O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.


Audiolivros relacionados

Gratuito durante 30 dias do Scribd

Ver tudo
  • Seja o primeiro a comentar


  1. 1. PHYSCIAN MEET <br />D. SUBBURAJ <br />MD PG<br />M3 UNIT<br />
  2. 2. 16/ male <br /> c/o head ache, neck pain -4 yrs<br /> abnormal mobility of left shoulder jt &loss of pain sensation in left UL for 2 yrs <br />
  3. 3. HISTORY OF PRESENTING ILLNESS<br />Head ache-4yrs<br /> lasting for 1-2 hrs daily;mostly in morning; not progressive<br />Occipital<br />Relieved by drugs <br />↑ by coughing ,sneezing, playing<br />Not associated with diminished visual acuity<br /> no vomiting,aura<br />
  4. 4. H/O neck pain -4yrs <br />More in left side <br />Insidious , not progressive<br />Dull aching, continuous, not radiating<br />↑ by playing, not associated with shock like sensation<br />Not ↑ by neck movements<br />H/O abnormal excessive mobility of lt shoulder-2 yrs<br />No trauma<br />Mild dull aching pain, no swelling<br />While abducting left shoulder –he can dislocate & reduces him self voluntarily<br />
  5. 5.
  6. 6. H/O loss of pain & temperature in lt UL & nape of neck -2 yrs<br />Able to feel clothing<br />No h/o tingling, numbness<br /> no H/O weakness<br />No H/O unsteadiness while walking<br />No H/O incoordination in the dark<br />No H/O involuntary movements<br />
  7. 7. No history suggestive of cranial nerve involvement,<br />No h/o sweating disturbance<br />No h/o bladder , bowel involvement<br />No h/o seizure<br />
  8. 8. summary<br />16/m <br />Occipital headache<br />Neck pain<br />Loss of pain & temperature in left upper limb<br />Laxity of left shoulder jt<br />
  9. 9. Conscious , oriented ,<br />Afebrile<br />No pallor ,jaundice ,lymph adenopathy<br />Height : neck ratio =11<br />Upper lower segment ratio-1<br />height: arm span ratio -normal<br />No neurocutaneous markers<br />No trophic changes in left UL<br />NO nerve thickening,<br />No digital ulcer<br />
  10. 10. vitals<br />BP LYING POSITION-110/80 mmhg<br /> STANDING- 108/80 mmhg<br />RR- 12/MIN<br />PR -78/ MIN<br />
  11. 11. CVS,RS – NAD<br />CNS<br />HMF –normal<br />Cranial nerves –normal<br />Spino motor system<br />Bulk , power , tone – normal <br />Superficial reflex -normal<br />
  12. 12. DTR<br />
  15. 15. Summary of the findings<br />Loss of pain & temperature from C3 to T2 in left side<br />Absent biceps,supinator reflex left side<br />Chonic head ache & neck pain increased by coughing, sneezing<br />
  16. 16. Opthal opinion – vision 6/6 BE FUNDUS – NORMAL<br />CBC-<br />Hb-12 gms%<br />Pcv -40<br />TC-6000<br />DC-P60L40<br />ESR -10/20<br />RBS-120 mg%<br />Urea-24mg<br />Creatinine-0.7mg<br />Na-140 <br />K-4.5<br />VDRL –NEG<br />HIV I & II -NEG<br />
  18. 18. MRI CERVICAL SPINE<br />
  19. 19. Normal MRI<br /> pt’s MRI<br />
  20. 20.
  21. 21.
  22. 22.
  23. 23. Charcot shoulder<br />Rare rapid destruction of the proximal humerus and glenoid related to neuropathic disease<br /> Clinical Evaluation<br />Presents with swelling ,pain and stiffness.<br />May present with dislocated shoulder.<br />Generally decreased active and passive ROM.<br />Charcot Shoulder Xray<br />Most common finding is resorption of the humeral head. May have glenoidresorption or shoulder dislocation. Look for pathologic fracture.<br />
  24. 24. Abnormal , excessive movements only in lt shoulder- hyperlaxity<br />No swelling , redness<br />No joint destruction in x ray<br />Preserved proprioception<br />Multi dimensional instabiltity of shoulder<br />
  26. 26. Arnold–Chiari malformations<br />Chiari malformations, types I-IV, refer to a spectrum of congenital hindbrain abnormalities affecting the structural relationships between the cerebellum, brainstem, the upper cervical cord, and the bony cranial base.<br />
  27. 27. CM TYPE I<br />A congenital malformation. Most common<br />Herniation of cerebellartonsils<br />Syndrome of occipitoatlantoaxialhypermobility<br />An acquired Chiari I Malformation in patients with hereditary disorders of connective tissue.<br />Patients who exhibit extreme joint hypermobility and connective tissue weakness as a result of Ehlers-Danlossyndromeor Marfan Syndrome are susceptible to instabilities of the craniocervical junction and thus acquiring a Chiari Malformation. <br />This type is difficult to diagnose and treat.<br />
  28. 28. TYPE II<br />Usually accompanied by a lumbar myelomeningocele leading to partial or complete paralysis below the spinal defect. <br /> a larger cerebellarvermian displacement. Low lying torcularherophili, tectalbeaking, and hydrocephalus with consequent clivalhypoplasia<br />
  29. 29. TYPE III<br /> Causes severe neurological defects. It is associated with an occipital encephalocele.<br />TYPE IV Characterized by a lack of cerebellar development.<br />
  30. 30. Causes <br />? Genetic –chromosome 9&15<br />? Vitamin deficencies<br />
  31. 31. Type I<br />True incidence –not known<br />m: f ratio-2:3<br />Common in adult & paediatric age group<br />Incidence syrinx- 25—70%<br /> syringohydromyelia - secondary to pathologic CSF dynamics <br />
  32. 32. SYMPTOMS<br />Disruption of CSF flow through foramen magnu<br /> MC symptom-head ache<br />headache and neck pain in Chiari I are often exacerbated by cough and Valsalva manoeuvre<br />syringomyelia and central cord symptoms such as hand weakness and dissociated sensory loss<br />
  33. 33. symptoms<br />Compression of medulla and upper spinal cord,<br />myelopathy<br />lower cranial nerve palsies<br />nuclear dysfunction.<br />Compression of cerebellum<br /> ataxia, <br />dysmetria, <br />nystagmus, <br />dysequilibrium. <br />
  34. 34. William's theory<br />herniated tonsil at foramen magnum – valve like action.<br />Pressure differrence increases.<br /> The increase in subarachnoid fluid pressure from increased venous pressure during coughing or Valsalvamaneuvers is localized to the intracranial compartment.<br />increase cisterna magna pressure occurs simultaneously with a decrease in spinal subarachnoid pressure.<br />This craniospinal pressure gradient draws CSF caudally into the syrinx.<br />
  35. 35. New concept<br />In chiari , pressure in veins & capillary around central canal very high<br />Coughing , sneezing , even heart beat put more stress on blood vessels,<br />Leakage of plasma – form syrinx<br />
  36. 36. syringomyelia<br />Frequently associated developmental abnormalities <br /> vertebral column (thoracic scoliosis, fusion of vertebrae, or Klippel-Feil anomaly),<br /> base of the skull (platybasia, basilar invagination), <br /> cerebellum and brain (type I Chiari malformation)<br /> 90 percent of cases of syringomyelia have type I Chiari malformation <br />
  37. 37. TYPES<br />CONGENITAL- associated with chiari malformations<br />ACQUIRED -<br />Spinal cord tumors (usually intramedullary, especially hemangioblastoma) <br />Traumatic myelopathy<br />Spinal arachnoiditis and pachymeningitis<br />Secondary myelomalacia from cord compression (tumor, spondylosis), infarction, hematomyelia<br />IDIOPATHIC<br />
  38. 38. Depending on the connection with fourth ventricle<br /> A-Communicating B- Non communicating C-Extra canalicular<br />
  39. 39. Symptoms begins unilaterally <br /> Syrinx gradually destroys:<br /> 1- decussating S/T tracts<br /> 2- ant. horn cells<br /> 3- lateral C/S tracts<br /> 4- sympathetic tracts<br /> 5- trigeminal, 1X, X, X1 & X11 cranial N nuclei<br /> and vestibular system as syrinx extends to<br /> the medulla.<br />
  40. 40. SENSORY<br /><ul><li>Dissociated sensory loss
  41. 41. in either or both arms, or in a shawl like distribution ,
  42. 42. Dysesthetic pain, a common complaint in syringomyelia, usually involves the neck and shoulders, but may follow a radicular distribution in the arms or trunk.
  43. 43. When the cavity enlarges to involve the posterior columns, position and vibration senses in the feet are lost; astereognosis may be noted in the hands.</li></li></ul><li>MOTOR<br /><ul><li>Syrinx extension into the anterior horns of the spinal cord damages motor neurons (lower motor neuron) and causes diffuse muscle atrophy that begins in the hands and progresses proximally to include the forearms and shoulder girdles. Clawhand may develop.
  44. 44. Respiratory insufficiency, which usually is related to changes in position, may occur.</li></li></ul><li>AUTONOMIC<br /><ul><li>Impaired bowel and bladder functions usually occur as a late manifestation.
  45. 45. Sexual dysfunction may develop in long-standing cases.
  46. 46. Horner syndrome may appear, reflecting damage to the sympathetic neurons in the intermediolateral cell column.</li></li></ul><li>Extension of the syrinx<br />syringobulbia.[4, 5] T dysphagia, nystagmus, pharyngeal and palatal weakness, asymmetric weakness and atrophy of the tongue, and loss of pain ,temperature in the distribution of the trigeminal nerve.<br />Syringocephalus -rarely, the syrinx cavity can extend beyond the medulla in the brain stem into the centrumsemiovale .<br />Lumbar syringomyelia -atrophy of the proximal and distal leg muscles with dissociated sensory loss in the lumbar and sacral dermatomes. Lower limb reflexes are reduced or absent. Impairment of sphincter function is common.<br />
  47. 47. Other manifestations<br /><ul><li>Arm reflex diminshed or absent
  48. 48. Painless ulcers of the hands are frequent. Edema and hyperhidrosis can be due to interruption of central autonomic pathways.
  49. 49. Neurogenicarthropathies (Charcot joint) –MC-shoulder [6] Scoliosis is seen sometimes.[7, 8]
  50. 50. Charcot shoulder –so far only 60 cases reported </li></li></ul><li>imaging<br />X ray cervical spine<br />3D CT<br />MRI<br />Cine MRI ( Movie of brain !!)<br />
  51. 51. X ray cervical spine<br /> Osseous anomalies of the skull base and skeletal system are observed in 25-50% of pts<br />Platybasia, basilar invagination (25-50%)<br />Atlantooccipital assimilation (1-5%)<br />Klippel-Feil syndrome (5-10%)<br />Incomplete ossification of C1 ring (5%)<br />Proatlantal remnant spina bifida at the C1 level<br />Retroflexed odontoid process (26%)<br />Scoliosis (42%)<br />Kyphosis<br />Increased cervical lordosis<br />Cervical ribs<br />Fused thoracic ribs<br />
  52. 52. CT SCAN<br />CT scanning is reliable in detecting osseous abnormalities.<br />Obliterated cisterna magna<br />Hydrocephalus<br />Flattened spinal cord<br />Tonsillarectopia.<br />Peglikecerebellar tonsils<br />Normally positioned fourth ventricle<br />Rarely, spinal CT scans may show syringomyelia. <br />In the past, CT cisternography and/or myelography, supplemented by image reconstruction in nonaxial planes, was used to assess tonsillar position and configuration. CT myelograms do not demonstrate the lower brainstem and bulbomedullary junction in sufficient detail. Associated syringomyelia is often missed.<br />
  53. 53. MRI<br />Displacement of cerebellar tonsils below the level of the foramen magnum<br />Pointed and/or peglike tonsils<br />Narrow posterior cranial fossa<br />Elongation of the fourth ventricle, which remains in the normal position<br />Hindbrain abnormalities<br />Obstructive hydrocephalus<br />Associated abnormalities such as syringomyelia and skeletal abnormalities<br />
  54. 54. Tonsillarectopia<br />Tonsillar tips that extend less than 3 mm below the landmark are normal. <br />Tonsillarherniation should be primary and not secondary to an intracranial mass lesion to meet the criteria for congenital Chiari I malformation.<br /> The most reliable criterion is herniation of at least 1 cerebellar tonsil that is 5 mm or more below the plane of the foramen magnum, <br />Tonsillarectopia of 5 mm is 100% specific and 92% sensitive for Chiari I malformation.<br />
  55. 55. Tonsillarherniation of less than 5 mm does not exclude the diagnosis.<br />Herniation of both tonsils that are 3-5 mm below the foramen magnum, accompanied by certain other features, may suggest Chiari I malformation.<br />
  56. 56. Cerebellar tonsils ascend with age. Some authorities suggest the following criteria for tonsillarectopia: <br /> (1) herniation of 6 mm in those aged 0-10 years,<br /> (2) herniation of 5 mm in those aged 10-30 years,<br /> (3) herniation of 4 mm in those aged 30-80 years, and<br /> (4) herniation of 3 mm in those aged 80-90 years<br />
  57. 57. OTHER FINDINGS IN MRI<br />Narrowing or obliteration of the retrocerebellar CSF spaces - lower pole of the cerebellar tonsils. <br />The height of supraocciput is reduced, <br />The slope of tentorium is increased. <br />The posterior cranial fossa volume, expressed as a ratio of supratentorial volume (posterior fossa ratio), is significantly smaller; however, mean brain volumes did not differ in patients and control subjects.<br />
  58. 58. The cervical subarachnoid space below the level of the C2-3 disks is markedly narrowed in patients with syringomyelia as a result of spinal cord expansion.<br /> The posterior subarachnoid space below the tip of the cerebellar tonsils may be completely obliterated.<br />
  59. 59. Cine MRI<br />CSF flow study with phase-contrast cine MRI. Brain pulsations results in caudad and cephalad flow of CSF across foramen magnum during systole and diastole. The reversal in the direction of flow is picked up by alternating light and dark appearance of CSF in front and behind the medulla and upper spinal cord on phase-contrast cine MRI. <br />
  60. 60. Cine MRI – CSF flow analysis<br />
  61. 61. the complete absence of CSF flow behind (arrowheads) and focal constriction of CSF flow (arrows) in front of cervicomedullary junction.<br />
  62. 62. CSF flow analysis through foramen magnum with phase-contrast cine MRI helps distinguish symptomatic Chiari I from asymptomatic cerebellarectopia and helps predict response to surgical decompression<br />
  63. 63. Treatment <br />Analgesics - for head ache & neck pain<br />Surgery – decompressivesx<br />Suboccipital and cervical decompression.<br />Laminectomy and syringotomy (dorsolateralmyelotomy)<br />
  64. 64. Shunts<br />Ventriculoperitoneal shunt - Indicated if ventriculomegaly and increased intracranial pressure are present<br />Syringosubarachnoid dorsal root entry zone shunt<br />Syringoperitoneal shunt<br />Fourth ventriculostomy<br />
  65. 65. Neuroendoscopic surgery<br />A fibroscope inserted through a small myelotomy allows inspection of the intramedullary cavity.<br />This technique is particularly useful in evaluating and treating multiple septatesyrinxes.<br />Septa are fenestrated, either mechanically or by laser. Fluid from the cavity is then shunted into the subarachnoid space<br />
  66. 66. Operative Results<br />The most commonly-performed surgery is suboccipital craniectomy (essentially opens up the foramen magnum), with or without C1 laminectomy and dural graft patch.<br />Patients with pain as primary complaint respond best to surgery; weakness less responsive, but overall ~80% of patients report favorable results.<br />Presence of muscle atrophy, ataxia, and duration of symptoms >2 yrs all associated with poorer outcome.<br />
  67. 67.   Does the size of the malformation matter?<br />Traditionally, Chiari Malformation has been defined as the cerebellar tonsils descending more than 3-5mm out of the skull.  However, research has shown there is no real correlation between the amount of descent (or herniation) and clinical symptoms.  Some people with herniations of less than 3mm are extremely symptomatic and some people with quite large herniations are symptom free.    The current theory is that disruption of CSF flow is a more important measure than the size of the herniation. <br />
  68. 68. THANK U<br />