. 10 Inovação e Six Sigma Inovação Mudar completamente e renovar. Por que a atividade de inovação falha? (Pesquisa em 100 empresas) - Atitude de negação do funcionário para a mudança: 45% - Capacidade/habilidade, Plano de execução : 23% - Falta de liderança da Gerência : 17% Desenvolvimento de empresas Chinesas Entrada na Globalização Mercado de produtos baratos Entrada na OMC. Convite Olímpico Novo desenvolvimento do Japão Técnica acumulada de concorrência. Investimento em P&D Força das empresas Americanas/Européias Desenvolvimento na área de serviços Obtenção de tecnologia exclusiva Condição atual das empresas Coreanas 1. Perda de vantagem competitiva para produção 2. Falta de obtenção de tecnologia avançada Pré-requisitos para o desenvolvimento das empresas Coreanas -Assegurar competitividade Global -Inovação aplicando métodos avançados -Maximizar a vantagem através de controle de campo -Força Six Sigma 6σ é o motor do gerenciamento de inovação. Inovação e Six SigmaInovação e Six Sigma
  11. 11. 11 Filosofia de Gerenciamento Six Sigma Six Sigma é o método de execução que traz resultados para gerência e funcionários. 6σ não significa apenas fazer, mas fazer eficientemente. 100PPM é cortar o caule de uma erva daninha, 6σ é extrair a raiz de uma erva daninha. 6σ Gerenciamento de campo pela alta administração 6σ é a linguagem comum da organização. Filosofia de Gerenciamento 6σ Filosofia de GerenciamentoFilosofia de Gerenciamento
  12. 12. 12 Métrica Six Sigma - Nível Sigma é o índice de avaliação para a capabilidade do processo Colher frutas verdes Definição correta/processo otimizado Colher frutas baixas Avaliar com gráfico simples Colher as frutas caídas Processo de decisão através de experiência e bom senso Colher frutas doces Desenvolver o processo considerando resultado • Nível de σ(Sigma)- é a medida estatística que reflete a capabilidade do processo. • O Sigma medido é determinado pelo DPU (Defeito por unidade), PPM (parte por milhão), falha e taxa de erro. Nível 6 5 4 3 2 PPM 3.4 233 6,210 66,807 308,537 Processo Defeito Cap. Mudança ( Hipótese de longo período com deslocamento de 1,5σ, processo estável.) 6 5 4 3 2 Melhora defeitos 5 vezes Melhora defeitos 11 vezes Melhora defeitos 25 vezes Melhora defeitos 68 vezes Quanto mais o nível de Sigma diminui, mais o PPM aumenta. MétricaMétrica
  13. 13. 13 Qualidade Tradicional Qualidade Six Sigma • Organização Centralizada. • Ausência de estrutura formal para utilização de ferramentas. • Falta de Suporte no uso de ferramentas. • Dados misturados com “achismo” tomada de decisão. • Abordagem “Band-aid” (quebra galhos). • Falta de treinamento estruturado. • Inspeções (foco em “Y”, no resultado). • Participantes respondem diretamente dentro de suas funções • Uso estruturado de ferramentas estatística para ajudar na solução de problemas. • Estrutura de suporte para usuários das ferramentas • Decisões baseadas em dados • Abordagem baseada em causa raiz • Treinamento estruturado em todas as ferramentas aplicáveis • Entradas de controle de processo (foco em “X´s”, nas causas ComparativoComparativo Comparando Qualidade Tradicional com Six Sigma - Qualidade Tradicional vs Qualidade Six Sigma
  14. 14. 14 Próximo da perfeiçãoPróximo da perfeição Nível de Sigma Área Palavras Tempo Distancia 1 Área ocupada pelo Astrodome (Houston-USA) 170 palavras erradas por página num livro 31,75 anos em 1 século Daqui até a Lua 2 Área ocupada por um grande supermercado 25 palavras erradas por página num livro 4,50 anos em 1 século 1 volta e ½ ao redor da Terra 3 Área ocupada por uma pequena loja de Hardware 1,5 palavras erradas por página num livro 3,50 meses em 1 século Viagem de costa- a-costa. 4 Área ocupada por uma sala de estar comum 1 palavra errada em 30 páginas de um livro 2,5 dias em 1 século Dirigir 45 minutos numa estrada 5 Área da parte inferior do seu telefone 1 palavra errada em uma enciclopédia inteira. 30 minutos em 1 século 1 ida até o posto de gasolina 6 Área de um diamante comum 1 palavra errada em todos os livros de uma pequena livraria 6 segundos em 1 século 4 passos em qualquer direção 7 Área de um furo de agulha de costura. 1 palavra errada em todos os livros de várias livrarias 1 piscada de olho em 1 século 1 polegada  Quanto maior o nível de Sigma, maior nossa precisão e exatidão (Texas Instruments) Precisão e exatidão
  15. 15. 15 Six Sigma: DMAIC - Entendendo detalhadamente cada fase do processo básico de um projeto Six Sigma. Fase Passos detalhados S3. Entrada do ProjetoS3. Entrada do ProjetoS2. Extrair Y do ProjetoS2. Extrair Y do ProjetoS1. Seleção do ProjetoS1. Seleção do Projeto 1.1 Verificar negócio 1.2 Extrair Big Y 1.3 Selecionar Projeto 2.1 Analisar processo 2.2 Definir CTQ 2.3 Extrair Y do Projeto 3.1 Organizar time 3.2 Determinar metas 3.2 Registro do Projeto S5. Verificar nível atualS5. Verificar nível atualS4. Verificar adequação do Y do PjtS4. Verificar adequação do Y do Pjt 4.1 Resumo dos dados 4.2 Plano de medição 4.2 Verificação do sistema de medição 5.1 Coletar dados do Y do projeto 5.2 Verificar nível atual 5.3 Definir direção de melhoria 10.1 Padronização 11.1 Plano de gerenciamento 12.1 Relatório de finalização de projeto 12.2 Compartilhar resultado 7.1 Examinar a causa S7. Examinar a causaS7. Examinar a causaS6. Selecionar fator VitalS6. Selecionar fator Vital 8.1 Extrair o plano de melhoria 8.2 Avaliar o plano de melhoria 8.3 Selecionar o plano ótimo 9.1 Preparar o plano de execução 9.2 Executar e inspecionar S9. Executar e InspecionarS9. Executar e InspecionarS8. Selecionar o plano ótimoS8. Selecionar o plano ótimo S12. Compartilhar resultadoS12. Compartilhar resultadoS11. MonitoramentoS11. MonitoramentoS10. PadronizaçãoS10. Padronização 6.1 Selecionar o fator Vital 6.2 Coletar/examinar dados adicionais 6.3 Selecionar item principal e verificar possibilidade de alcançar a meta Definição Medição Analise Melhoria Controle DMAICDMAIC
  16. 16. 16 Estrutura Departamento de Inovação (Six Sigma)Estrutura Departamento de Inovação (Six Sigma) S. Y. HanS. Y. Han DiretorDiretor GerenteGerente RogérioRogério Six SigmaSix Sigma César PintorCésar Pintor Pedro GamaPedro Gama Departamento de Gerenciamento de Inovação [DGI – Six Sigma] Estrutura do Departamento de Gerenciamento de Inovação (Six Sigma) segue abaixo: jimmy.han@lge.com rogerio.martins@lge.com 12-2125-5518 cesar.alcantara@lge.com 12-2125-5570 pedro.gama@lge.com 12-2125-5684 * Atualizado em jan/2011
  17. 17. 17 Por que buscar o Six Sigma?Por que buscar o Six Sigma? • Aumentar o Faturamento Clientes Satisfeitos Voltam Sempre • Aumentar o Lucro Final Custa Menos Fazer Certo da Primeira Vez Six Sigma significará para nós...Six Sigma significará para nós... • Mais Tempo com o Cliente em vez de resolver problemas isoladamente no escritório. • Trabalho Proativo em vez de “Apagar o Incêndio” através de reação. • Confiança em que os Pedidos são feitos, cumpridos, entregues “Sem Erros”. • Confiança que o trabalho antes e depois é livre de defeitos. • Aumento dos Negócios com nossos Clientes. Base do Six SigmaBase do Six Sigma Dados constituem toda a base do Six Sigma Toda e qualquer decisão é baseada em DADOS e não em suposições. Por isso a coleta de dados é muito importante e deve ser feita com critério, atenção e sem tendências para que as analises, decisões, melhorias e controles sejam sustentáveis ao longo do tempo. ObjetivoObjetivo
  18. 18. 18 Porque o 6Porque o 6σ funcionaσ funciona Foco do Six Sigma O Six Sigma funciona porque tem o FOCO no CLIENTE.  A filosofia de excelência do 6 Sigma é: M E T R I C S easure verything hat esults n ustomers atisfaction  Medir tudo aquilo que possa impactar na satisfação dos Clientes.  A meta do 6 Sigma é identificar, isolar e eliminar VARIAÇÂO.  Prevenir os defeitos ao invés de detectá-los.  Solução de problemas de modo pró-ativo ao invés de “apagar incêndio”.  Melhoria continua dos processos, produtos e serviços.
  19. 19. ESTATÍSTICA BÁSICA 19 2 - Entender sobre Estatística Básica. - Conhecer os termos utilizadosObjetivos LG Electronics Green Belt [Mfg]
  20. 20. 20 PENSAMENTO ESTATÍSTICO • É quando pensamos em transformar dados comuns em uma maneira na qual possamos analisá-los. MÉDIA MEDIANA DESVIO PADRÃO OUTROS Estatística é uma ciência que visa obter conclusões sobre fenômenos (eventos) em um universo (população), a partir de alguns dados (amostras), extraídos desse mesmo universo. Estatística - Entendendo o que é estatística. EstatísticaEstatística
  21. 21. 21 Fornecedor ClienteProcesso Entrada Saída S I P O CS I P O C SUPPLYER INPUT PROCESS OUTPUT CUSTOMER FORNECEDOR ENTRADA PROCESSO SAÍDA CLIENTE 5M 1E Man (Homem) Machine (Máquina) Material (Material) Method (Método) Measurement (Medida) Environment (Meio Ambiente) Todo processo produtivo, gera variações entre as etapas (SIP) Causas das variações do processo Que somente são detectadas nas etapas (OC) SIPOC Divisões de um processo. Todo e qualquer processo apresenta essas 5 partes. SIPOCSIPOC
  22. 22. 22 POPULAÇÃO: Conjunto de elementos que apresentam característica em comum. PARÂMETRO: Característica da população. AMOSTRA: Subconjunto da População. ESTATÍSTICA: Característica da amostra. POPULAÇÃO: Conjunto de elementos que apresentam característica em comum. PARÂMETRO: Característica da população. AMOSTRA: Subconjunto da População. ESTATÍSTICA: Característica da amostra. POPULAÇÃO: __________________________ PARÂMETRO: _________________________ AMOSTRA: ____________________________ ESTATÍSTICA: _________________________ POPULAÇÃO: __________________________ PARÂMETRO: _________________________ AMOSTRA: ____________________________ ESTATÍSTICA: _________________________ POPULAÇÃO AMOSTRA EXERCÍCIO Misture bem. Pegue uma colher. Tome uma decisão. Ação. Misture bem. Pegue uma colher. Tome uma decisão. Ação. ALEATÓRIO: Determina uma amostra saída da população, de forma que cada membro tenha chance igual de ser extraído. ALEATÓRIO: Determina uma amostra saída da população, de forma que cada membro tenha chance igual de ser extraído. Coleta da amostra: Deve expressar as características do grupo a ser medido e ser coletada aleatoriamente. Coleta da amostra: Deve expressar as características do grupo a ser medido e ser coletada aleatoriamente. Coleta de DadosColeta de Dados  Letras Gregas: Quando estamos trabalhando com a população utilizamos as letras gregas para representar alguma característica da mesma. Ex.: Média = µ Desvio Padrão = σ  Letras Romanas: Quando estamos trabalhando com a amostra utilizamos as letras romanas para representar alguma característica da mesma. Ex.: Média = x Desvio Padrão = s
  23. 23. 23 DADOS DISCRETOS ou ATRIBUTOS: Definem situações onde os dados do processo, somente podem assumir valores inteiros, como: Cara ou Coroa, 1, 2, 3, 4. DADOS DISCRETOS ou ATRIBUTOS: Definem situações onde os dados do processo, somente podem assumir valores inteiros, como: Cara ou Coroa, 1, 2, 3, 4. DADOS CONTÍNUOS: Definem situações onde os dados do processo, podem assumir qualquer valor (podendo ser infinito) entre dois números, ou seja, os valores depois da vírgula são significativos. Ex.: comprimento ou largura de uma peça, diâmetro de um tubo, pH de banhos, temperatura ambiente, etc. DADOS CONTÍNUOS: Definem situações onde os dados do processo, podem assumir qualquer valor (podendo ser infinito) entre dois números, ou seja, os valores depois da vírgula são significativos. Ex.: comprimento ou largura de uma peça, diâmetro de um tubo, pH de banhos, temperatura ambiente, etc.  É muito importante para o GB/BB identificar com qual tipo de dados está lidando no processo, pois são eles quem definem quais as ferramentas que serão utilizadas durante o projeto. T I P O S D E D A D O S Tipo de DadosTipo de Dados
  24. 24. 24 Tipo de DadosTipo de Dados T I P O S D E D A D O S DiscretosDiscretosDiscretosDiscretos ContínuosContínuosContínuosContínuos Tendência Central Tendência de Dispersão MÉDIA MEDIANA MODA VARIÂNCIA DESVIO PADRÃO AMPLITUDE MODA PROPORÇÃO  Para cada tipo de dados temos ferramentas específicas, abaixo temos as ferramentas mais utilizadas em Six Sigma.
  25. 25. 25 CUIDADOS AO USAR A MÉDIA Observamos na figura ao lado, onde o mergulhador obteve a informação de que o rio tem uma profundidade média de 5m, mas esta informação (média), ocultou as variações de profundidade, pois o rio possui em sua extensão profundidades acima e abaixo de 5m, ou seja, variações. Quando tratamos de dados estatísticos, podemos observar que a média oculta a variação dos dados. Nós podemos cometer um grande erro só porque nós tomamos uma decisão baseada apenas na média. Assim, nós precisamos de informações adicionais, por exemplo:  Variância (σ2 )  Desvio Padrão (σ). Dados Contínuos - MédiaDados Contínuos - Média
  26. 26. 26 Dados Contínuos - MédiaDados Contínuos - Média A média é uma medida que indica o centro da distribuição. Simplesmente é a soma de todas as observações dividida pelo número de observações. Para os dados abaixo, a média é: - Usa todos os dados - Fortemente influenciado por valores extremos (outliers) - Também representadas pela letra grega (lê-se : mi) DadosdeQTY DadosostodosdeSoma X __ = 3,636 11 321334451032__ X = ++++++++++ = µ
  27. 27. 27 Dados Contínuos - MedianaDados Contínuos - Mediana Mediana é o meio dos dados, ou seja, é o ponto de 50%, (ou o “número do meio”) Calculo da Mediana:  Para amostra com número impar de dados: 1º) Arranje os dados na ordem de menor a maior (ordem crescente) 2º) A posição da mediana será encontrada pela formula: 2 1)(n MedianadaPosição + = Ex.: 1; 2; 7; 14; 85 n = 5 3= + = 2 1)(5 MedianadaPosição 1 2 7 14 85 posição = 1 2 3 4 5 mediana  Para amostra com número par de dados: 1º) Arranje os dados na ordem de menor a maior (ordem crescente) 2º) A posição da mediana será encontrada pela média das duas formulas abaixo: 2 n Ex.: 67; 86; 43; 89; 54; 73 n = 6 3= 2 6 43 posição = 1 2 3 4 5 1+ 2 n e 54 67 73 86 89 6 41=+ 2 6 A mediana estará entre a posição 3 e a 4 70 2 73)(67 mediana = + =
  28. 28. 28 Dados Contínuos - ModaDados Contínuos - Moda Moda é o valor que mais aparece em uma amostra, ou seja, aquele que tiver maior freqüência. Não existe formula para calculo da Moda, basta verificar quais números se repetem mais.  A moda pode ser utilizada tanto para dados discretos como para dados contínuos.  Pode acontecer de uma amostra não apresentar moda.  Em algumas amostras podemos ter 2 modas, quando isso acontece, chamamos de “bimodal”. Ex: 10; 15; 12; 11; 9; 10; 8; 14; 13; 17; 10 Moda 20; 21; 22; 22; 18; 19; 23; 19; 25; 24 Bimodal A moda, não é comumente utilizada.
  29. 29. 29 Dados Contínuos – Desvio PadrãoDados Contínuos – Desvio Padrão Desvio Padrão é a distancia média entre a média do processo e seus dados, ou seja, é a variação de um processo em torno da média.  Quanto maior o desvio padrão, maior é a variação no processo, pior será esse processo. Todo processo que sofre muita variação gera muito defeito.  O desvio padrão é inversamente proporcional ao Nível de Sigma.  O desvio padrão é representado pela letra “S” ou pela letra grega “σ” (lê-se: sigma)  Sua formula é: ( )1n XX σ 2__ i −       − = ∑ ( )N XX σ 2__ i∑       − = (para amostra) (para população) Data Frequency 242118151296 200 150 100 50 0 Variable A B Histogram of A; B Pouca variação Muita variação
  30. 30. 30 Dados Contínuos – VariânciaDados Contínuos – Variância Variância idem ao desvio padrão, mas menos utilizada, pois seu valor se distância muito dos valores da amostra.  Quanto maior a variância, maior é a variação no processo, pior será esse processo. Todo processo que sofre muita variação gera muito defeito.  A variância é representada pela letra “SS” ou pela letra grega “ σ² ”  Sua formula é: ( )1n XX σ 2__ i 2 −       − = ∑ ( )N XX σ 2__ i 2 ∑       − = (para amostra) (para população) Ex: Amostra 9,46 11,06 11,11 13,67 5,18 6,52 8,49 8,19 7,49 10,58 14121086 Median Mean 1110987 A nderson-Darling Normality Test V ariance 6,3177 Skew ness 0,168710 Kurtosis -0,220324 N 10 Minimum 5,1831 A -Squared 1st Q uartile 7,2471 Median 8,9743 3rd Q uartile 11,0719 Maximum 13,6740 95% C onfidence Interv al for Mean 7,3772 0,15 10,9733 95% C onfidence Interv al for Median 7,1572 11,0768 95% C onfidence Interv al for StDev 1,7289 4,5887 P-V alue 0,945 Mean 9,1753 StDev 2,5135 9 5 % C onfidence I nter v als Summary for Amostra σ = 2,5135 σ² = 6,3177 Fica confuso dizer que a média é 9,1753 e que a variação é de 6,3177, parece que esse processo esta com uma variação enorme, por isso é mais comum utilizar o “Desvio Padrão”
  31. 31. 31 Dados Contínuos – AmplitudeDados Contínuos – Amplitude Amplitude é a diferença entre o maior e o menor valor de uma amostra.  Quanto maior a amplitude, maior é a variação no processo, pior será esse processo. Todo processo que sofre muita variação gera muito defeito.  A amplitude é representada pela letra “R” (range).  Sua formula é: mínimomáximoR −= 11,010,510,09,59,08,58,0 Median Mean 10,5010,2510,009,759,509,259,00 A nderson-Darling Normality Test V ariance 0,8000 Skewness -0,954642 Kurtosis -0,003324 N 10 Minimum 8,1800 A -Squared 1st Q uartile 9,2000 Median 10,1100 3rd Q uartile 10,5525 Maximum 10,9600 95% C onfidence Interv al for Mean 9,2492 0,46 10,5288 95% C onfidence Interv al for Median 9,1335 10,5534 95% C onfidence Interv al for StDev 0,6152 1,6329 P-V alue 0,202 Mean 9,8890 StDev 0,8944 9 5 % C onfidence I nter v als Summary for Dados Dados 9,95 10,27 8,66 9,92 8,18 10,46 10,55 10,96 10,56 9,38 Ex: 2,78R 8,180010,9600R = −=
  32. 32. 32 Dados Discretos – Proporção & ModaDados Discretos – Proporção & Moda Proporção é uma medida que indica a relação entre dois dados. Simplesmente é a quantidade de um evento dividido pelo total da amostra vezes 100, pois seu valor é expresso em %.  A proporção é representada pela letra: P  Para os dados abaixo, a proporção é: Amostra = 1000 peças Defeitos = 7 peças Amostra = 1000 peças Defeitos = 7 peças %7,0100*100* === 1000 7 AmostraTotal EventoQty P Moda é o valor que mais aparece em uma amostra, ou seja, aquele que tiver maior freqüência. Não existe formula para calculo da Moda, basta verificar quais números se repetem mais.  A moda pode ser utilizada tanto para dados discretos como para dados contínuos.  Pode acontecer de uma amostra não apresentar moda.  Em algumas amostras podemos ter 2 modas, quando isso acontece, chamamos de “bimodal”. Ex: 10; 15; 12; 11; 9; 10; 8; 14; 13; 17; 10 Moda
  33. 33. 33 Variação NaturalVariação Natural Variação Natural é a variação que ocorre em todos os processos. Todo e qualquer processo sofre variação devido a influências externas (5M1E) e essa variação recebe o nome de Variação Natural, é através dela que temos a Distribuição Normal representada pela Curva de Gauss. Abaixo podemos provar essa variação natural para isso será necessário 2 dados de 6 faces cada um. Na somatória dos 2 dados no mínimo teremos o valor 2 e no máximo 12. Jogue os dados e anote quantas vezes cada valor aparecerá, ao final de, aproximadamente 90 vezes, teremos um gráfico semelhante ao que esta abaixo, que se aproxima da curva de Gauss. Isso acontece devido a variação natural do processo. 0 2 4 6 8 10 12 14 Repetições 2 7 9 10 11 13 12 9 8 4 2 2 3 4 5 6 7 8 9 10 11 12
  34. 34. 34 Distribuição Normal (Distribuição Gaussiana)Distribuição Normal (Distribuição Gaussiana) Distribuição Normal é a quando os dados de um processo qualquer se distribui em torno da média, onde essa divide esses dados exatamente no meio, ou seja, o processo fica simétrico em torno da média. A distribuição normal tem um formato semelhante a de um “Sino” e também pode ser chamada de Distribuição Gaussiana, por causa da Curva de Gauss. A maioria dos fenômenos naturais e processos criados pelo homem são distribuídos normalmente, ou podem ser representados como normalmente distribuídos. A área total da Curva Normal é igual a 1, ou seja, 100%. Quando temos uma curva normal centrada e padronizada significa que sua média é igual a 0 e o desvio padrão é 1. µ = 0 σ = 1 0 50%50%
  35. 35. 35 68,2% 95,4% 99,7% 99,994% 99,9994% 99,99999975% X -6σ X -5σ X -4σ X -3σ X -2σ X -1σ X +1σ X+2σ X +3σ X +4σ X +5σ X +6σX -6σ -5σ -4σ -3σ -2σ -1σ +1σ +2σ +3σ +4σ +5σ +6σ Z-Value σ : Distribuição Normal (Distribuição Gaussiana)Distribuição Normal (Distribuição Gaussiana) Quando padronizamos a distribuição normal com os valores de Z, temos a seguinte relação entre cada nível (Z-value) e a Área da Curva Normal: Ou seja: para ± 1σ temos 68,2% da área total, o restante 31,8% estaria fora da curva então podemos classificá-los como defeito.
  36. 36. 36 ※ Atenção : esta carta calcula apenas um lado da Distribuição Normal Z 0 0.01 0.02 0.03 0.04 0.05 0.0 5.00E-01 4.96E-01 4.92E-01 4.88E-01 4.84E-01 4.80E-01 0.1 4.60E-01 4.56E-01 4.52E-01 4.48E-01 4.44E-01 4.40E-01 0.2 4.21E-01 4.17E-01 4.13E-01 4.09E-01 4.05E-01 4.01E-01 0.3 3.82E-01 3.78E-01 3.74E-01 3.71E-01 3.67E-01 3.63E-01 0.4 3.45E-01 3.41E-01 3.37E-01 3.34E-01 3.30E-01 3.26E-01 0.5 3.09E-01 3.05E-01 3.02E-01 2.98E-01 2.95E-01 2.91E-01 0.6 2.74E-01 2.71E-01 2.68E-01 2.64E-01 2.61E-01 2.58E-01 0.7 2.42E-01 2.39E-01 2.36E-01 2.33E-01 2.30E-01 2.27E-01 0.8 2.12E-01 2.09E-01 2.06E-01 2.03E-01 2.00E-01 1.98E-01 0.9 1.84E-01 1.81E-01 1.79E-01 1.76E-01 1.74E-01 1.71E-01 1.0 1.59E-01 1.56E-01 1.54E-01 1.52E-01 1.49E-01 1.47E-01 1.1 1.36E-01 1.33E-01 1.31E-01 1.29E-01 1.27E-01 1.25E-01 1.2 1.15E-01 1.13E-01 1.11E-01 1.09E-01 1.07E-01 1.06E-01 1.3 9.68E-02 9.51E-02 9.34E-02 9.18E-02 9.01E-02 8.85E-02 1.4 8.08E-02 7.93E-02 7.78E-02 7.64E-02 7.49E-02 7.35E-02 Z TableZ Table A Tabela Z mostra qual área da curva normal cada nível de sigma representa, por exemplo: O valor Z = 1,41 equivale à 7,93E-02, ou seja, temos 7,93 % de defeito nesse processo.
  37. 37. 37 Z TableZ Table Exercício: Dada a figura abaixo calcule: ZUSL, ZLSL e ZBench 93 LSL μ = 7,5 USL σ=0,8 ZUSL = USL - µ = 9 – 7,5 = 1,88 ⇒P(X>USL) = 3,01x10-2 = 31.000 ppm σ 0,8 ZLSL = µ - LSL = 7,5 – 3 = 5,63 ⇒P(X<LSL) = 1,03x10-8 = 1,03x10-2 ppm σ 0,8 P(TOTAL)) = 31.000 ppm + 1,03x10-2 ppm = 31.000 ppm ⇒Zbench = 1,88
  38. 38. 38 Average: 5,9305 StDev: 0,664074 N: 20 Anderson-Darling Normality Test A-Squared: 0,257 P-Value: 0,685 5 6 7 ,001 ,01 ,05 ,20 ,50 ,80 ,95 ,99 ,999 Probability Fornecedor A Normal Probability Plot Average: 71,0997 StDev: 9,23496 N: 1318 Anderson-Darling Normality Test A-Squared: 155,693 P-Value: 0,000 62 72 82 92 102 112 122 132 ,001 ,01 ,05 ,20 ,50 ,80 ,95 ,99 ,999 Probability C15 Normal Probability Plot Average: 64,0987 StDev: 17,4209 N: 526 Anderson-DarlingNormalityTest A-Squared: 51,090 P-Value: 0,000 0 10 20 30 40 50 60 70 80 ,001 ,01 ,05 ,20 ,50 ,80 ,95 ,99 ,999 Probability C17 Normal Probability Plot 60 70 80 90 100 110 120 130 0 100 200 300 400 C15 Frequency 60 70 80 90 100 110 120 130 0 100 200 300 400 C15 Frequency Normality TestNormality Test Quando um gráfico apresenta uma forma de um “Sino” provavelmente temos uma distribuição normal, mas para termos certeza é necessário utilizar uma ferramenta chamada: Normaluity Test. Quando utilizamos essa ferramenta temos uma regra para saber se os dados analisados são normais ou não, basta olharmos o P-value. P-value > 0,05  Dados Normais P-value < 0,05 Dados não normais
  39. 39. 39 Normality TestNormality Test Exercício: Verifique se os dados abaixo seguem uma distribuição normal. a) Verifique a normalidade graficamente (Histograma): Lot1 Lot2 Lot3 Lot4 Lot5 50,9 50,3 50,3 49,0 50,2 50,1 50,2 50,6 50,6 50,1 51,1 49,2 49,0 50,1 52,4 49,2 49,8 50,5 50,0 50,4 48,4 48,5 50,9 51,5 49,1 49,8 51,1 49,0 49,8 49,2 Lot1 Frequency 5251504948 9 8 7 6 5 4 3 2 1 0 Mean 50,04 StDev 0,9111 N 30 Histogram of Lot1 Normal Lot1 Percent 535251504948 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 0,466 50,04 StDev 0,9111 N 30 AD 0,343 P-Value Probability Plot of Lot1 Normal b) Verifique a normalidade utilizando o Normality Test
  40. 40. 40 Deslocamento da médiaDeslocamento da média Como já foi falado anteriormente todos os processos variam de maneira natural devido a influencias externas (5M1E), essa variação é considerada normal até o valor limite de 1,5σ , caso o processo varie mais do que isso, este não será mais classificado como Normal. Quando falamos que um processo esta centrado, significa que não ocorreu deslocamento de sua média, se esse processo estiver com um nível de Sigma igual a 6 teremos um probabilidade de defeito de 0,0025 ppm. Mas como todos os processos variam é impossível, na pratica, termos esse valor. Considerando um deslocamento de média de 1,5σ teremos, para um nível de 6 sigma, um valor de defeito de 3,4 ppm. Então quando falamos que para 6 Sigma os defeitos serão de 3,4 ppm, significa que esse processo esta deslocado de 1,5σ 0 1,5 1,5σ
  41. 41. DEFINIÇÃO 41 3 Passo 1. Seleção de projeto Passo 2. Extrair o Y do Projeto Passo 3. Registro do projeto - Entender os itens que influenciam o ponto de vista do cliente e negócio e selecionar o tema do projeto. - Extrair a possibilidade de melhoria através do processo do projeto selecionado. - Definir o item a melhorar. Meta Ferramenta Passos - SIPOC, Mapeamento do processo - Logic Tree, Diagrama de espinha de peixe - QFD, FMEA, Análise de Pareto LG Electronics Green Belt [Mfg]
  42. 42. 42 Propósito Passos da atividade 3. Registro do projeto3. Registro do projeto2: Extrair Y do Projeto2: Extrair Y do Projeto1: Selecionar Projeto1: Selecionar Projeto 1.1 Verificar companhia 1.2 Definir o Big Y 1.3 Selecionar o projeto 2.1 Analisar o processo 2.2 Definir o CTQ 2.3 Extrair o Y do projeto 3.1 Organizar o time 3.2 Determinar metas 3.2 Registro do projeto Saída Extrair o projeto que é o mais importante do ponto de vista do cliente e ter maior relevância para metas gerenciais. Defina o projeto a fim de promover as metas. Passo 1 - Definir a VOC/VOB (Voz do cliente / Voz do negócio) - Analisar maiores impactos - Extrair o Little Y através do Big Y Passo 2 Passo 3 - Analisar processo detalhado - Definir o CTQ e o Projeto Y - Plano de ação rápida - Registro do projeto e plano de atividade Definição Passos da DefiniçãoPassos da Definição
  43. 43. 43 Selecionar o correto Big Y através de problemas do negócio e extrair o projeto que possa maximizar o resultado através de análise do processo ou desenvolvimento detalhados. Atividade Ferramenta •Selecionar o Big Y para resolver o problema no processo e selecionar o KPI adequado. •Selecionar o ótimo Big Y focando no negócio e verificar escopo da melhoria no processo através de processos superiores ou processos subordinados ao Big Y • Definir a prioridade do projeto (projeto detalhado) e selecionar o objetivo a melhorar. - Verificar o Negócio - Definir KPI - Desenvolver o Little Y - Analisar processos Superiores. - Seleção do Projeto - Mapeamento do Processo - SIPOC Verificar Negócio Verificar Negócio Extrair Big Y Extrair Big Y Selecionar Projeto Selecionar Projeto Passo 1 Seleção do Projeto - Brainstorming - Votação Propósito Seleção do ProjetoSeleção do Projeto
  44. 44. 44 Análise do Processo Definição de CTQ • Definir CTQ refletindo VOC/VOB no escopo da melhoria - Definir/analisar o processo - Planejamento de ação rápida -Mapeamento do processo de baixo nível • Análise detalhada dos processos ligados ao projeto selecionado e selecionar escopo de ações rápidas. - Desenvolver processo - Estudar a VOC e relacionamento com funcionamento do processo - QFD - FMEA - Análise de Pareto Propósito Atividade Ferramenta Passo 2 Extração do Y do Projeto Analisar o processo detalhado sobre o projeto a melhorar, definir o escopo da melhoria e definir CTQ e Y do Projeto. Extração do Project Y • Extrair o projeto Y onde o efeito da melhoria é preciso e possível medir entre os CTQ definidos. - Verificar validade - Decidir prioridades - Brainstorming - Votação Extração do YExtração do Y
  45. 45. 45 • Organizar o time que pode desenvolver o projeto com sucesso. Definir membros do time ligados ao projeto. • Definir metas do projeto. • Examinar o resultado e verificar a necessidade de projetos relacionados. -Analisar os membros examinando sua função no processo - Organizar o time - Definir metas - Examinar resultado - Verificar projetos relacionados - - Organizar o time Definir Metas • Examinar o projeto e executar o kick off (aprovação do registro). - Desenhar o registro do projeto - Examinar o projeto - Registrar o projeto - Kick-Off - Registro do projeto Atividade Ferramenta Passo 3 Registro do Projeto Propósito Organizar o time misto para promover o projeto adequadamente e registrar o projeto definindo um plano viável. Registro do ProjetoRegistro do Projeto
  46. 46. 46 FerramentasFerramentas Na fase de DEFINIÇÂO podemos utilizar algumas ferramentas para ajudar a encontrar e justificar o “Y” do projeto. Veremos a seguir: Y2 Y5 Y8 Y9 Y7Y4Y1 Y3 Y6 Y2 Y7 Y9  BrainstormingBrainstorming  Mapeamento de ProcessoMapeamento de Processo  FMEAFMEA  Gráfico de ParetoGráfico de Pareto  QFDQFD  BrainstormingBrainstorming  Mapeamento de ProcessoMapeamento de Processo  FMEAFMEA  Gráfico de ParetoGráfico de Pareto  QFDQFD
  47. 47. 47 Ferramentas – BrainstormingFerramentas – Brainstorming É uma técnica de grupo simples e eficaz que tem por objetivo gerar idéias novas e de preferência, úteis. Normalmente é utilizada na melhoria de Qualidade para identificar as possíveis causas de um problema e sugerir uma série de soluções depois que a causa for conhecida. No entanto o “brainstorming” pode ser usado de muitas outras maneiras, até mesmo na identificação das áreas problemáticas e para listagem das possíveis oportunidades para aperfeiçoamento. • Roda Livre – Fluxo de idéias espontâneas de todos os participantes do Time. • Mesa Redonda – Participantes do Time se alteram em sugestões de idéias. • Método dos Cartões – Participantes do Time escrevem idéias em cartões sem haver comentários. • Nenhuma idéia é criticada • Todas idéias são registradas • Não se interpreta idéias • Construção a partir de outra idéias • Não se discute idéias • Idéias “malucas” são encorajadas • Todos participam • Enfoque em assunto específico O que é: Tipos: Diretrizes: Observação: Quando nós não conseguimos medir um determinado defeito nós devemos utilizar o Brainstorming para definir o defeito.
  48. 48. 48 Ferramentas – BrainstormingFerramentas – Brainstorming  Liste todas as possíveis causas SABOR (Y): • Tipo de ingrediente limão (1) • Quantidade de açúcar adicionado • Tipo de água utilizada (a) INGREDIENTES LIMÃO: • Limões espremidos na hora (2) • Líquido concentrado • Concentrado congelado • Pó com sabor limão (b) LIMÕES EXPREMIDO NA HORA: • Onde os limões foram colhidos • Como os limões foram transportados • Idade quando foram espremidos • Como foram espremidos os limões  Agrupe os problemas similares  Priorize problemas (critérios) Barraca de Limonada (c) LIMÕES EXPREMIDO NA HORA: •Onde os limões foram colhidos •Como os limões foram transportados •Idade quando foram espremidos •Como foram espremidos os limões Exemplo:
  49. 49. 49 Ferramentas – Mapeamento de ProcessoFerramentas – Mapeamento de Processo É uma análise detalhada do processo. É preciso definir qual é o Inicio e o Fim desse processo de maneira bem precisa, e analisar cada parte bem detalhadamente, assim será possível extrair o maior problema. Os resultados esperados do Mapeamento do Processo são:  Maior conhecimento sobre o processo;  Identificação de oportunidades para eliminar etapas;  Identificar gargalos; O que é: Símbolos: Indica a fronteira do processo em análise. Quando for mostrar alguma atividade. Pontos de Decisão. Indica a direção do fluxo do processo. Entrada ou saída principal. Conecta um processo a próxima página. Início e Fim Atividade Decisão Seta Entrada/Saída Processo Conjuntivo Símbolo Significado Quando usar
  50. 50. 50 ProcessoProcesso Entradas Saídas Ferramenta chave para identificação de oportunidades de melhoria Ferramenta chave para identificação de oportunidades de melhoria Ferramentas – Mapeamento de ProcessoFerramentas – Mapeamento de Processo Método para criar um Mapa de Processo • Definir os limites do seu processo (área ou processo específico onde acontecerá o projeto). • Descrever e ordenar os passos do processo com o time que trabalha na área com o processo. O processo deverá ser o existente, sem alterações. • Codificar atividades usando símbolos (fluxograma) para fácil análise • Acompanhar o processo para validar o mapa Importante! O processo deverá ser o existente, sem alterações!
  51. 51. 51 Ferramentas – Mapeamento de ProcessoFerramentas – Mapeamento de Processo • Esforço da Equipe Operadores, Técnicos, Gerentes, Clientes, Fornecedores,... (devem participar todos aqueles que tenham conhecimento sobre o processo estudado) • Entradas para o Mapa de Processo - Brainstorming - Manuais de Operação - Especificações de Engenharia - Experiência do operador - Mostrar complexidades inesperadas, áreas problemas, redundâncias, desvios desnecessários e onde pode ser possível. Simplificar ou padronizar. - Comparar e contrastar o fluxo real de um processo com o fluxo ideal para identificar oportunidades de melhorias. - Permitir a uma Equipe chegar a um acordo quanto às várias etapas de um processo e examinar quais atividades podem ter impacto no desempenho do processo. - Identificar locais onde dados adicionais podem ser coletados e investigados. - Servir como um recurso de Treinamento para se entender o processo como um todo. Preparativos: Possibilidades:
  52. 52. 52 Ferramentas – Mapeamento de ProcessoFerramentas – Mapeamento de Processo Exemplo: LGESPLGESP Zona SecundáriaZona Secundária Zona PrimariaZona Primaria LG KoreaLG KoreaLG KoreaLG Korea CONFERÊNCIAFÍSICACONFERÊNCIAFÍSICA LGESP RECEBIM ENTO LGESP RECEBIM ENTO TRANSPORTADORATRANSPORTADORA LGESP P.O. (DSG) VERDEVERDE AM ARELOAM ARELO CINZACINZA VERM ELHOVERM ELHO RECEBIMENTORECEBIM ENTO PRESENÇA DE CARGA PRESENÇA DE CARGA PARAMETRIZAÇÃOPARAMETRIZAÇÃO CÓPIA DOS DOCsCÓPIA DOS DOCs SOLICITAÇÃO DE DTA NA ALFANDEG A SOLICITAÇÃO DE DTA NA ALFANDEG A TERM O DE RESPONSABILIDADE TERMO DE RESPONSABILIDADE DTADTA LG KOREALG KOREA FATURAM ENTOFATURAM ENTO EM BARQUEEM BARQUE ETA SANTOS, VCP ETA SANTOS, VCP REGISTRO DE D. I. DOC. ORIGINAL REGISTRO DE D. I. DOC. ORIGINAL Utilização do Ato concessório no registro da D.I. isentando do pagamento do Imposto de Importação e Marinha Mercante ** **
  53. 53. 53 Ferramentas – Mapeamento de ProcessoFerramentas – Mapeamento de Processo Exemplo: Origem Santos / VCP Import LGESP Export System Doc´s DECEX / BB Embarque SCP SAM IMP COM CRE IMP Trans/Desp solicita DTA IN499 ETA DTA EADI Pr. Carga D.I. Normal D/BSusp D/BIsen Parametrização Green Yellow Red Gray Conf.Fisica NFE Ent. PO Load PPL PO Load App Res Stuf NFS R.E. B/L Embar Invoice M-System SD Detail GNTEagle Cóp Doc Embarque DocOrigin Embarque D/B System Control NCM/QTE/ Valor DOC´s BOM/Laudo Análise Exigen Concessão Ato Concessório 360 dias L.I. Prorro Baixa do Ato RE D.I.{ Import Export D/B Key Point IMS Rep Start ** ** ** ** ** ** ** ** ** ****
  54. 54. 54 Ferramentas – FMEAFerramentas – FMEA ((FFailureailure MMode &ode & EEffectffect AAnalysis)nalysis) - Identifica preventivamente as potenciais (formas) modos (tipos) de falhas de um processo. - Identifica falhas (furos) nos Planos de Controle dos Processos. - Conduz equipe a fazer mais perguntas sobre o processo e estuda-lo mais profundamente podendo, assim, identificar as causas raízes dos defeitos. Método Estruturado para: - Identificar como um Processo pode fracassar em atender os requisitos críticos (CTQ´s) dos clientes. - Estimar o risco de causas específicas em relação as falhas potenciais - Avaliar o Plano de Controle atual quanto à prevenção destas falhas - Dar prioridade às ações que deveriam ser tomadas para melhorar o processo Conceito: Identificar como o Produto, Processo ou Serviço podem fracassar em proporcionar a função intencionada. - Identificar Possíveis Causas e eliminá-las - Localizar Impactos de falhas e reduzir Efeitos Finalidade: Definição:
  55. 55. 55 Ferramentas – FMEAFerramentas – FMEA ((FFailureailure MMode &ode & EEffectffect AAnalysis)nalysis) Medidas que asseguram a Qualidade geral do produto e serviços devem, cada vez mais, ser operacionalizadas nas fases de Desenvolvimento e Planejamento, antes de sua aplicação. O objetivo é identificar sistematicamente as falhas potenciais em todos os processos e no produto diminuindo sensivelmente os riscos de problemas de funcionamento e de relacionamento com clientes e consumidores. Prevenir as falhas desde a concepção do produto/serviço até sua aplicação significa incluir a Qualidade Exigida pelo Cliente. - na fase de Desenvolvimento (Projeto), atendendo as especificações e as particularidades da produção e aplicação. - na fase de preparativos de produção através de especificações de critérios, planejando processos capazes de produzir a qualidade exigida. - na fase de fabricação do produto ou aplicação do serviço através de processos seguros e dominados. - na complementação de cumprimento às leis e normas vigentes Necessidade: Reúna a equipe Six Sigma juntamente com toda a documentação existente sobre o processo (Mapa de processo, Espinha de peixe). Para cada um dos potenciais fontes de variação já conhecidas, pergunte: - De que modo esta fonte de variação pode contribuir para que o processo não cumpra com a sua função? - Qual o efeito deste modo de falha para o cliente? - Qual a causa deste modo de falha? - Qual o controle atual existente para evitar que a causa do modo de falha ocorra? Como Fazer:
  56. 56. Ferramentas – FMEAFerramentas – FMEA ((FFailureailure MMode &ode & EEffectffect AAnalysis)nalysis) Item Modo de falha potencial Efeito(s) Potencial(is) da Falha Causa(s) e Mecanismos(s) Potencial(is) da Falha Controles Atuais do Projeto Ações Recomendadas Função Ocorrência Detecção Severidade NPR Todo NPR que ultrapassar u m valor de 300(30%) deve ser tomada u ma ação corretiva para que o mesmo reduza o valor do NPR. Severidade(S): 1(sem efeito); 2(Muito menor); 3(Menor); 4(Muito Baixo); 5(Baix o); 6 (Moderado); 7(Alto); 8(Muito alto); 9(Perigo com aviso pré vio); 10(Perigo sem aviso prévio) Ocorrência(O): 1(Remota); 2 ~ 3(Baixa); 4 ~ 6(Moderada); 7 ~ 8(Alta); 9 ~10 (M uito alta) Detecção(D): 1(Quase certamente); 2(Muito alta); 3(Alta); 4(Moderadamente al ta): 5 (Moderada); 6 (Baixa); 7 (Muito baixa); 8 (Remota); 9(Mui to remota); 10(Absoluta incerteza) NPR=(S) * (O) * (D) NPR > 100 é CTQ Aplicação manual de cera na parte interna da porta •Cobrir parte interna da porta, superfície inferior comcamada mínima de cera para retardar corrosão Painel Interior/infe rior da porta corroído. Vida útil da porta diminuída devidoa: •Aparência insatisfatória devidoa ferrugem; •Funcionamentoirregular domecanismo internoda porta. Bico de jateamento posicionado manualmente não está posicionadosuficiente longe. 8 Checagemvisual a cada 1 hora por turno. Medir profundidade da camada. 5 280 Instalar um fim de curso no jateador . 5 Teste do jateador no começodotrabalho e após longos períodos semuso, e programa de manutençãopara limpar bicos. 2 70 Usar projetos de experimentos(DOE) na viscosidade X temperatura X pressão Tempode jateamento insuficiente. 8 Instruções do operador e amostragemdolote(10 portas/turno) para checar aplicaçãode cera nas áreas críticas. 7 392 Instalar um “timer” no jateador 7 Bico jateador entupido: •Viscosidade muitoalta; •Temperatura muitobaixa; •Pressãomuito baixa. CTQ CTQ FMEA: LGESP Nome do modelo: Data: Área: Revisão nº: Data da rev.: Responsável: Projeto Six Sigma 7 56
  57. 57. 57 Count Percent Defeitos Count 17,8 12,0 8,7 3,9 2,0 Cum % 55,6 73,4 85,4 94,1 274 98,0 100,0 88 59 43 19 10 Percent 55,6 OtherEDBFA 500 400 300 200 100 0 100 80 60 40 20 0 Pareto Chart of Defeitos Ferramentas – Gráfico de ParetoFerramentas – Gráfico de Pareto O Gráfico de Pareto ajuda nosso esforço naqueles problemas, que oferecem a maior oportunidade para melhorar, por apresentar como se relacionam num gráfico de barras. Seu nome provém do economista e banqueiro italiano Vilfredo Pareto (1848-1923) que observou que 80% da riqueza italiana era controlada por 20% da população. Ele prosseguiu estudando muitos outros assuntos e começou a descobrir que muitas coisas dentro do nosso ambiente aparentava seguir esta Regra “80-20”. Sua teoria é atualmente aplicada por grupos da Qualidade em aplicações semelhantes. Exemplo: 80% dos defeitos relacionam-se à 20% das causas potenciais. Finalidade: Devemos selecionar os itens até chegar em 80%
  58. 58. 58 - Coletar dados por categoria. - Coletar a freqüência por categoria. - Inserir, no gráfico, a freqüência (eixo y) e o tipos de categorias (eixo y) num gráfico de barras, em freqüência decrescentes. - Analise os dados para fatores de maior destaque no gráfico. - Analise fatores econômicos relativos aos fatores de maior destaque: custos de execução custo para diminuição ou eliminação - Pensamento 20 : 80 • 20% das causas contribuem para 80% dos problemas. • O diagrama de Pareto é uma ferramenta usada para avaliar dados discretos. É um modo de mostrar os fatores que contribuem para um problema em ordem decrescente de importância. a) Coleta de dados referentes a possíveis problemas. b) Usando Minitab, faça o gráfico de Pareto. - Stat > Quality Tools > Pareto Chart Processo: Ferramentas – Gráfico de ParetoFerramentas – Gráfico de Pareto Minitab: Conceito:
  59. 59. 59 Ferramentas – Gráfico de ParetoFerramentas – Gráfico de Pareto Exemplo: Defeitos QTY A 274 B 59 C 10 D 43 E 19 F 88 - Digite os dados abaixo no Minitab. Depois siga o caminho abaixo: Aparecerá o menu do Pareto, selecione a opção “Chart defect table”, depois adicione a coluna que tem os nomes dos defeitos em “Labels in” e a quantidade em “Frequencies in”. Por fim escolha até qual % o Minitab irá colocar no gráfico (comumente utiliza-se 95%) o máximo aceito é 99,99999.
  60. 60. 60 Ferramentas – Gráfico de ParetoFerramentas – Gráfico de Pareto Exemplo: Count Percent Defeitos Count 17,8 12,0 8,7 3,9 2,0 Cum % 55,6 73,4 85,4 94,1 274 98,0 100,0 88 59 43 19 10 Percent 55,6 CEDBFA 500 400 300 200 100 0 100 80 60 40 20 0 Pareto Chart of Defeitos - Irá aparecer o gráfico abaixo: Devemos atuar nos defeitos “A”, “F” e “B”, pois na somatória das suas % chegamos em 80%, lembre-se do pensamento 20:80.
  61. 61. 61 - Escutar os clientes - Aprender o que eles querem - Determinar qual é a melhor maneira de atender - Determinar quais os caminhos para atender - Melhor alocar recursos com melhores resultados - Quais são as “qualidades” que os clientes querem? - Quais funções precisam, um produto ou serviço, atender? - Quais funções precisamos usar para fornecer o produto ou serviço? - Como podemos chegar ao melhor fornecimento daquilo que o cliente exige? O QFD antecipa a visão do controle do processo necessário à qualidade do produto para garantir o controle da qualidade Global do produto, desde a sua concepção à realização. Salta do controle de processos para projetar a qualidade nos produtos. • QFD é utilizado para ligar os Requisitos chaves do cliente com as Especificação técnica e Sub-CTQ ´s. • QFD é elaborado por um time de processo experiente. Ferramentas – QFDFerramentas – QFD ((QQualityuality FFunctionunction DDeployment)eployment) QFD: Desdobramento da Função da Qualidade Objetivo: Perguntas: Pensamento:
  62. 62. 62 a) Esclareça as necessidades dos clientes, confiabilidade dos requisitos, qualidade presente VOC (Voice of Customer). b) Priorize todas as informações, liste as possíveis soluções técnicas. c) Priorize as soluções técnicas, selecione as maiores como CTQs. d) Liste os possíveis causa referentes aos CTQs. e) Priorize os CTQs e selecione os Sub-CTQs. QFD traduz exigências do cliente em exigências técnicas adequadas O QFD não permite a ausência de questionamento. Razões para fazer perguntas: - Aprender - Mostra interesse - Despertar interesse - Esclarecer - Ter retorno - Conseguir concordância/consenso - Discordar para novas idéias - Manter pensamento ativo “ A coisa mais importante é nunca parar de perguntar” Albert Einstein Ferramentas – QFDFerramentas – QFD ((QQualityuality FFunctionunction DDeployment)eployment) Etapas:
  63. 63. 63 Aplicando um QFD num Salão de Beleza: O salão “OOO Hair Design” desenvolveu um plano de QFD para se selecionar os itens urgentes que precisa melhoria para satisfazer o cliente. Foram descobertos 4 itens pela pesquisa que foi realizado com os clientes que visitaram o salão de beleza no mês passado (VOC). - Preço mais satisfatório - Sistema de reserva mais conveniente - Relação pessoal mais agradável entre o cliente e funcionários - Serviço adicional (Manicure, Pedicure etc....) Exemplo: Ferramentas – QFDFerramentas – QFD ((QQualityuality FFunctionunction DDeployment)eployment) Processo principal Corte de cabelo e outros serviços Programação da hora Aceita de reserva Recrutar Manter os funcionários Planejar os serviços adicionais Comprar acessórios 1 2 3 4VOC Weight 1 3 3 2 Total 3 9 0 0 1 27 9 0 0 27 9 0 1 9 27 6 1 0 9 0 0 0 0 6 3 0 0 2 Bom (9 pontos); Normal (3 pontos); Ruim (1 ponto); Sem valor: não tem ponto Total Processo principal Corte de cabelo e outros serviços Programação da hora Aceita de reserva Recrutar Manter os funcionários Planejar os serviços adicionais Comprar acessórios 1 2 3 4VOC Weight 1 3 3 2 Total 3 9 0 0 1 27 9 0 0 27 9 0 1 9 27 6 1 0 9 0 0 0 0 6 3 0 0 2 Bom (9 pontos); Normal (3 pontos); Ruim (1 ponto); Sem valor: não tem ponto Total
  64. 64. 64 Meta & CronogramaMeta & Cronograma Estabelecimento da Meta e do Cronograma. As metas podem ser:  Provenientes da Matriz (HQ Korea);  Provenientes da Alta Administração (FSE);  Estabelecidas de forma desafiadora (30% é possível, mas 5% pode não ser). Cronograma: Liste as direções detalhadas do conteúdo do projeto e estabeleça o cronograma. ※ O Plano deve considerar todas as situações que podem ocorrer no andamento do projeto, possíveis contratempos. Ex.: O formulário acima não foi padronizado e pode ser modificado de acordo com a situação. Controlar (C)Melhorar (I)Analisar (A)Medir (M)Definir (D) 6/1 6/17 7/25 8/12 10/14 10/30 1.1 Checar Biz. Issue. 1.2 Definição Big Y. 1.3 Selecione o PJT. 2.1 Analise do processo. 2.2 Definição CTQ. 2.3 Extração do Y. 3.1 Organização do time. 3.2 Meta e Cronograma. 3.3 Calculo do lucro 3.4 Registro Projeto. 4.1 Estabeleça um plano de coleta de dados. 4.2 Inspecione o sistema de medição. 5.1 Colete dados 5.2 Meça o nível Z atual 5.3 Estabeleça a direção de melhoria 6.1 Extração de pos- síveis X’s. 6.2 Coleta e exame de dados adicionais. 6.3 Seleção do Vital Few e checagem da possibilidade de alcan çar a meta. 7.1 Examinar a causa do Vital Few. 8.1 Extração do plano de melhoria. 8.2 Avaliar o plano de melhoria. 8.3 Selecionar o plano de melhoria. 9.1 Execute/ inspeci- one 9.2 Calculo do lucro real. 10.1 Padronização das me lhorias. 11.1 Estabeleça plano de gerenciamento 12.1 Finalize o relatório do projeto. 12.2 Compartilhe o resultado Processo Conte údo
  65. 65. 65 3.3 Cálculo estimado do ganho do projeto. Após a definição da meta a ser alcançada com o projeto é possível estimar o ganho financeiro caso essa meta seja atingida. Para isso aconselha-se uma reunião do líder do projeto com o Black Belt que estará dando suporte e um membro do Depto Financeiro. 3.4 Registro do Projeto Por fim deve ser preenchida a folha de registro e agendado uma reunião com um membro do Depto de Inovação que estará analisando a definição. Após a assinatura do Depto de Inovação deve ser agendado o Sponsor Review para que o Sponsor analise a Definição do projeto e autorize a apresentação para o Champion. Somente após a coleta de todas as assinaturas pode-se dar continuidade ao projeto. Folha padrão de Registro do Projeto: Estimativa de Ganho & RegistroEstimativa de Ganho & Registro Nome do Projeto: Itens da Melhoria Ponto critico Y(K P I) Como fazer a melhoria?Por que selecionar este projeto? Objetivo Planejado Classificação do PJT Composição do time Resultado Quantitativo : Data do Registro: Registro Coréia Realizado Suporte(Belt) : Little Y Big Y Reg. Nº.: Resultado Qualitativo Registro de Projeto Situação Atual Objetivo Data do Registro: AA II CCMMDD ChampionSponsorInnovationLeader ChampionSponsorInnovationLeader Great Company Great People Faça Perfeito ! ParticipaçãoBeltPapelDeptoNome ParticipaçãoBeltPapelDeptoNome 1P1P
  66. 66. 66 4 Medição - Entender a importância da medição. - Entender o método correto para coletar os dados. - Verificar a condição atual do processo. - Decidir a direção e a extensão da melhoria. Metas Ferramentas Passos PASSO 4 : Verificar as características do Y do Projeto PASSO 5 : Verificar a condição atual - Análise do sistema de medição : Gage R&R - Análise da capacidade do processo : Nível de sigma, DPU, DPO, DPMO - Diagrama de 4 Blocos LG Electronics Green Belt [Mfg]
  67. 67. 67 Propósito Passos da atividade Saída Passo 4 - Preparar folha de resumo de dados - Relatório de medições - Resultado do Gage R&R e ações Passo 5 - Resultado da análise do processo - Diagrama de 4 blocos - Meta de melhoria e direção Examinar as propriedades do Y do Projeto selecionado e definir a base através da medição do nível atual. Definir a meta de melhoria e a direção a ser tomada. Passo 5. Medir o nível atual Passo 4. Verificar as propriedades do Y do Projeto 4.1 Preparar resumo dos dados 4.2 Definir plano de medição 4.2 Aprovar sistema de medição 5.1 Coletar dados do Y do Projeto 5.2 Medir nível atual 5.3 Decidir direção de melhoria Medição
  68. 68. 68 • Definir a possível causa de variação e possível item a medir. • Preparar o correto plano de medição sobre o item do Projeto Y e resumo dos dados. - Lista 5M1E, Potenciais X’s Possíveis eventos especiais - Prepara o plano de medição sobre o item a ser medido -Diagrama de fatores -Logic Tree -Matriz X-Y Preparar o resumo dos dados Preparar Plano de Medições • Verificar a adequação do sistema de medição. - Verificar as propriedades dos métodos/processos e padrões de medição e propriedades dos equipamentos de medição - Gage R&R Verificar o Sistema de medição Atividade Ferramenta Passo 4 Verificar as propriedades do Y do Projeto Definir/examinar as causas das variações no processo e seus atributos e verificar a validade da medição para selecionar o Y do projeto. Propósito
  69. 69. 69 Medir o nível atual Decidir a direção da melhoria • Verificar a capabilidade do Projeto Y. - Cálculo do Nível de Sigma (Z-value) - Capabilidade do processo - Análise - (Curto/longo prazo) • Definir a direção de melhoria baseada na atual capabilidade. -Definir a direção da melhoria Coletar dados do Y do Projeto • Coletar dados para medir a capabilidade do processo de curto e longo prazo do projeto Y. No caso de não poder dividir em curto e longo prazo, isso deve ser mencionado. - Coletar dados - Registrar dados - Resumir item - Rational Sub-grouping Atividade Ferramenta Passo 5 Verificar o nível atual Definir o nível atual (capabilidade do processo) do Projeto Y e com base nisso, Definir a meta e direção do projeto. Propósito
  70. 70. 70 Entendendo o Z-ValueEntendendo o Z-Value Propósito A escala σ (Z-value) é uma métrica para medir o nível de qualidade de um produto/processo/serviço. Da mesma maneira que utilizamos metros [m] para distância e graus Celsius [ºC] para temperatura, utilizamos o Z-Value como uma linguagem comum. Desta forma, diferentes departamentos podem verificar o nível da qualidade um do outro. Exemplo: A velocidade média de um carro de fórmula 1 é de aproximadamente 300km/h, com um desvio padrão de 10km/h. 300 +1σ 310 320 330280 290270 µ µ+1σ µ+2σ µ+3σµ-2σ µ-1σµ-3σ 300 310 320 330280 290270 EIXO de X 1 2 3-2 -1-3 0 EIXO de Z µ = 300 σ = 10 µ = 300 σ = 10
  71. 71. 71 Coleta de Dados (Rational Subgrouping)Coleta de Dados (Rational Subgrouping) Propósito Nesta fase do projeto é NECESSÁRIO fazer um plano de coleta de dados. Os dados precisam ser coletados pois precisamos saber o Nível de Sigma atual do processo (Y). Para se coletar os dados é necessário criar um plano chamado de Rational Subgrouping (Subgrupo Racional), que nada mais é que a coleta de amostras de maneira aleatória, garantindo assim, que todas as variações possíveis aconteçam (Black Noise e White Noise). Para montar o plano é preciso definir:  Tipo de Dados do Y, discreto ou continuo;  Quem irá coletar as amostras (ex.: José);  Freqüência da coleta (ex.: semanal, diário, por turnos);  Ferramenta utilizada para medir a amostra ( ex.: régua, paquímetro, software) Fazendo o Rational Subgrouping conseguimos um valor mais próximo da população (diminuição do erro amostral). Tempo RespostaProcesso WHITE NOISE BLACK NOISE RATIONAL SUBGROUPS  White Noise: É a variação que acontece dentro de cada subgrupo. Também conhecido como Causa Comum, pois acontece em todos os processos e é impossível eliminá-la.  Black Noise: É a variação que acontece entre os subgrupos. Também conhecido como Causa Especial, pois é algo estranho ao processo, ou seja, não deveria haver variação entre os subgrupos. Nos projetos 6 Sigma, atuamos principalmente no “Black“Black Noise”Noise” pois o impacto da melhoria será maior. IMPORTANTE
  72. 72. 72 Gage R&R (Crossed) Não destroi a peça Gage R&R (Crossed) Não destroi a peça Gage R&R (Nested) danifica a peça Gage R&R (Nested) danifica a peça ContínuosContínuos DiscretoDiscreto DadosDados Tipos de GageTipos de Gage Gage AttributeGage Attribute Para cada Tipo de dados existe um Gage apropriado.  Gage R&R Crossed É utilizado quando podemos repetir as medições feitas em cada peça, ou seja, cada peça pode ser medida mais de uma vez.  Gage R&R Nested É utilizado em ensaios destrutivos, ou seja, cada vez que medimos uma peça ela é destruída não sendo possível repetir a medição. IMPORTANTE ANOVAANOVA X-Bar RX-Bar R ANOVAANOVA
  73. 73. 73 Gage R&RGage R&R Propósito Para coletar os dados você precisou utilizar um equipamento, por exemplo, um paquímetro. Como você pode garantir que os dados são confiáveis? Para validar seu sistema de medição, garantindo que os dados medidos sejam confiáveis, você deve utilizar o GAGE R&R. O Gage R&R só pode ser utilizado para dados contínuos. MSA Com o Gage R&R iremos analisar o sistema de medição (Measurement System Analysis) a fim de validá-lo. A variação de um processo é composta por 2 partes: Variação Real do Processo (σProcesso) e Variação Sistema de Medição (σR&R) R&RProcessoTotal σσσ += Variação real do processoVariação real do processo Bias Estabilidade Linearidade Variação Total Observada Variação Sistema Medição White Noise Black Noise Exatidão Precisão σProcesso σT σR&R Repetibilidade Reprodutibilidade
  74. 74. 74 Gage R&RGage R&R Valor observado Repetibilidade é a variação nas medidas obtidas com um equipamento de medida (gage), quando usado várias vezes pelo mesmo operador medindo a mesma característica da peça. Reprodutibilidade é a variação nas médias das medidas feitas por diferentes operadores usando o mesmo equipamento de medida (gage) quando medindo a mesma característica da peça. Operador A Operador B Operador C Repetibilidade (equipamento) Reprodutibilidade (operador) Operador A
  75. 75. 75 Valor real Bias Média observada ☞ Diferença entre valor real e a média do valor observado • Programação do valor real é medido pelo Sistema de medida exato ☞ É a variação total nas medições obtidas com um sistema de medição sobre o mesmo padrão ou valor de referência num determinado período de tempo. • Sistema de medidas afeta o resultado quando tempo se vai por fatores ambientais, abrasividade, temperatura, umidade, etc. Estabilidade Tempo 1 Tempo 2 Bias Estabilidade Gage R&RGage R&R
  76. 76. 76 Gage R&RGage R&R Desvio de exatidão: grande Desvio de exatidão: pequeno LSL USL Valor Atual Valores Referência (medido) Valor Real Valor de Referência (medido) Linearidade ☞ É a diferença nos valores através da faixa de operação. • Avaliar comparando exatidão dentro do alcance da função de espaço. • Exatidão por alcance geral da função de espaço.
  77. 77. 77 Gage R&RGage R&R ▶ Dispersão é a variação nas medidas obtidas com um equipamento de medida quando usado várias vezes. ▷ A dispersão é dividida em duas categorias: Repetibilidade e Reprodutibilidade. - ANOVA método que pode definir as causas da variação em um equipamento de medida melhor que o método Xbar R. - Menor efeito dos pontos fora dos padrões. - Para uma mesma quantidade de dados, ANOVA fornece mais informações detalhadas sobre um o equipamento de medida que o método Xbar – R. - Pode separar a interação entre operadores e peças. a ) Quando a Repetibilidade é maior que a Reprodutibilidade  Problema de equipamento de medida - Manutenção preventiva no equipamento de medida - Equipamento de medida inadequado - Localização (lugar da medida ou ponto da peça medida) b) Quando a Reprodutibilidade é maior que a Repetibilidade  Problema com Operador - Não está acostumado com o equipamento de medida. Precisa de treinamento. c) Causas da variação - Equipamento de medida : Diferença entre equipamentos de medida, diferenças entre escalas - Métodos : Leitura da escala, Medidas habituais. - Peças : Variação entre as peças - Condições : Diferentes ambientes tais como umidade, temperatura etc. - Operadores : Diferenças entre operadores, turnos, laboratórios, etc Propósito: ANOVA Como Ajustar:
  78. 78. 78 Gage R&RGage R&R - Geralmente 2~3 operadores, 10 peças medidas de 2~3 vezes. - Antes do estudo, verifique a calibração do equipamento. - Cada operador mede todas as partes aleatoriamente. - Atenção : Operador não deve identificar as peças quando está medindo. - Analise dos resultados : Repetibilidade, Reprodutibilidade, %R&R. - A coleta de dados para um Gage não deve ser aleatória mas sim intencional, devem ser coletadas peças por todo o range do processo. % Tol ou % Study Var < 20% : Aceita % Tol ou % Study Var 20%~29% : Aceita condicionalmente %Tol ou % Study Var > 30% : Rejeita. Precisa ser melhorado % Tol. % Study30 30 20 0 20 OK Aceito Condicionalmente Troca do Sistema de medida Processo: Regra de Thumb
  79. 79. 79 Gage R&RGage R&R Exemplo: Afim de avaliar o sistema de medição foi realizado um Gage R&R com 3 operadores sendo que cada um mediu 10 peças 3 vezes cada. Spec. : 2.5 ± 1.5 Abrir o arquivo: Gageaiag.mtw, esse arquivo vem no banco de dados do próprio Minitab. Stat>Quality tools>Gage Study>Gage R&R Study (Crossed) Coluna com os números das peças Coluna com os nomes dos operadores Coluna com as medições feitas Método ANOVA mais precisão no resultado.
  80. 80. 80 Gage R&RGage R&R Após ter adicionado as três colunas (peça, operador e medições) clicar no botão “Options”. Nesse menu é possível colocar a tolerância do processo em análise, nessa caso a tolerância é: ± 1,5, assim devemos colocar o valor 3 no campo indicado abaixo. Tolerância do processo. (± 1,5)
  81. 81. 81 Gage R&RGage R&R Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0,09143 7,76 Repeatability 0,03997 3,39 Reproducibility 0,05146 4,37 Operator 0,05146 4,37 Part-To-Part 1,08645 92,24 Total Variation 1,17788 100,00 Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R 0,30237 1,81423 27,86 60,47 Repeatability 0,19993 1,19960 18,42 39,99 Reproducibility 0,22684 1,36103 20,90 45,37 Operator 0,22684 1,36103 20,90 45,37 Part-To-Part 1,04233 6,25396 96,04 208,47 Total Variation 1,08530 6,51180 100,00 217,06 Number of Distinct Categories = 4 Gage R&R %Contribution Source VarComp (of VarComp) Total Gage R&R 0,09143 7,76 Repeatability 0,03997 3,39 Reproducibility 0,05146 4,37 Operator 0,05146 4,37 Part-To-Part 1,08645 92,24 Total Variation 1,17788 100,00 Study Var %Study Var %Tolerance Source StdDev (SD) (6 * SD) (%SV) (SV/Toler) Total Gage R&R 0,30237 1,81423 27,86 60,47 Repeatability 0,19993 1,19960 18,42 39,99 Reproducibility 0,22684 1,36103 20,90 45,37 Operator 0,22684 1,36103 20,90 45,37 Part-To-Part 1,04233 6,25396 96,04 208,47 Total Variation 1,08530 6,51180 100,00 217,06 Number of Distinct Categories = 4 O resultado abaixo aparecerá no Minitab. É preciso avaliar alguns pontos importantes para garantir que o Sistema de Medição está confiável. São eles:  % Study Var  % Tolerance  Nº Categorias Distintas  Exercício: Avalie o Gage R&R ao lado, decida se esta aceito ou rejeitado. Justifique sua resposta.
  82. 82. 82 Nº categorias distintas Significado 1 Se a variação do Sistema de Medição for semelhante a variação real do processo não é possível avaliar este processo, com isso o número de categorias cai. Sistema inapropriado. 2~4 Não é possível detectar a variação do processo mesmo utilizando uma carta de controle, pois a sensibilidade do equipamento ainda não consegue distinguir as várias categorias. Sistema inapropriado. ≥ 5 Nessa faixa já é possível verificar e gerenciar as variações existentes no processo, com isso o Sistema de Medição se torna confiável. Sistema apropriado % Study Var Avalia se o Sistema de Medição é capaz de detectar a variação do processo ou não. Isto significa que esse sistema é apropriado. % Tolerance Mostra a exatidão do Sistema de Medição de acordo com a tolerância do processo, avalia se é possível detectar se a peça esta boa ou ruim. Nº Categorias Distintas Avalia se o Sistema de Medição consegue distinguir as variações do processo. Descreve quantos grupos diferentes o sistema consegue distinguir, quanto maior melhor será o resultado. Significado: Gage R&RGage R&R  Tolerância do Equipamento. Quando for necessário utilizar um equipamento para realizar um Gage R&R sua resolução deve ser de 1/10 da tolerância do processo. Ex.: Se a Spec for 2±0,5 [cm] significa que a tolerância é de ±0,5 [cm], nesse caso o equipamento tem que ter a capacidade de medir 1/10 desse valor, ou seja: O equipamento tem que conseguir medir nessa escala. [cm]0,0050,05* 10 1 Equip.Tol. ==
  83. 83. 83 Gráficos: Gage R&RGage R&R Percent Part-to-PartReprodRepeatGage R&R 200 100 0 % Contribution % Study Var % Tolerance SampleRange 1,0 0,5 0,0 _ R=0,342 UCL=0,880 LCL=0 A B C SampleMean 2 0 -2 __ X=0,001 UCL=0,351 LCL=-0,348 A B C P art 10987654321 2 0 -2 Operator CBA 2 0 -2 P art Average 10987654321 2 0 -2 Operator A B C Gage name: Date of study : Reported by : Tolerance: Misc: Com ponents of Variation R Chart by Operator Xbar Chart by Operator Measurem ent by Part Measurem ent by Operator Operator * Part Interaction Gage R& R (A NOVA ) for Measurement O Gage R&R gera o gráfico abaixo, onde podemos verificar se este está ou não aprovado. 1 2 3 4 5 6  Nesse gráfico é possível ver a variação de cada parte: Part-to-Part  variação do processo; Gage R&R  Variação sistema de medição. A variação Part-to-Part tem que ser muito maior que a Gage R&R.  Mostra a estabilidade dos operadores, os pontos devem estar dentro dos limites UCL e LCL  Mostra o número de categorias distintas, ou seja, a sensibilidade do equipamento, os pontos devem estar fora dos limites UCL e LCL.  Mostra a diferença entre as medidas feitas pelos operadores para cada uma das peças, a linha central indica a média das medidas, é desejável que essa média varie entre as peças.  Mostra a diferença entre os operadores, o ideal é que a linha esteja praticamente horizontal.  Mostra a interação entre os operadores, quanto mais próximo as linhas melhor será. 1 2 3 4 5 6
  84. 84. 84 Gage AttributeGage Attribute Propósito O que são dados atributos? São os dados do tipo: OK / NG ou Verde / Amarelo. Normalmente são utilizados quando estamos avaliando um operador, se este sabe ou não inspecionar algum ponto do processo/produto/serviço. Neste caso devemos trabalhar da seguinte forma: Nº Operadores Mínimo peças avaliadas Mínimo repetições 1 24 5 2 18 4 3 12 3 Estatística Apropriado Aceito condicional Inapropriado Eficiência [PE] 90~100 % 80~90 % Abaixo 80 % Alarme Falso [PFA] 0~5 % 5~10 % Acima 10 % Perda [Pmiss] 0~2 % 2~5 % Acima 5 % Regra: Importante: cuidado com as medidas de fronteira (ex.: PFA = 5%, pode ser simultaneamente classificado como “Apropriado” e “Aceito Condicionalmente”)
  85. 85. 85 Pedro César Mauricio 1 NG OK NG NG 2 OK NG OK OK 3 OK NG OK OK 4 OK NG NG OK 5 OK OK OK NG 6 OK OK OK OK 7 NG NG NG NG 8 NG NG NG NG 9 NG NG OK OK 10 NG NG OK NG 11 NG NG NG NG 12 OK NG OK OK 1 NG OK NG 2 OK OK NG 3 OK NG OK 4 OK OK NG 5 OK OK OK 6 OK OK OK 7 OK OK OK 8 OK OK NG 9 OK NG OK 10 NG NG OK 11 NG NG NG 12 OK NG OK 1 OK OK NG 2 OK OK NG 3 OK NG OK 4 OK OK NG 5 OK NG OK 6 OK OK OK 7 OK OK NG 8 OK OK NG 9 NG NG OK 10 NG OK OK 11 NG NG NG 12 OK NG OK Peça Atributo Operadores Exemplo: Foi realizado um Gage Atributos com 3 operadores para verificar se os mesmos sabem inspecionar peças do processo XXX. Abaixo esta o resultado das medições feitas. Utilizando o Minitab, faça a análise. Stat>Quality Tools>Attribute Agreement Analysis 1 2 3 4 1 2 3 4  Attribute column: preencher este campo com a coluna das medidas dos operadores.  Samples: preencher este campo com a coluna dos números de cada peça.  Appraisers: preencher este campo com a coluna dos nomes dos operadores  Known standard/attribute: preencher esse campo com a coluna do atributo padrão (referência), caso este exista. Gage AttributeGage Attribute
  86. 86. 86 Gage AttributeGage Attribute Within Appraisers Assessment Agreement Appraiser # Inspected # Matched Percent 95 % CI César 12 6 50,00 (21,09; 78,91) Mauricio 12 10 83,33 (51,59; 97,91) Pedro 12 8 66,67 (34,89; 90,08) # Matched: Appraiser agrees with him/herself across trials. Appraiser Percent PedroMauricioCésar 100 80 60 40 20 0 95,0% C I Percent Appraiser Percent PedroMauricioCésar 100 80 60 40 20 0 95,0% C I Percent Date of study: Reported by: Name of product: Misc: Assessment Agreement Within Appraisers Appraiser vs Standard Abaixo esta o valor do PE de cada operador, de acordo com a regra avalie cada operador dizendo se estão aceitos ou não. Justifique sua reposta. PE
  87. 87. 87 Gage AttributeGage Attribute Cálculos: As probabilidades (PE, PFA e Pmiss) podem ser calculadas sem o Minitab através das seguintes fórmulas: [%]100* ções)Peças(mediTotal AcertosQtde = PE é a taxa de acerto de cada operador. O calculo é realizado através da divisão do total de medições corretas pelo total de peças inspecionadas. [%]100* medidasrepeticoesTotal*padrãoboaspeças FalsoAlarmeQtde PFA = PFA é a taxa de alarme falso. Alarme falso é o erro que o operador comete quando julga uma peça “BOA” como “RUIM”. Esse tipo de erro não é tão grave quanto o PMiss, mas diminui a eficiência da linha de produção. [%]100* repetiçõesTotal*padrãoruinsPeças ErroQtde P Perda Miss = PMiss é o erro que o operador comete quando julga uma peça “RUIM” como “BOA”. Esse tipo de erro é bem grave, pois o operador deixa entrar no processo peças com defeito. Sendo esse tipo de erro muito alto, o defeito chegará no cliente.
  88. 88. 88 Gage AttributeGage Attribute Exemplo: Foi realizado um Gage Atributos na companhia LGE000, para verificar se os operadores sabiam fazer a inspeção de Cosmetic na linha de LCD. Calcule PE, PFA e PMiss e analise os operadores. Parts Actual Value Benedito Joly Bárbara 1 2 3 1 2 3 1 2 3 1 G G G G G G G G G G 2 G G G G G G G G G G 3 NG NG NG NG NG NG NG NG NG NG 4 G G G G G G G G G G 5 NG NG NG NG NG G NG G G G 6 G G G G G NG NG G G G 7 NG NG NG NG NG NG NG NG NG NG 8 NG NG NG NG NG NG NG NG G NG 9 G G G G G G G G G G 10 G G G G G G G G G G 11 NG NG NG NG NG NG NG NG NG NG 12 G G NG G NG NG NG G G NG 13 NG NG NG NG NG NG NG NG NG NG 14 G G G G G G G G G G 15 NG NG NG NG NG NG NG NG NG NG
  89. 89. 89 Gage AttributeGage Attribute 97,78%100* 45 44 PE == 4,17%100* 3*8 1 PFA == 0%100* 3*7 0 PMiss == Benedito Joly Barbará 86,67%100* 45 39 PE == 20,83%100* 3*8 5 PFA == 4,76%100* 3*7 1 PMiss == 88,89%100* 45 40 PE == 4,17%100* 3*8 1 PFA == 19,05%100* 3*7 4 PMiss == Conclusão: Conclusão: Conclusão:
  90. 90. 90 Measurement Basic Metrics Common Z(Bench)-Value (ST, LT), Zshift Cp, Cpk Pp, Ppk Dados Discretos Sigma-level, RTY Baseado na qty/proporção DPU DPO,DPMO Taxa de defeito PPM Tipo Dados Dados Contínuos Métricas Básica Métrica comum ZBench Zshift Cp, Cpk Pp, Ppk Nível de sigma Baseado na variação/média DPU DPO,DPMOPPM Calculando o Z-valueCalculando o Z-value Z-value: Após já ter sido coletado as amostras dos dados atuais do Y do Projeto é preciso calcular o Z- value. Para cada tipo de dados existe uma ferramenta adequada. Abaixo esta a relação de ferramentas: Capability Anlysis
  91. 91. 91 Capability AnalysisCapability Analysis PCI Quando estamos trabalhando com o Y do projeto sendo dados contínuos, para calcular o Z- value utiliza-se o PCI (Process Capability Analysis). Com essa ferramenta podemos calcular o ZST, o ZLT e o Zshift, além dos indicadores de capabilidade Cp, Cpk, Pp e Ppk. Esta também é a única ferramenta que nos indica o sentido de melhoria que deve ser tomado no processo, através do Diagrama de 4 Blocos. ZST  Nível de sigma em curto período (short term) também pode ser escrito ZSTBench ZLT  Nível de sigma em longo período (long term) também pode ser escrito ZLTBench Zshift  deslocamento entre o ZST e o ZLT, se esse valor for maior do que 1,5 terá problema no processo, sinal de muito deslocamento, ou seja, o processo está deslocado do centro da Spec. Cp  Capabilidade do processo em curto período avaliando a variação(within). Cpk  Capabilidade do processo em curto período avaliando o deslocamento da média (within). Pp  Capabilidade do processo em longo período avaliando a variação(overall). Ppk  Capabilidade do processo em longo período avaliando o deslocamento da média (overall).
  92. 92. 92 LSL USL Cp = 2.0 Cp = 1.33 Cp = 0.6 Capability AnalysisCapability Analysis Cp, Cpk, Pp, Ppk Analisando graficamente temos: Podemos verificar que quanto maior a variação menor será o Cp/Pp. Podemos verificar que quanto maior a variação menor será o Cp/Pp. LSL USLCpk = 1,5 Cpk = 1,00 Cpk = 0,45 Podemos verificar que quanto maior o deslocamento menor será o Cpk/Ppk. Podemos verificar que quanto maior o deslocamento menor será o Cpk/Ppk. Fórmulas: periodo)towithin(cur6.σ LSLUSL Cp − = periodo)ngooverall(lo6.σ LSLUSL Pp − = T T k k k k)Pp.(1Ppk k)Cp.(1Cpk −= −= Fórmulas: Cp/Pp Cpk/Ppk 2 LSL-USL TX k − = within3.σ XUSL CPU − = ou within3.σ LSLX CPL − = CPL]min[CPU;Cpk = overall3.σ XUSL PPU − = overall3.σ LSLX PPL − = PPL]min[PPU;Ppk =
  93. 93. 93 Capability AnalysisCapability Analysis ZST / ZLT / ZShift Para calcularmos o Níveis de Sigma iremos utilizar o Minitab. O primeiro passo a realizar é verificar se os dados coletados seguem uma distribuição normal. Abaixo esta os dados coletados de um processo XXX, sendo que sua Spec é: 9±1,5 Abrir o exemplo: capability.mtw L1 L2 L3 L4 L5 8,73 9,66 8,85 10,37 9,05 10,09 9,67 10,86 10,96 11,45 10,21 10,4 9,26 8,73 8,84 11,83 10,51 10,22 8,21 10,25 8,52 9,13 8,76 10,17 10,68 11,71 7,99 10,41 10,03 11,15 1º Passo: Normality Test. Adicionar coluna dos dados Sempre utilizar esse método Dados Percent 13121110987 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 0,335 9,89 StDev 1,045 N 30 AD 0,404 P-Value Probability Plot of Dados Normal  Regra Normality Test: P-value > 0,05  dados normais. P-value < 0,05  dados não normais. P-value=0,335 Dados normais P-value=0,335 Dados normais
  94. 94. 94 2º Passo: Calcular o ZLT Stat>Quality Tools>Capability Analysis>Normal Capability AnalysisCapability Analysis Coluna com os dados Tamanho amostra Spec do processo Depois de adicionar a coluna com os dados e colocar a Spec do processo, clique em “Options”. Selecione a opção “Benchmark Z’s (sigma level)”
  95. 95. 95 Irá aparecer o gráfico abaixo, neste gráfico temos o valor de ZLT. Capability AnalysisCapability Analysis 12111098 LSL USL Process Data Sample N 30 StDev (Within) 1,09725 StDev (O v erall) 1,05414 LSL 7,5 Target * USL 10,5 Sample Mean 9,89 Potential (Within) C apability C C pk 0,46 O v erall C apability Z.Bench 0,54 Z.LSL 2,27 Z.USL 0,58 Ppk Z.Bench 0,19 C pm * 0,51 Z.LSL 2,18 Z.USL 0,56 C pk 0,19 O bserv ed Performance PPM < LSL 0,00 PPM > USL 266666,67 PPM Total 266666,67 Exp. Within Performance PPM < LSL 14696,59 PPM > USL 289127,55 PPM Total 303824,15 Exp. O v erall Performance PPM < LSL 11687,24 PPM > USL 281405,09 PPM Total 293092,34 Within Overall Process Capability of Dados ZLT ZLT Para calcularmos o ZST é preciso utilizar o valor do Desvio Padrão curto período (StDev (within) e também precisamos do Target do processo.  StDev (Within) = 1,09725  Target = 9,0
  96. 96. 96 3º Passo: Calcular o ZST Stat>Quality Tools>Capability Analysis>Normal Capability AnalysisCapability Analysis 121110987 LSL USL Process Data Sample N 30 StDev (Within) 1,09725 StDev (O v erall) 1,05414 LSL 7,5 Target * USL 10,5 Sample Mean 9 Potential (Within) C apability C C pk 0,46 O v erall C apability Z.Bench 1,02 Z.LSL 1,42 Z.USL 1,42 Ppk Z.Bench 0,47 C pm * 0,95 Z.LSL 1,37 Z.USL 1,37 C pk 0,46 O bserv ed Performance PPM < LSL 0,00 PPM > USL 266666,67 PPM Total 266666,67 Exp. Within Performance PPM < LSL 85804,19 PPM > USL 85804,19 PPM Total 171608,38 Exp. O v erall Performance PPM < LSL 77373,13 PPM > USL 77373,13 PPM Total 154746,27 Within Overall Process Capability of Dados ZST ZST Target StDev (Within)
  97. 97. 97 Capability AnalysisCapability Analysis 4º Passo: Calcular o ZShift Para calcular o ZShift utilizamos a seguinte fórmula: Neste exemplo temos: ZST=0,95 ZLT=0,54 ZShift=0,95-0,54 = 0,41 Com o valor do ZST e do ZShift é possível montar o Diagrama de 4 Blocos, essa ferramenta nos mostra o sentido de melhoria que devemos tomar. LTSTShift ZZZ −= ZST ZShift 1,5 4,5 1 2 3 4 O eixo ZST também é chamado de TecnologiaTecnologia, e esta relacionado com a Variação do processo quanto mais variação pior será. Essa variação esta relacionada com problemas de White Noise. O eixo ZShift também é chamado de ControleControle, e esta relacionado com o Deslocamento da Média do processo, quanto mais deslocada pior será. Esse deslocamento esta relacionado com problemas de Black Noise. NG OK NG OK 1 2 3 4  Pior quadrante, nessa região temos problema tanto de Controle como de Tecnologia.  Nesse quadrante temos problema somente com a tecnologia, será preciso diminuir a variação no processo investindo em equipamentos.  Nesse quadrante temos problema somente de controle, será preciso diminuir o deslocamento da média, diminuindo as influências de Black Noise.  Esse é o melhor quadrante, todos os pontos estão bons.
  98. 98. 98 Capability AnalysisCapability Analysis 4º Passo: Calcular o ZShift Já sabemos que o ZST=0,95 e ZShift=0,95-0,54 = 0,41 então plotando esses valores no diagrama teremos: ZST ZShift 1,5 4,5NG OK NG OK 0,95 0,41 Nesse quadrante temos problema de Tecnologia, será preciso diminuir a variação do Processo, reduzindo problemas de White Noise.
  99. 99. 99 Capability AnalysisCapability Analysis Calculando Cp, Cpk, Pp e Ppk através do Minitab. Vamos utilizar o mesmo exemplo anterior. Apagar esses valores Clicar em “Options” Escolher essa opção.
  100. 100. 100 Capability AnalysisCapability Analysis Irá aparecer o gráfico abaixo, nele temos todos os índices relacionados a Capabilidade do processo. 12111098 LSL USL Process Data Sample N 30 StDev (Within) 1,09725 StDev (O v erall) 1,05414 LSL 7,5 Target * USL 10,5 Sample Mean 9,89 Potential (Within) C apability C C pk 0,46 O v erall C apability Pp 0,47 PPL 0,76 PPU 0,19 Ppk C p 0,19 C pm * 0,46 C PL 0,73 C PU 0,19 C pk 0,19 O bserv ed Performance PPM < LSL 0,00 PPM > USL 266666,67 PPM Total 266666,67 Exp. Within Performance PPM < LSL 14696,59 PPM > USL 289127,55 PPM Total 303824,15 Exp. O v erall Performance PPM < LSL 11687,24 PPM > USL 281405,09 PPM Total 293092,34 Within Overall Process Capability of Dados Capabilidade Curto Período (within) Capabilidade Curto Período (within) Capabilidade Longo Período (overall) Capabilidade Longo Período (overall) Desvio Padrão Longo Período (overall) Desvio Padrão Longo Período (overall) Desvio Padrão Curto Período (within) Desvio Padrão Curto Período (within) PPM Real da amostra PPM Real da amostra PPM estimado em Curto período PPM estimado em Curto período PPM estimado em Longo período PPM estimado em Longo período
  101. 101. 101 Capability AnalysisCapability Analysis Os dados abaixo foram coletados de um processo YYY, verificar se os dados são normais e depois calcular o ZST, ZLT e ZShift para que possa ser montado o Diagrama de 4 Blocos e indicado o sentido de melhoria. Spec = 21±2,5 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 23,50 21,48 21,91 22,20 23,53 21,71 22,67 22,92 20,98 24,95 22,56 22,34 21,47 24,37 22,43 21,87 22,64 21,44 22,52 21,88 21,92 21,75 21,81 22,46 20,51 22,53 22,69 24,20 22,72 22,13 22,47 21,25 22,05 21,81 22,37 22,96 23,41 22,50 22,77 22,01 20,67 21,86 21,98 21,75 23,41 20,11 22,96 22,00 21,41 22,30 Exercício.
  102. 102. 102 DPU / DPO / DPMODPU / DPO / DPMO • Uma medida de volume de saída da área • É observável e contável • Deve ter um ponto de início e término definidos • Onde o trabalho é normalmente analisado criticamente (exemplo: inspeção, teste) • A “coisa” sobre a qual estamos contando os defeitos Exemplos: - Pedido de um produto pelo cliente - Chamada telefônica de um cliente - Ordem de compra - Pedido de importação - Um produto ou uma peça - Uma instalação de equipamento - Um serviço solicitado pelo cliente • Indica a complexidade do processo • Necessário ser Independente • Mensurável Oportunidades: é o número de chances de um processo se desviar do esperado Exemplo: - Um processo de importação pode falhar de três formas diferentes (3 oportunidades): - chegar o produto fora do prazo; - a documentação estar incorreta; - não chegar o produto correto Unidade - UUnidade - U Oportunidades - OpOportunidades - Op Propósito Para calcularmos os Níveis de Sigma para dados DISCRETOS iremos utilizar os cálculos de DPU, DPO e DPMO. Abaixo esta o significado de cada um.
  103. 103. 103 DPU / DPO / DPMODPU / DPO / DPMO Qualquer coisa que gera insatisfação do cliente • Qualquer coisa que gera não-conformidades em uma oportunidade ou numa unidade • Qualquer variação de uma característica requerida de um produto ou serviço ou suas peças que impede o produto ou serviço de preencher os requisitos funcionais ou físicos do cliente • Qualquer coisa que leva alguém ou um produto a sair do processo normal É o número total de defeitos dividido pelo número total de unidades coletadas por um período razoável de tempo (de modo a formar uma imagem do processo que acredita-se representar a variação típica a qual o processo está normalmente sujeito). É o DPU dividido pelas oportunidades de erros que existirem no processo em análise. Durante 3 meses, um Green Belt coletou 500 pedidos de clientes verificou que 30 deles foram entregues fora do prazo e 20 foram entregues produtos diferentes. ( 2 oportunidades por unidade = fora do prazo ou produto diferente ) Total Unidades = 500 Defeitos = 50 Oportunidades = 2 Defeito - DDefeito - D DPU- Defeito por UnidadeDPU- Defeito por Unidade DPO- Defeito por OportunidadeDPO- Defeito por Oportunidade  Fórmulas: Exemplo desOportunidaTotal DPU DPO UnidadesTotal Defeito DPU = = 0,1 500 50 DPU == 0,05 2 0,1 DPO ==
  104. 104. 104 DPU / DPO / DPMODPU / DPO / DPMO É o DPU dividido pelo número total de oportunidades vezes um 1.000.000. O DPMO é medido em PPM, ou seja, quantos defeitos temos por milhão de peças/produtos. Quando temos o valor do DPMO basta procurá-lo na Tabela Z que teremos o Nível de Sigma. Definir o numero de unidade, oportunidade, e defeito. Calcular DPU, DPO e DPMO Numero de Unidade: DPU: Numero de oportunidade: DPO: Numero de defeito: DPMO: DPMO- Defeito por Milhão de OportunidadesDPMO- Defeito por Milhão de Oportunidades Exercício: Z-value = 1 unidade 1 oportunidade 1 unidade 5 oportunidades
  105. 105. 105 Avaliação de capacidade de fabricação Mr. Kim, dono de um fabrica de brocas, sempre repreende o Líder da linha de produção B por ter um taxa de defeito mais alta que o da linha de produção A. Compare com a capacidade de fabricação de cada linha e avalie se as ordens de Mr.Kim são justamente baseadas na próxima página. DPU / DPO / DPMODPU / DPO / DPMO
  106. 106. 106 Linha de produção A Linha de produção B Taxa de defeito Número de unidade Número total de oportunidade Número total de defeito DPU DPO DPMO ZST Faça os cálculos e verifique se a reclamação do Mr. Kim esta de fato correto. Verifique se realmente a linha A é melhor do que a B. DPU / DPO / DPMODPU / DPO / DPMO
  107. 107. 107 5 Análise - Selecionar o fator principal examinando o X possível. - Examinar rigorosamente a causa do fator principal ou do defeito. - Análise Gráfica - Interferência estatística : Intervalo de Estimativa & Test de Hipótese - Análise de Regressão Objetivos Ferramentas Passos Passo 6 : Selecionar o fator principal (Vital Few) Passo 7 : Examinar a principal causa LG Electronics Green Belt [Mfg]
  108. 108. 108 Propósito Passos da atividade Saída Passo 6 - Lista dos possíveis X - Lista do Vital Few - Verificar a possibilidade de alcançar a meta Passo 7 6.1 Extrair os possíveis X’s 6.2 Coletar e examinar dados adicionais 6.3 Selecionar o fator vital e checar a possibilidade de atingir a meta 7.1 Examinar a causa Passo 7. Examinar a causaPasso 6. Seleciona o fator vital Análise - Extrair o Possível X para melhorar o Y do Projeto selecionando os Vital Few. - Examinar a causa fundamental através do estudo do Vital Few e tomar a ação para isso, se necessário. -Explicar e avaliar a causa fundamental extraída através do Vital Few.
  109. 109. 109 • Extrair os vários X´s possíveis através do exame da direção da melhoria e metas. • Inicialmente examinar o Resumo dos dados. Examinar os fatores variáveis do processo adicionais e relacionar com variação e atributos se necessário. -Examinar o processo -Extrair/definir o fator potencial/Possível X - Logic Tree - Fish Bone - Matriz X-YExtrair possíveis X´s Atividade Ferramenta Passo 6 Selecionar o fator vital Extrair vários fatores vitais baseado na meta de melhoria e direção. Selecionar os fatores vitais que podem alcançar a meta através do exame e análise. Propósito • Selecionar os dados adicionais focando no possível X e examinar sua relação e influência no Projeto Y -Coletar dados -Métodos quantitativos/ qualitativos. Coletar e examinar dados adicionais • Decidir os fatores vitais que tem maior influência no Projeto Y. • Verificar/examinar a possibilidade de atingir as metas com os fatores vitais. -Verificar causa e efeito -Seleção do fator Vital Seleção do Fator Vital - Análise Gráfica -Estimar intervalo/Teste de hipótese - Análise de regressão linear - Avaliar experimentos -Análise de comparação qualitativa
  110. 110. 110 • Examinar a causa fundamental e seu efeito sobre Y do projeto através do Vital Few extraído. - Definir o Vital Few - Examinar a causa fundamental - 5 Porquês - Logic Tree Examinar a causa fundamental Atividade Ferramenta Passo 7 Examinar a causa Examinar a relação entre o Projeto Y e a extração do Fator Vital. Examinar a causa fundamental e seu efeito em cada fator vital. Propósito
  111. 111. 111 Vital Few - Poucos fatores Controláveis que influenciam a saída. - Deve existir o fator principal. Fatores potenciais Fatores possíveis Vital Few VF Potential Possible VF Potential Possible VF Potential PossibleVF Potential PossibleVF Potential Possible Process/SystemEntrada Saída (Y) X’s : Vital Few X’s : Muitas causas Y é a variável dependente. X é a variável independente. Y depende de X. Se controlar o X, pode-se melhorar o Y. Trivially Many Vital Few Efeitos de Y N° de Causas Vital FewVital Few ( )XfY =
  112. 112. 112 IntroduçãoIntrodução • Depois de ser calculado o valor Z do CTQ(Y ) no estagio de MEDIÇÃO. • No estagio de ANÁLISE, nós estamos focando nas CAUSAS (X´s) que afetam Y. • Primeiro, liste todas as possíveis causas, e então encontre as significativas (Vital Few) usando ferramentas estatísticas. - Passo 1 - Liste as possíveis causas Brainstorming para listar as Possíveis causas Brainstorming para listar as Possíveis causas Desenhe o Diagrama de Causa e Efeito (Fish Bone) Desenhe o Diagrama de Causa e Efeito (Fish Bone) Histograma Scatter Plot / Matrix Plot Bar Chart Box Plot - Passo 2 - Coletar Dados 1) Coletar dados de cada um dos possíveis X’s levantados no Fish Bone / Logic Tree. 2) No caso de dificuldade na coleta, pode-se utilizar o DOE. 1) Coletar dados de cada um dos possíveis X’s levantados no Fish Bone / Logic Tree. 2) No caso de dificuldade na coleta, pode-se utilizar o DOE. - Passo 3 - Identificar o Vital Few 1 Proportion 2 Proportion Chi-square Test 1 Sample T 2 Sample T ANOVA Correlação Equação Regressão Test for equal Variance Análise Gráfica Testes Hipótese Correlação Seqüência: Dot Plot
  113. 113. 113 Introdução ao MinitabIntrodução ao Minitab Ao abrir o Minitab 16 irá aparecer a tela abaixo, essa tela é dividida em 2 partes: Sessão (Session) e a planilha (Worksheet). Os resultados dos testes e ferramentas irão aparecer nessa área. Os resultados dos testes e ferramentas irão aparecer nessa área. Os dados para a análise devem ser introduzidos na worksheet. Lembrar que o Minitab trabalha com colunas e não com células como o Excel. Os dados para a análise devem ser introduzidos na worksheet. Lembrar que o Minitab trabalha com colunas e não com células como o Excel.
  114. 114. 114 Introdução ao MinitabIntrodução ao Minitab Na worksheet podemos adicionar dados de 2 maneiras: “Agrupado” ou “Desagrupado”. Quando temos dados Agrupados (Stack) significa que estes estão todos em uma só coluna, já os Desagrupados (Unstack) estão em várias colunas, veja o exemplo abaixo: AgrupadosAgrupados DesagrupadosDesagrupados
  115. 115. 115 Introdução ao MinitabIntrodução ao Minitab Dados Agrupados Para utilizar algumas ferramentas do Minitab, é necessário que os dados estejam digitados em uma só coluna, ou seja, Dados Agrupados. Exemplo, se temos os dados já digitados no Excel e queremos utilizá-los no Minitab e precisamos agrupá-los, devemos seguir os passos abaixo: Dados Desagrupados Dados Desagrupados Data>Stack>Columns Adicionar as colunas que se deseja agrupar. Escolher a coluna que ficarão os dados agrupados Escolher a coluna que ficarão os nomes dos dados agrupados
  116. 116. 116 Dados Desagrupados Dados Desagrupados Dados Agrupados Dados Agrupados Depois disso os dados estarão agrupados. Introdução ao MinitabIntrodução ao Minitab
  117. 117. 117 Dados Desagrupados Para utilizar algumas ferramentas do Minitab, é necessário que os dados estejam digitados em várias colunas, ou seja, Dados Desagrupados. Veja o exemplo abaixo: Introdução ao MinitabIntrodução ao Minitab Dados Agrupados Dados Agrupados Data>Unstack Columns Adicionar a coluna com os dados que se deseja desagrupar. Selecionar essa opção Adicionar a coluna com os nomes dos dados que se deseja desagrupar.
  118. 118. 118 Depois disso os dados estarão desagrupados. Introdução ao MinitabIntrodução ao Minitab Dados Desagrupados Dados Desagrupados Dados Agrupados Dados Agrupados
  119. 119. 119 Introdução ao MinitabIntrodução ao Minitab Exercício: Agrupe os dados abaixo utilizando o Minitab. Desagrupe os dados abaixo utilizando o Minitab. Turma Nota A 18,4 A 19,9 A 20,4 A 19,5 B 21,5 B 20,2 B 21,1 B 19,4 C 19,2 C 20,6 C 17,8 C 19,2 D 20,5 D 21,7 D 20,4 D 20,3 E 20,2 E 20,4 E 20,6 E 20,9 A B C D E 18,4 21,5 19,2 20,5 20,2 19,9 20,2 20,6 21,7 20,4 20,4 21,1 17,8 20,4 20,6 19,5 19,4 19,2 20,3 20,9
  120. 120. 120 Criando Seqüências: O Minitab cria seqüências de números e de textos, assim fica fácil montar tabelas com dados que se repetem. Veja exemplo abaixo. Criar a seqüência de números de 1~10, com 4 repetições de cada seqüência. Introdução ao MinitabIntrodução ao Minitab Calc>Make Patterned Data>Simple Set of Numbers Escolher a coluna que deseja colocar a seqüência. Escolher o 1º número da seqüência. Escolher o último número da seqüência. Escolher os incrementos. Escolher quantas vezes irá aparecer cada número. Escolher quantas vezes irá repetir a sequência inteira.
  121. 121. 121 Criando Seqüências: Criar a seqüência de palavras João, Carlos e Pedro, repetindo cada valor 5 vezes. Introdução ao MinitabIntrodução ao Minitab Calc>Make Patterned Data>Text values Escolher a coluna que deseja colocar a seqüência. Digitar as palavras Escolher quantas vezes vai repetir cada palavra. Escolher quantas vezes vai repetir a seqüência inteira.
  122. 122. 122 Salvando arquivos: No Minitab podemos salvar dois tipos de arquivos, pode ser salvo somente a Worksheet que contém os dados, quando fazemos isso todos os gráficos e cálculos que estiverem na Sessão não serão salvos, ou também podemos salvar o Projeto, assim todas as informações serão salvas. Introdução ao MinitabIntrodução ao Minitab File>Save Project As File>Save Current Worksheet As
  123. 123. 123 Abrindo arquivos: Podemos abrir tanto uma Worksheet ou um Projeto, para isso precisamos escolher a opção adequada, se tentar abrir uma worksheet clicando no menu Open Project ira aparecer uma mensagem de erro. Introdução ao MinitabIntrodução ao Minitab File>Open Project File>Open Worksheet
  124. 124. 124 Atalhos: Para ficarmos alternando entre a Seção, Gráficos e Worksheet pode utilizar os seguintes botões. Introdução ao MinitabIntrodução ao Minitab Vai para os Gráficos; Vai para a Worksheet; Vai para a Seção. Para voltar na última ferramenta utilizada clique no botão:
  125. 125. 125 Extrair Possíveis X’sExtrair Possíveis X’s Possíveis X’s Na fase de ANALISE devemos extrair os possíveis X’s que estão afetando o Y do projeto. Para isso podemos utilizar algumas ferramentas. Veja o diagrama abaixo. Processo / Sistema Possíveis X’s Vital Few Vários X’s X’s Potenciais Sugestão de Idéias Analisar / Discutir Decidir Vital Few Identificar relação com o Y Escala e méto do de medição Resumo dos Dados Input Output (Y) Brainstorming Espinha de Peixe Logic Tree Sabedoria da Organização
  126. 126. 126 Espinha de Peixe (Fish Bone)Espinha de Peixe (Fish Bone) Propósito Ferramenta para listar todas as potencias causas que possam estar influenciando no Y do projeto. Após a montagem da Espinha de Peixe é preciso, através de um brainstorming, listar quais das causas vão ser os Possíveis X’s, lembrando que todos os X’s selecionados como possíveis deverão ser medidos e analisados. Importante: na espinha de peixe devem ser colocado as CAUSAS que geram o Y e não as soluções para essas causas, por exemplo: Y = Curto Solda X1 = Diminuir velocidade do Finger Esse X indicado é a solução para o problema, o correto seria: X1 = Velocidade do Finger Para fazer a espinha de peixe podemos separar as causas pelo 5M1E, 4P ou Seqüência do Processo.  5M1E Man – Homem Machine – Máquina Method – Método Material – Material Measure – Medida  4P Place – Local Product – Produto Price – Preço Promotion - Promoção YY Man Machine Method Material Environment Treinamento Inspeção Habilidade Manuseio 5S Visual Pulseira DDC Jigs APC Processo Manual Antigas Ajuste Seqüência Linha Monitoramento Automático Manual Revezamento LinhaA LinhaB LinhaC Temperatura Ambiente Solda Pre-heater Elet. Estática Esteira Carrinho Umidade Oxidação Turnos Pinos Cabos 1º 2º 3º Obsoleto Empenado Manchado Riscado X1 X2 X3 X4 X5

×