SlideShare uma empresa Scribd logo
1 de 7
Profª Débora Bastos
Integrais por substituições
trigonométricas.
É impossível ver numa disciplina de cálculo TODOS os métodos de
resolução de integrais. Hoje estudaremos as substituições
trigonométricas para incrementar nossa gama em resolver integrais.
A substituição trigonométrica é um artifício para resolver integrais
com radicais, por exemplo:
          a2    x2       x2    a2       x2    a2
Nos quais a é uma constante POSITIVA e que não tenhamos no nosso
formulário.
Nos casos de radicais com subtração podemos substituir x por
x=a.sin             /2 < < /2        dx=a.cos d
Ou
x=a.cos          0< <2                dx=a.sin d
E daí a relação: sen2 +cos2 =1
Substituições Trigonométricas
 Fazendo a substituição:
 x=a.sin            /2 <    < /2                dx=a.cos d

     a2     x2        a2     a2 sin2           a2 1   sin2

            a cos2          a cos      a cos


 Aqui podemos considerar     no intervalo inicial, pois
 a2 – x2 também deve ser positivo para a raiz existir,
 então o intervalo está compatível com o problema e só
 assim podemos considerar que o módulo é o próprio
 cosseno, pois está considerando só argumentos que o
 resultado é positivo.
Substituições Trigonométricas
   Radicais com subtração fazemos a substituição:
   x=a.sin                     /2 <         < /2                          dx=a.cos d
         a2       x2        a cos
  Exemplo:
                      dx                              2 cos d
     1
              x2 4         x2                 2 cos2               2 cos
 1            d            1                      2                    1
                                     cos sec           d                     cot g   k
 4                2        4                                           4
          cos


                                         2
              cos
                                4    x       /2
                                                       4       x
                                                                   2           1     4       x2
cot g                                                                                             k
              sen                   x/2                    x                   4         x
Substituições Trigonométricas
 Radicais com adição fazemos a substituição:
 x=a.tg      0 < < /2                    dx=a. sec2 d
 E daí a relação tg2 +1 = sec2

  x2   a2          a2tg2      a2          a2 tg2
                                            (      1)

              a sec2              a sec    a sec
Exemplo:
            x3dx                    x=3tg
 2
       ( x2       9)3               dx = 3sec2


       x2     9         (3tg )2
                                    9     9 tg2    1     3 sec
Substituições Trigonométricas
                                                 3
    Exemplo:                cos                                          x2      9    3 sec
                                                2
                                            x        9
                  3
                x dx
                                                                                x=3tg
2
          ( x2        9)3                                                       dx = 3sec2

         27tg 3       3 sec 2 d                     tg3 d                sen 3        d
                        3
                                            3                    3
                (3 sec )                             sec                 cos3        sec

         sen 3 d             sen 2                               1       cos2
    3                   3                   sen d           3                        sen d
                                   2                                       2
          cos2               cos                                     cos
        sen d                                 3
3                     3 sen d                            3 cos           3 sec       3 cos    k
           2                                cos
        cos

                                                           9
                                       x²    9                       k
                                                         x² 9
Exemplos:                                            udv         u      v            vdu
 Resolva as integrais 1 e 2 por partes:

1      arcsin xdx
                                        R tA         x arcsin x                 1    x2       k

                                                         ta           ex
            xe x                                     R                               k
2
                   2
                       dx                                         1         x
       (1       x)
Demonstre as fórmulas 19 e 25 pelo método da substituição trigonométrica, ou seja:
                  dv                        v
19                             arcsin                k
            a 2
                       v   2                a
a     0
                                            dv                1
                               25                                ln v           v2       a2       k
                                        v   2    2
                                                 a            2a
                               a    0

Mais conteúdo relacionado

Mais procurados

Integrais duplas cartesianas
Integrais duplas cartesianasIntegrais duplas cartesianas
Integrais duplas cartesianasizabelacalculo
 
Exercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integralExercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integralDiego Oliveira
 
Exercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométricaExercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométricaDiego Oliveira
 
Exercícios Resolvidos: Integração por parte
Exercícios Resolvidos: Integração por parteExercícios Resolvidos: Integração por parte
Exercícios Resolvidos: Integração por parteDiego Oliveira
 
Integral Substituicao Trigonometrica
Integral Substituicao TrigonometricaIntegral Substituicao Trigonometrica
Integral Substituicao Trigonometricabtizatto1
 
Trabalho 8º ano trimestre 1 2016
Trabalho 8º ano trimestre 1 2016Trabalho 8º ano trimestre 1 2016
Trabalho 8º ano trimestre 1 2016EMEF OLAVO BILAC
 
Razones trigonométricas recíprocas y complementarias 4º
Razones trigonométricas recíprocas y complementarias   4ºRazones trigonométricas recíprocas y complementarias   4º
Razones trigonométricas recíprocas y complementarias 4ºbrisagaela29
 
Exercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosExercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosDiego Oliveira
 

Mais procurados (20)

4ªtarefa
4ªtarefa 4ªtarefa
4ªtarefa
 
Aula N02
Aula N02Aula N02
Aula N02
 
Criptografia RSA
Criptografia RSACriptografia RSA
Criptografia RSA
 
Exercícios de trigonometria
Exercícios de trigonometriaExercícios de trigonometria
Exercícios de trigonometria
 
Integrais duplas cartesianas
Integrais duplas cartesianasIntegrais duplas cartesianas
Integrais duplas cartesianas
 
Integrais multiplas
Integrais multiplasIntegrais multiplas
Integrais multiplas
 
Exercicios PG
Exercicios PGExercicios PG
Exercicios PG
 
Exercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integralExercícios Resolvidos: Aplicação da integral
Exercícios Resolvidos: Aplicação da integral
 
Exercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométricaExercícios Resolvidos: Integração por substituição trigonométrica
Exercícios Resolvidos: Integração por substituição trigonométrica
 
Complexos pdf
Complexos pdfComplexos pdf
Complexos pdf
 
Exercícios Resolvidos: Integração por parte
Exercícios Resolvidos: Integração por parteExercícios Resolvidos: Integração por parte
Exercícios Resolvidos: Integração por parte
 
Integral Substituicao Trigonometrica
Integral Substituicao TrigonometricaIntegral Substituicao Trigonometrica
Integral Substituicao Trigonometrica
 
PROFMAT - MA14
PROFMAT - MA14PROFMAT - MA14
PROFMAT - MA14
 
Trabalho 8º ano trimestre 1 2016
Trabalho 8º ano trimestre 1 2016Trabalho 8º ano trimestre 1 2016
Trabalho 8º ano trimestre 1 2016
 
Indução Matemática
Indução MatemáticaIndução Matemática
Indução Matemática
 
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
 
ExerPostSUB
ExerPostSUBExerPostSUB
ExerPostSUB
 
Razones trigonométricas recíprocas y complementarias 4º
Razones trigonométricas recíprocas y complementarias   4ºRazones trigonométricas recíprocas y complementarias   4º
Razones trigonométricas recíprocas y complementarias 4º
 
Fi1
Fi1Fi1
Fi1
 
Exercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexosExercícios resolvidos: Parte real e imaginária de números complexos
Exercícios resolvidos: Parte real e imaginária de números complexos
 

Destaque

Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...
Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...
Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...qualeoproblema
 
Relatorio integrais rev
Relatorio integrais  revRelatorio integrais  rev
Relatorio integrais revEstela Lasmar
 
Cálculo II - Aula 6: Integrais definidas
Cálculo II - Aula 6: Integrais definidasCálculo II - Aula 6: Integrais definidas
Cálculo II - Aula 6: Integrais definidaswillianv
 
Mat coordenadas polares, cilíndricas e esféricas
Mat coordenadas polares, cilíndricas e esféricasMat coordenadas polares, cilíndricas e esféricas
Mat coordenadas polares, cilíndricas e esféricastrigono_metria
 

Destaque (9)

Estephano livro de tarefas
Estephano livro de tarefasEstephano livro de tarefas
Estephano livro de tarefas
 
Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...
Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...
Planejamento da disciplina Calculo II da Engenharia de Materiais do CEFET-MG ...
 
Integral definido
Integral definidoIntegral definido
Integral definido
 
Relatorio integrais rev
Relatorio integrais  revRelatorio integrais  rev
Relatorio integrais rev
 
Diego
DiegoDiego
Diego
 
Cálculo II - Aula 6: Integrais definidas
Cálculo II - Aula 6: Integrais definidasCálculo II - Aula 6: Integrais definidas
Cálculo II - Aula 6: Integrais definidas
 
CFD Aula 3
CFD Aula 3CFD Aula 3
CFD Aula 3
 
Tópico 09 - Integral
Tópico 09 - IntegralTópico 09 - Integral
Tópico 09 - Integral
 
Mat coordenadas polares, cilíndricas e esféricas
Mat coordenadas polares, cilíndricas e esféricasMat coordenadas polares, cilíndricas e esféricas
Mat coordenadas polares, cilíndricas e esféricas
 

Semelhante a Matematica2 20

Mat exercicios resolvidos 009
Mat exercicios resolvidos  009Mat exercicios resolvidos  009
Mat exercicios resolvidos 009trigono_metrico
 
Lista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESCLista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESCRicardo Albrecht
 
Exercícios frações algébricas
Exercícios frações algébricasExercícios frações algébricas
Exercícios frações algébricasMichele Boulanger
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematicaalexandregross
 
Mecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica QuânticaMecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica QuânticaMaria Teresa Thomaz
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12comentada
 
Polinômios/ teoria e questões concurso
Polinômios/ teoria e questões concursoPolinômios/ teoria e questões concurso
Polinômios/ teoria e questões concursoDiana D'Ark
 
Lista de exercicio - Calculo 1 - Integral
Lista de exercicio - Calculo 1 - IntegralLista de exercicio - Calculo 1 - Integral
Lista de exercicio - Calculo 1 - Integralalineluiza_sg
 
Equações e inequações
Equações e inequaçõesEquações e inequações
Equações e inequaçõeslopeslopeslopes
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Alexandre Bonifácio
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadastrigono_metrico
 

Semelhante a Matematica2 20 (20)

Exercícios de trigonometria
Exercícios de trigonometriaExercícios de trigonometria
Exercícios de trigonometria
 
Mat exercicios resolvidos 009
Mat exercicios resolvidos  009Mat exercicios resolvidos  009
Mat exercicios resolvidos 009
 
Calculo1 aula19
Calculo1 aula19Calculo1 aula19
Calculo1 aula19
 
Calculo1 aula19
Calculo1 aula19Calculo1 aula19
Calculo1 aula19
 
Lista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESCLista 1 - Cálculo 4 - SOCIESC
Lista 1 - Cálculo 4 - SOCIESC
 
Exercícios frações algébricas
Exercícios frações algébricasExercícios frações algébricas
Exercícios frações algébricas
 
Apostila integrais
Apostila integraisApostila integrais
Apostila integrais
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematica
 
Apostila nivelamento
Apostila nivelamentoApostila nivelamento
Apostila nivelamento
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Matematica2 14
Matematica2 14Matematica2 14
Matematica2 14
 
Mecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica QuânticaMecânica Clássica X Mecânica Quântica
Mecânica Clássica X Mecânica Quântica
 
Mat logaritmos 005
Mat logaritmos  005Mat logaritmos  005
Mat logaritmos 005
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12
 
Polinômios/ teoria e questões concurso
Polinômios/ teoria e questões concursoPolinômios/ teoria e questões concurso
Polinômios/ teoria e questões concurso
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Lista de exercicio - Calculo 1 - Integral
Lista de exercicio - Calculo 1 - IntegralLista de exercicio - Calculo 1 - Integral
Lista de exercicio - Calculo 1 - Integral
 
Equações e inequações
Equações e inequaçõesEquações e inequações
Equações e inequações
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
 
Apostila 2 calculo i derivadas
Apostila 2 calculo i derivadasApostila 2 calculo i derivadas
Apostila 2 calculo i derivadas
 

Mais de Débora Bastos

Mais de Débora Bastos (15)

Aula 1- Matemática III
Aula 1- Matemática IIIAula 1- Matemática III
Aula 1- Matemática III
 
Aula 1-m3-2015eletro
Aula 1-m3-2015eletroAula 1-m3-2015eletro
Aula 1-m3-2015eletro
 
Aula 1 matemática III
Aula 1 matemática IIIAula 1 matemática III
Aula 1 matemática III
 
Aula 1 Matemática III IFRS - Campus Rio Grande
Aula 1 Matemática III IFRS - Campus Rio GrandeAula 1 Matemática III IFRS - Campus Rio Grande
Aula 1 Matemática III IFRS - Campus Rio Grande
 
Primeira aula de matemática III IFRS _ Campus Rio Grande
Primeira aula de matemática III IFRS _ Campus Rio GrandePrimeira aula de matemática III IFRS _ Campus Rio Grande
Primeira aula de matemática III IFRS _ Campus Rio Grande
 
Matemática III Aula 20 2012
Matemática III Aula 20 2012Matemática III Aula 20 2012
Matemática III Aula 20 2012
 
Matematica2 15
Matematica2 15Matematica2 15
Matematica2 15
 
Matematica2 13
Matematica2 13Matematica2 13
Matematica2 13
 
Matematica2 8
Matematica2 8Matematica2 8
Matematica2 8
 
Matematica2 7
Matematica2 7Matematica2 7
Matematica2 7
 
Matematica2 5
Matematica2 5Matematica2 5
Matematica2 5
 
Matematica2 4
Matematica2 4Matematica2 4
Matematica2 4
 
Matematica2 3
Matematica2 3Matematica2 3
Matematica2 3
 
Matematica2 2
Matematica2 2Matematica2 2
Matematica2 2
 
Matematica2 1
Matematica2 1Matematica2 1
Matematica2 1
 

Último

HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxBiancaNogueira42
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxThye Oliver
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOLEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOColégio Santa Teresinha
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasCassio Meira Jr.
 

Último (20)

XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptx
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃOLEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
LEMBRANDO A MORTE E CELEBRANDO A RESSUREIÇÃO
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
Programa de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades MotorasPrograma de Intervenção com Habilidades Motoras
Programa de Intervenção com Habilidades Motoras
 

Matematica2 20

  • 2. Integrais por substituições trigonométricas. É impossível ver numa disciplina de cálculo TODOS os métodos de resolução de integrais. Hoje estudaremos as substituições trigonométricas para incrementar nossa gama em resolver integrais. A substituição trigonométrica é um artifício para resolver integrais com radicais, por exemplo: a2 x2 x2 a2 x2 a2 Nos quais a é uma constante POSITIVA e que não tenhamos no nosso formulário. Nos casos de radicais com subtração podemos substituir x por x=a.sin /2 < < /2 dx=a.cos d Ou x=a.cos 0< <2 dx=a.sin d E daí a relação: sen2 +cos2 =1
  • 3. Substituições Trigonométricas  Fazendo a substituição:  x=a.sin /2 < < /2 dx=a.cos d a2 x2 a2 a2 sin2 a2 1 sin2 a cos2 a cos a cos  Aqui podemos considerar no intervalo inicial, pois a2 – x2 também deve ser positivo para a raiz existir, então o intervalo está compatível com o problema e só assim podemos considerar que o módulo é o próprio cosseno, pois está considerando só argumentos que o resultado é positivo.
  • 4. Substituições Trigonométricas  Radicais com subtração fazemos a substituição:  x=a.sin /2 < < /2 dx=a.cos d a2 x2 a cos Exemplo: dx 2 cos d 1 x2 4 x2 2 cos2 2 cos 1 d 1 2 1 cos sec d cot g k 4 2 4 4 cos 2 cos 4 x /2 4 x 2 1 4 x2 cot g k sen x/2 x 4 x
  • 5. Substituições Trigonométricas  Radicais com adição fazemos a substituição:  x=a.tg 0 < < /2 dx=a. sec2 d  E daí a relação tg2 +1 = sec2 x2 a2 a2tg2 a2 a2 tg2 ( 1) a sec2 a sec a sec Exemplo: x3dx x=3tg 2 ( x2 9)3 dx = 3sec2 x2 9 (3tg )2 9 9 tg2 1 3 sec
  • 6. Substituições Trigonométricas 3 Exemplo: cos x2 9 3 sec 2 x 9 3 x dx x=3tg 2 ( x2 9)3 dx = 3sec2 27tg 3 3 sec 2 d tg3 d sen 3 d 3 3 3 (3 sec ) sec cos3 sec sen 3 d sen 2 1 cos2 3 3 sen d 3 sen d 2 2 cos2 cos cos sen d 3 3 3 sen d 3 cos 3 sec 3 cos k 2 cos cos 9 x² 9 k x² 9
  • 7. Exemplos: udv u v vdu Resolva as integrais 1 e 2 por partes: 1 arcsin xdx R tA x arcsin x 1 x2 k ta ex xe x R k 2 2 dx 1 x (1 x) Demonstre as fórmulas 19 e 25 pelo método da substituição trigonométrica, ou seja: dv v 19 arcsin k a 2 v 2 a a 0 dv 1 25 ln v v2 a2 k v 2 2 a 2a a 0