SlideShare uma empresa Scribd logo

9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais

1 de 7
Baixar para ler offline
LISTA 01 – MATEMÁTICA – PROF. FABRÍCIO – 9º ANO
NOME:__________________________________TURMA:_____
1. Observe os gráficos das funções de 2º grau abaixo. Em relação a essas funções,
determine o sinal de a, do discriminante  (delta) e de c:
a) b) c)
2. (Fafi-MG) O gráfico de uma função quadrática f(x) = x2
+ bx + c está representado
abaixo.
Podemos afirmar que:
a) a < 0,  < 0 e c < 0
b) a > 0,  > 0 e c < 0
c) a > 0,  = 0 e c > 0
d) a > 0,  = 0 e c < 0
e) a < 0,  = 0 e c > 0
3. Complete a tabela abaixo, com a função definida por f(x) = x2
– 2x
x y = x2
– 2x (x , y)
– 1
0
1
2
3
x
y
x
y
x
y
C e n t r o E d u c a c i o n a l A d v e n t i s ta M i l to n A fo n s o
Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08
SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF
Fone: (61) 345-7080 Fax: (61) 345-7082
4. Determine as raízes da função da questão anterior.
5. Os zeros da função quadrática de R em R definida por y = x2
– 2x – 15 são:
a) 3 e 5
b) – 3 e 5
c) 3 e –5
d) –3 e –5
e) 1 e –15
6. Determine as coordenadas do vértice das funções dadas por:
a) y = x2
– 4x – 5
b) y = x2
+ 2x – 8
c) y = – x2
+ 4x
d) y = –x2
+ 4x – 3
7. Dada a função y = x2
+ 2x – 3, determine:
a) os zeros dessa função;
b) o vértice;
c) o valor máximo ou mínimo
8. Dada a função y = –x2
+ 4x – 3, determine:
a) os zeros dessa função;
b) o vértice;
c) o valor máximo ou mínimo;
9. Considere o seguinte esboço de uma função do tipo y = ax2
+bx + c
Indique se y é positivo, negativo ou nulo quando:
a) x < p b) x > q c) x está entre p e q d) x = p ou x = q
10. Faça o estudo dos sinais das funções abaixo:
a) y = x2
– 10x + 25
b) y = x2
+ 8x + 16
c) y = – 2x2
+ 4x – 5
d) y = – x2
– 6x – 9
p q x
y
12. (UMC-SP) Uma loja fez campanha publicitária para vender seus produtos importados.
Suponha que x dias após o término da campanha, as vendas diárias tivessem sido
calculadas segundo a função y = –2x2
+ 20x + 150, conforme o gráfico ao lado. Depois de
quantos dias, após encerrada a campanha, a venda atingiu o valor máximo?
13. (ESPM-SP) A estrutura do lucro de uma pequena empresa pode ser estudada através da
equação y = –x2
+ 120x – 2 000, sendo y o lucro em reais quando a empresa
vende x unidades. Com base nisso, pode-se afirmar que:
a) O lucro é máximo quando x = 60.
b) O lucro é máximo quando x = 1 600.
c) O lucro é máximo quando x = 20 ou x = 100.
d) O lucro é máximo quando x > 2 000.
e) O lucro é máximo quando x < 20 ou X > 100.
14. (UFPB) O gráfico da função ,x
5
1
x
200
1
)x(fy 2
 representado na figura abaixo,
descreve a trajetória de um projétil, lançado a partir da origem.
Sabendo-se que x e y são dados em quilômetros, a altura máxima H e o alcance A do
projétil são, respectivamente,
a) 2 km e 40 km. d) 10 km e 2 km.
b) 40 km e 2 km. e) 2 km e 20 km.
c) 2 km e 10 km.
x'
150
xv
yv
x (dias)
y (unidades)
0
15. Considere a função f de R em R, definida por f(x) = 2x2
- 3x + 1. Qual das seguintes
alternativas é verdadeira:
a) f atinge o máximo para x = –1/8
b) Para x menor que –1/8, f é uma função crescente.
c) Para x maior que –1/8, f é uma função decrescente.
d) O gráfico de f é uma parábola que tangencia o eixo x.
e) O ponto de intersecção da parábola com o eixo y é (0, 1).
16. A função f(x) = x2
– 2x + 5 tem:
a. valor máximo – 4. c) valor máximo + 4. e) valor mínimo + 0.
b. valor mínimo – 4. d) valor mínimo + 4.
17. O vértice da parábola de equação y = x2
– 2x + 1 tem coordenadas:
a) V(1, 0) b) V(0, 1) c) V(-1, 1) d) V(-1, 4) e) NDA.
18. Suponha que o custo C para produzir x unidades de certo produto seja dado por:
C(x) = 3x2
– 600x + 200000.
Nessas condições, obtenha:
a) o nível de produção (valor de x) para que o custo seja mínimo;
b) o valor mínimo do custo.
19. Sendo a função real definida por f(x) = - x2
+ x + 6, através de seu gráfico, é errado
afirmar que:
a. Tem concavidade para baixo.
b. Corta o eixo das abscissas nos pontos –2 e +3.
c. Corta o eixo das ordenadas no ponto (0, 6).
d. É sempre negativo, para qualquer que seja o valor de x.
e. A abscissa (x) do vértice é –1/2.
20. A parábola y = ax2
+ bx + c tem a concavidade para baixo e não intercepta o eixo das
abscissas quando:
a. a < 0 e  > 0 d) a < 0 e  = 0
b. a > 0 e  > 0 e) a < 0 e  < 0
c. a > 0 e  < 0
21. As coordenadas do vértice da parábola y = x2
– 2x + 1 são:
a) (1, 0) b) (0,1) c) (-1, 1) d) (-1, 4) e) N.D.A.
22. Considerando o gráfico da função f(x) = x2
– x – 6, vale afirmar que:
a. Não corta o eixo x.
b. Corta o eixo dos y no ponto c = 6.
c. Tem concavidade voltada para baixo.
d. Corta o eixo dos x nos pontos –2 e 3.
e. N.D.A.
23. As raízes da função do 2º Grau y = x2
– 2x – 15 são:
a) 3 e 5 b) –3 e 5 c) 3 e –5 d) –3 e –5 e) N.D.A.
24. A parábola y = ax2
+ bx + c intercepta o eixo x em dois pontos distintos quando:
a)  > 0 b)  < 0 c)  = 0 d) a > 0 e) N.D.A.
25. Uma função do 2º Grau tem o seguinte esboço do seu gráfico:
Em relação a essa função, podemos afirmar que:
a. a > 0 e  = 0 c) a < 0 e  > 0 e)N.D.A.
b. a < 0 e  < 0 d) a > 0 e  < 0
26. Sendo a função real definida por f(x) = - x2
+ x + 6, através de seu gráfico, é errado
afirmar que:
a. Tem concavidade para baixo.
b. Suas raízes são os números –2 e +3.
c. Corta o eixo das ordenadas no ponto (0, 6).
d. Não intercepta o eixo das ordenadas.
e. Somente a alternativa anterior é falsa.
27. A função f(x) = x2
– 2x + 15 tem como raízes os números:
a) 3 e 5 c) 3 e –5 e) –3 e 5
b) 1 e 15 d) –3 e –5
28. A parábola y = ax2
+ bx + c tem a concavidade para baixo e intercepta o eixo das
abcissas em dois pontos, quando:
a) a < 0 e  < 0 c) a < 0 e  = 0 e) a = 0 e  < 0
b) a > 0 e  < 0 d) a < 0 e  > 0
29. Resolva as equações biquadradas, transformando-as em equação do 2º grau.
a) 4x4
– 17x2
+ 4 = 0
b) x4
– 13x2
+ 36 = 0
c) 4x4
– 10x2
+ 9 = 0
d) x4
+ 3x2
– 4 = 0
e) 4x4
-37x2
+ 9 = 0
f) 16x4
– 40x2
+ 9 = 0
g) x4
-7x2
+ 12 = 0
h) x4
+ 5x2
+ 6 = 0
i) 8m4
– 10m2
+ 3 = 0
j) 9x4
– 13x2
+ 4 = 0
k) x4
– 18x2
+ 32 = 0
l) (x2
+ 2x).(x2
– 2x) = 45
m) m4
– m2
– 12 = 0
30. Resolva as expressões biquadradas, dando as raízes:
a) (x2
– 1).(x2
– 12)+ 24 = 0
b) (x2
+ 2)2
= 2.(x2
+ 6)
c) (x + 2).(x – 2).(x + 1).(x – 1) + 5x2
= 20
d) x2
.(x2
– 9) = -20
e) (x2
+ 6)2
17.(x2
+ 6) + 70 = 0
f) x2
.(x2
– 10) + 9 = (x + 1).(x – 1)
31. (FACESP) O conjunto solução , no campo real, da equação z z4 2
13 36 0   é :
a) S = {-3,-2,0,2,3} b) S={-3,-2,2,3} c) S= {-2,-3} d) S={0,2,3} e) S= {2,3}
32. (CESGRANRIO) O produto das raízes positivas de 4
x - 11x² + 18 = 0 vale:
a)2 3 b)3 2 c) 4 3 d)4 2 e)2 3
33. (LAVRAS) A equação x x c4 2
6 0   admite quatro raízes reais distintas para :
a) -1< c < 9 b) -9 < c < 9 c) -3 < c < 3 d) 0 < c < 3 e) 0 < c < 9
Anúncio

Recomendados

Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pKamilla Oliveira
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grauBetão Betão
 
Exercicios função
 Exercicios função Exercicios função
Exercicios funçãoRobson S
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)Ilton Bruno
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Adriana Bonato
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiRodrigo Borges
 
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...Ilton Bruno
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeAndréia Rodrigues
 

Mais conteúdo relacionado

Mais procurados

Mat utfrs 09. monomios e polinomios exercicios
Mat utfrs 09. monomios e polinomios exerciciosMat utfrs 09. monomios e polinomios exercicios
Mat utfrs 09. monomios e polinomios exerciciostrigono_metria
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pJean Silveira
 
Exercício de plano cartesiano 9º ano
Exercício de plano cartesiano   9º anoExercício de plano cartesiano   9º ano
Exercício de plano cartesiano 9º anoDaiane Oliveira
 
Exercícios de matemática revisão
Exercícios de matemática   revisãoExercícios de matemática   revisão
Exercícios de matemática revisãoFabiana Gonçalves
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afimProfessoraIve
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Olicio Silva
 
22 exercícios - inequação produto e quociente (1)
22   exercícios - inequação produto e quociente (1)22   exercícios - inequação produto e quociente (1)
22 exercícios - inequação produto e quociente (1)Kualo Kala
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletasHélio Rocha
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exerciciosJeane Carvalho
 
Exercícios função de 2° grau 2p.pdf
Exercícios função de 2° grau 2p.pdfExercícios função de 2° grau 2p.pdf
Exercícios função de 2° grau 2p.pdfGeanAndrade2
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - ExercíciosEverton Moraes
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRafael Marques
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosAndré Luís Nogueira
 
Mat exercicios fatoracao algebrica
Mat exercicios fatoracao algebricaMat exercicios fatoracao algebrica
Mat exercicios fatoracao algebricatrigono_metria
 
Exercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauExercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauiraciva
 
Lista de exercícios 1 – equação do 2° grau
Lista de exercícios 1 – equação do 2° grauLista de exercícios 1 – equação do 2° grau
Lista de exercícios 1 – equação do 2° grauEverton Moraes
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOHélio Rocha
 
Lista Circulo Circunferencia
Lista Circulo CircunferenciaLista Circulo Circunferencia
Lista Circulo Circunferenciatioheraclito
 

Mais procurados (20)

Mat utfrs 09. monomios e polinomios exercicios
Mat utfrs 09. monomios e polinomios exerciciosMat utfrs 09. monomios e polinomios exercicios
Mat utfrs 09. monomios e polinomios exercicios
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Exercício de plano cartesiano 9º ano
Exercício de plano cartesiano   9º anoExercício de plano cartesiano   9º ano
Exercício de plano cartesiano 9º ano
 
Exercícios de matemática revisão
Exercícios de matemática   revisãoExercícios de matemática   revisão
Exercícios de matemática revisão
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
 
22 exercícios - inequação produto e quociente (1)
22   exercícios - inequação produto e quociente (1)22   exercícios - inequação produto e quociente (1)
22 exercícios - inequação produto e quociente (1)
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
 
Exercícios função de 2° grau 2p.pdf
Exercícios função de 2° grau 2p.pdfExercícios função de 2° grau 2p.pdf
Exercícios função de 2° grau 2p.pdf
 
Funções - Exercícios
Funções - ExercíciosFunções - Exercícios
Funções - Exercícios
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômios
 
Mat exercicios fatoracao algebrica
Mat exercicios fatoracao algebricaMat exercicios fatoracao algebrica
Mat exercicios fatoracao algebrica
 
Exercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grauExercícios de revisão funçao 1 grau
Exercícios de revisão funçao 1 grau
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
 
Lista de exercícios 1 – equação do 2° grau
Lista de exercícios 1 – equação do 2° grauLista de exercícios 1 – equação do 2° grau
Lista de exercícios 1 – equação do 2° grau
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
 
Lista Circulo Circunferencia
Lista Circulo CircunferenciaLista Circulo Circunferencia
Lista Circulo Circunferencia
 

Semelhante a 9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais

Hl lista segundo grau 23
Hl lista segundo grau 23Hl lista segundo grau 23
Hl lista segundo grau 23celiomelosouza
 
Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612Manuel Lucrecio
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grauCelia Lana
 
Lista funcao quadratica
Lista funcao quadraticaLista funcao quadratica
Lista funcao quadraticalittlevic4
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptxFabiolaSouza36
 
Exercicios basicos conjuntos numéricos
Exercicios basicos   conjuntos numéricosExercicios basicos   conjuntos numéricos
Exercicios basicos conjuntos numéricosAndré Luís Nogueira
 
Função quadrática
Função quadráticaFunção quadrática
Função quadráticajwfb
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidostexa0111
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o anoMichele Boulanger
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o anoMichele Boulanger
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grautrigono_metria
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadráticaJosenildo Lima
 
Exercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docExercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docalenumeros
 
Função quadrática 10º exercicios
Função quadrática 10º exerciciosFunção quadrática 10º exercicios
Função quadrática 10º exerciciosAna Tapadinhas
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Magda Damião
 

Semelhante a 9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais (20)

Hl lista segundo grau 23
Hl lista segundo grau 23Hl lista segundo grau 23
Hl lista segundo grau 23
 
Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
Lista m3
Lista m3Lista m3
Lista m3
 
Lista funcao quadratica
Lista funcao quadraticaLista funcao quadratica
Lista funcao quadratica
 
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
FUNÇÃO POLINOMIAL DO  2º GRAU.pptxFUNÇÃO POLINOMIAL DO  2º GRAU.pptx
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
 
Exercicios basicos conjuntos numéricos
Exercicios basicos   conjuntos numéricosExercicios basicos   conjuntos numéricos
Exercicios basicos conjuntos numéricos
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o ano
 
Conteúdo de matemática 8o ano
Conteúdo de matemática 8o anoConteúdo de matemática 8o ano
Conteúdo de matemática 8o ano
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Equaçao do 2 grau
Equaçao do 2 grauEquaçao do 2 grau
Equaçao do 2 grau
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
Exercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docExercícios de Função 2 grau.doc
Exercícios de Função 2 grau.doc
 
Matemática – função segundo grau 03 – 2013
Matemática – função segundo grau 03 – 2013Matemática – função segundo grau 03 – 2013
Matemática – função segundo grau 03 – 2013
 
Função quadrática 10º exercicios
Função quadrática 10º exerciciosFunção quadrática 10º exercicios
Função quadrática 10º exercicios
 
Funçao quadratica-revisao 2
Funçao quadratica-revisao 2Funçao quadratica-revisao 2
Funçao quadratica-revisao 2
 
Lista de exercícios 1 ano
Lista de exercícios 1 anoLista de exercícios 1 ano
Lista de exercícios 1 ano
 
Eq. 2º grau
Eq. 2º grauEq. 2º grau
Eq. 2º grau
 

9 ano-funcoes-do-2-grau-equacoes-biquadradas-equacoes-irracionais

  • 1. LISTA 01 – MATEMÁTICA – PROF. FABRÍCIO – 9º ANO NOME:__________________________________TURMA:_____ 1. Observe os gráficos das funções de 2º grau abaixo. Em relação a essas funções, determine o sinal de a, do discriminante  (delta) e de c: a) b) c) 2. (Fafi-MG) O gráfico de uma função quadrática f(x) = x2 + bx + c está representado abaixo. Podemos afirmar que: a) a < 0,  < 0 e c < 0 b) a > 0,  > 0 e c < 0 c) a > 0,  = 0 e c > 0 d) a > 0,  = 0 e c < 0 e) a < 0,  = 0 e c > 0 3. Complete a tabela abaixo, com a função definida por f(x) = x2 – 2x x y = x2 – 2x (x , y) – 1 0 1 2 3 x y x y x y C e n t r o E d u c a c i o n a l A d v e n t i s ta M i l to n A fo n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61) 345-7080 Fax: (61) 345-7082
  • 2. 4. Determine as raízes da função da questão anterior. 5. Os zeros da função quadrática de R em R definida por y = x2 – 2x – 15 são: a) 3 e 5 b) – 3 e 5 c) 3 e –5 d) –3 e –5 e) 1 e –15 6. Determine as coordenadas do vértice das funções dadas por: a) y = x2 – 4x – 5 b) y = x2 + 2x – 8 c) y = – x2 + 4x d) y = –x2 + 4x – 3 7. Dada a função y = x2 + 2x – 3, determine: a) os zeros dessa função; b) o vértice; c) o valor máximo ou mínimo 8. Dada a função y = –x2 + 4x – 3, determine: a) os zeros dessa função; b) o vértice; c) o valor máximo ou mínimo; 9. Considere o seguinte esboço de uma função do tipo y = ax2 +bx + c Indique se y é positivo, negativo ou nulo quando: a) x < p b) x > q c) x está entre p e q d) x = p ou x = q 10. Faça o estudo dos sinais das funções abaixo: a) y = x2 – 10x + 25 b) y = x2 + 8x + 16 c) y = – 2x2 + 4x – 5 d) y = – x2 – 6x – 9 p q x y
  • 3. 12. (UMC-SP) Uma loja fez campanha publicitária para vender seus produtos importados. Suponha que x dias após o término da campanha, as vendas diárias tivessem sido calculadas segundo a função y = –2x2 + 20x + 150, conforme o gráfico ao lado. Depois de quantos dias, após encerrada a campanha, a venda atingiu o valor máximo? 13. (ESPM-SP) A estrutura do lucro de uma pequena empresa pode ser estudada através da equação y = –x2 + 120x – 2 000, sendo y o lucro em reais quando a empresa vende x unidades. Com base nisso, pode-se afirmar que: a) O lucro é máximo quando x = 60. b) O lucro é máximo quando x = 1 600. c) O lucro é máximo quando x = 20 ou x = 100. d) O lucro é máximo quando x > 2 000. e) O lucro é máximo quando x < 20 ou X > 100. 14. (UFPB) O gráfico da função ,x 5 1 x 200 1 )x(fy 2  representado na figura abaixo, descreve a trajetória de um projétil, lançado a partir da origem. Sabendo-se que x e y são dados em quilômetros, a altura máxima H e o alcance A do projétil são, respectivamente, a) 2 km e 40 km. d) 10 km e 2 km. b) 40 km e 2 km. e) 2 km e 20 km. c) 2 km e 10 km. x' 150 xv yv x (dias) y (unidades) 0
  • 4. 15. Considere a função f de R em R, definida por f(x) = 2x2 - 3x + 1. Qual das seguintes alternativas é verdadeira: a) f atinge o máximo para x = –1/8 b) Para x menor que –1/8, f é uma função crescente. c) Para x maior que –1/8, f é uma função decrescente. d) O gráfico de f é uma parábola que tangencia o eixo x. e) O ponto de intersecção da parábola com o eixo y é (0, 1). 16. A função f(x) = x2 – 2x + 5 tem: a. valor máximo – 4. c) valor máximo + 4. e) valor mínimo + 0. b. valor mínimo – 4. d) valor mínimo + 4. 17. O vértice da parábola de equação y = x2 – 2x + 1 tem coordenadas: a) V(1, 0) b) V(0, 1) c) V(-1, 1) d) V(-1, 4) e) NDA. 18. Suponha que o custo C para produzir x unidades de certo produto seja dado por: C(x) = 3x2 – 600x + 200000. Nessas condições, obtenha: a) o nível de produção (valor de x) para que o custo seja mínimo; b) o valor mínimo do custo. 19. Sendo a função real definida por f(x) = - x2 + x + 6, através de seu gráfico, é errado afirmar que: a. Tem concavidade para baixo. b. Corta o eixo das abscissas nos pontos –2 e +3. c. Corta o eixo das ordenadas no ponto (0, 6). d. É sempre negativo, para qualquer que seja o valor de x. e. A abscissa (x) do vértice é –1/2. 20. A parábola y = ax2 + bx + c tem a concavidade para baixo e não intercepta o eixo das abscissas quando: a. a < 0 e  > 0 d) a < 0 e  = 0 b. a > 0 e  > 0 e) a < 0 e  < 0 c. a > 0 e  < 0 21. As coordenadas do vértice da parábola y = x2 – 2x + 1 são: a) (1, 0) b) (0,1) c) (-1, 1) d) (-1, 4) e) N.D.A.
  • 5. 22. Considerando o gráfico da função f(x) = x2 – x – 6, vale afirmar que: a. Não corta o eixo x. b. Corta o eixo dos y no ponto c = 6. c. Tem concavidade voltada para baixo. d. Corta o eixo dos x nos pontos –2 e 3. e. N.D.A. 23. As raízes da função do 2º Grau y = x2 – 2x – 15 são: a) 3 e 5 b) –3 e 5 c) 3 e –5 d) –3 e –5 e) N.D.A. 24. A parábola y = ax2 + bx + c intercepta o eixo x em dois pontos distintos quando: a)  > 0 b)  < 0 c)  = 0 d) a > 0 e) N.D.A. 25. Uma função do 2º Grau tem o seguinte esboço do seu gráfico: Em relação a essa função, podemos afirmar que: a. a > 0 e  = 0 c) a < 0 e  > 0 e)N.D.A. b. a < 0 e  < 0 d) a > 0 e  < 0 26. Sendo a função real definida por f(x) = - x2 + x + 6, através de seu gráfico, é errado afirmar que: a. Tem concavidade para baixo. b. Suas raízes são os números –2 e +3. c. Corta o eixo das ordenadas no ponto (0, 6). d. Não intercepta o eixo das ordenadas. e. Somente a alternativa anterior é falsa. 27. A função f(x) = x2 – 2x + 15 tem como raízes os números: a) 3 e 5 c) 3 e –5 e) –3 e 5 b) 1 e 15 d) –3 e –5 28. A parábola y = ax2 + bx + c tem a concavidade para baixo e intercepta o eixo das abcissas em dois pontos, quando: a) a < 0 e  < 0 c) a < 0 e  = 0 e) a = 0 e  < 0 b) a > 0 e  < 0 d) a < 0 e  > 0
  • 6. 29. Resolva as equações biquadradas, transformando-as em equação do 2º grau. a) 4x4 – 17x2 + 4 = 0 b) x4 – 13x2 + 36 = 0 c) 4x4 – 10x2 + 9 = 0 d) x4 + 3x2 – 4 = 0 e) 4x4 -37x2 + 9 = 0 f) 16x4 – 40x2 + 9 = 0 g) x4 -7x2 + 12 = 0 h) x4 + 5x2 + 6 = 0 i) 8m4 – 10m2 + 3 = 0 j) 9x4 – 13x2 + 4 = 0 k) x4 – 18x2 + 32 = 0 l) (x2 + 2x).(x2 – 2x) = 45 m) m4 – m2 – 12 = 0 30. Resolva as expressões biquadradas, dando as raízes: a) (x2 – 1).(x2 – 12)+ 24 = 0 b) (x2 + 2)2 = 2.(x2 + 6) c) (x + 2).(x – 2).(x + 1).(x – 1) + 5x2 = 20 d) x2 .(x2 – 9) = -20 e) (x2 + 6)2 17.(x2 + 6) + 70 = 0 f) x2 .(x2 – 10) + 9 = (x + 1).(x – 1) 31. (FACESP) O conjunto solução , no campo real, da equação z z4 2 13 36 0   é : a) S = {-3,-2,0,2,3} b) S={-3,-2,2,3} c) S= {-2,-3} d) S={0,2,3} e) S= {2,3} 32. (CESGRANRIO) O produto das raízes positivas de 4 x - 11x² + 18 = 0 vale: a)2 3 b)3 2 c) 4 3 d)4 2 e)2 3 33. (LAVRAS) A equação x x c4 2 6 0   admite quatro raízes reais distintas para : a) -1< c < 9 b) -9 < c < 9 c) -3 < c < 3 d) 0 < c < 3 e) 0 < c < 9
  • 7. 34. Resolva as equações biquadradas, sendo U = : a) x4 – 8x2 + 16 = 0 b) x4 – 3x2 – 4 = 0 c) x4 – 13x2 + 36 = 0 d) x4 – 10x + 9 = 0 35. Resolva as equações irracionais, sendo U = : a)  x 2 2 b)   2 x 1 2 c)   x x 1 5 d)   x 13 x 7 e) 3 2 x 8x + 55 = 4 36. Resolva as equações irracionais: a) 71 x l) 213 x b) xx  93 m) 2133 x c) 01132  xx n) 22  xx d) 526113 x o) 72  x e) 273 2  xx p) 317  x f) 244 2  xx q) 1413  xx g) xx 23  r) 1132  xx h) 292  xx i) 53  xx j) 112  xx k) 24 x