Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Enunciado
É necessário realizar o projeto básico p...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
1. PREVISÃO DE RECALQUES
1.1 Recalques por adensam...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
A equação para o cálculo do recalque por adensamen...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Os resultados deste procedimento iterativo são os ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
1.2 Recalques por compressão secundária
Para o cál...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
H i (m) z(m) OCR w (%) Cc eo CR Δhsec (m)
1 0,5 15...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Tabela 6. Valores de U(T), Martins
(Notas de aula ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 4, se apresenta a variação do recalque e...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
observando quais são os tempos necessários para es...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Dos resultados apresentados pode-se concluir que a...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 6. Disposição geométrica dos drenos em arra...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
𝑇ℎ =
𝑐ℎ . 𝑡
𝑑 𝑒
2 (10)
𝐹(𝑛) ≅ ln(𝑛) − 0,75 (11)
𝑛 ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
W, l, dimensões do mandril.
𝑑 𝑠 = 2𝑑 𝑚
Kh= permeab...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
O efeito do amolgamento influência nos cálculos do...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Os resultados do procedimento iterativo para o cál...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
altura inicial de 4 m, durante os 12 primeiros mes...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Calcular os recalques após a instalação da segun...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 9. Evolução dos recalques com o tempo
Desta...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
3. ESTABILIDADE DO ATERRO NÃO REFORÇADO E REFORÇAD...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 1, se apresenta a variação da resistênci...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Equação derivada da expressão clássica de capaci...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Ábaco de Pinto
A altura crítica pelo método do á...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para as análises foi empregado o software SLIDE da...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para uma altura de 2 m, a sobrecarga equivalente d...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 3, se apresenta um resumo dos resultados...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
diferentes profundidades na base da superfície de ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Earg – Empuxo ativo na camada de argila:
𝐸 𝑎𝑟𝑔 =
1...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
No caso da análise no software SLIDE, foi consider...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Foi feita uma verificação da resistência na base d...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Figura 12, se apresenta o F.S obtido pelo métod...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
primeira etapa e observar como vai ser o comportam...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Rb - Força cisalhante na base do bloco:
𝑅 𝑏 = 𝑆 𝑢 ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 8, se observa que para a altura crítica ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 15. Geometria do aterro (Hinchberger e Rowe...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Uma vez definida a altura crítica do aterro e a de...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para H=3m e da Figura 17 e n definido como a incli...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Da Figura 19, Nc=12
Figura 19. Fator de capacidade...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Para uma deformação admissível do reforço de 5%, t...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
3.5 Ganho de resistência ao longo do tempo
O aterr...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
O ganho de resistência será estimado segundo a equ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Assumindo os valores médios da resistência não dre...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
A fim de estabelecer uma comparação dos resultados...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su f(z)
(Kpa)
Earg KN/m
(ativo)
Earg KN/...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
5,5 28,66 610,80 519,45 644,85 95 1,63
6,0 28,66 6...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
4. ATERRO SOBRE COLUNAS GRANULARES TRADICIONAIS
O ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Calcular o diâmetro equivalente, que depende da
...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 2. Fator de concentração de tensões
 Acrés...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
∆ℎ= recalque do solo nao melhorado
∆ℎ 𝑠= rec...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Por tanto, conhecido o recalque sem colunas do cap...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
z arg
(m)
Su
f(z)
(Kpa)
m Cm Фm γm
Earg KN/m
(ativ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 5. Análise de estabilidade pelo método de J...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Parâmetros de entrada:
de=2,10 m
dw=0,8 m (diâmetr...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
resistência ao solo, permite acelerar os recalques...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Figura 1. Aterro Estruturado x Aterro sobre drenos...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
5.1 Dimensionamento do aterro estruturado
Para o p...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Substituindo os valores:
1,15(1,06)+1,44(1)= 2,66 ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Russell e Pierpoint, (1997)
Este método não cons...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
 Low et al., (1994)
Low et al., (1994) utilizaram...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
Hat/s=3/2,5=1,2
b/s=1/2,5=0,4
𝜎𝑣
𝛾 𝑎𝑡 ∗ 𝐻 𝑎𝑡...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
𝐾𝑔 =
𝜎𝑣(𝑠2
− 𝑏2
)
𝑏
S =2,5 m; b =1,0 m defin...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Onde,
d = 1,0 m - Largura do capitel
Substituindo,...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Na Tabela 2, se apresenta uma lista das deformaçõe...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
Metodologia T (KN/m)
Método da parábola – BS 8006 ...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
os efeitos destas técnicas no comportamento em ter...
Trabalho prático
Aterros sobre solos moles
Cristian Yair Soriano Camelo
FEI, K; A Simplified Method for Analysis of Geosyn...
Próximos SlideShares
Carregando em…5
×

Aterros sobre solo moles

1.627 visualizações

Publicada em

Exemplo de projeto de aterro em solo mole

Publicada em: Engenharia
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.627
No SlideShare
0
A partir de incorporações
0
Número de incorporações
10
Ações
Compartilhamentos
0
Downloads
37
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aterros sobre solo moles

  1. 1. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Enunciado É necessário realizar o projeto básico para um aterro rodoviário sobre solo mole na costa do Estado do Rio de Janeiro. O depósito de argila mole tem 10m de espessura, nível d´água é coincidente com o nível do terreno (cota +0,0) e peso específico da argila γ = 13,5 kN/m3 . Dispõe-se apenas de ensaios SPT com medidas de umidade w. Observou-se que uma reta com w = 200% na superfície (z = 0,0 m) e w = 150% na profundidade z = 10,0 m ajusta-se bem aos dados obtidos. Sabe-se também que para este depósito pode-se adotar nos cálculos de estabilidade uma variação de resistência não drenada fornecida pela equação Su/σ´vo = 0,3(OCR)0,85. O perfil de OCR estimado pelo banco de dados das argilas do Rio de Janeiro conforme figura abaixo (artigo Soils & Rocks - Almeida e outros 2008) indicou que o limite inferior de OCR pode ser fornecido por:  OCR = 7,5/z para z < 5,0 m  OCR = 1,5 para z > 5,0 m. Conforme este mesmo artigo e figura abaixo, o índice de compressão Cc da argila pode ser estimado por Cc = 0.013w, (w = umidade %). Outros parâmetros representativos de toda a camada são: Cs/Cc = 0,15 e o coeficiente de adensamento vertical médio (normalmente adensado) cv = 4 x 10-8 m2 /s. Sobre a camada de argila definida acima é necessário executar em 24 meses um aterro (γ = 17,5 kN/m3 ) com plataforma de 10 m de largura, de forma que atinja a cota +3,0 m, sem recalques por adensamento primário e secundários remanescentes. Os cálculos de recalques e de estabilidade devem ser realizados independentemente, ainda que na prática sejam realizados em paralelo.
  2. 2. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 1. PREVISÃO DE RECALQUES 1.1 Recalques por adensamento primário A magnitude do recalque por adensamento primário foi calculada separando a camada de fundação em 10 subcamadas de 1 m de espessura em vista da possibilidade de obter parâmetros para cada profundidade. Os parâmetros necessários para o cálculo dos recalques são apresentados a seguir: H i z(m) OCR w (%) Cc Cs 1 0,5 15,00 197,5 2,57 0,39 1 1,5 5,00 192,5 2,50 0,38 1 2,5 3,00 187,5 2,44 0,37 1 3,5 2,14 182,5 2,37 0,36 1 4,5 1,67 177,5 2,31 0,35 1 5,5 1,50 172,5 2,24 0,34 1 6,5 1,50 167,5 2,18 0,33 1 7,5 1,50 162,5 2,11 0,32 1 8,5 1,50 157,5 2,05 0,31 1 9,5 1,50 152,5 1,98 0,30 Tabela 1. Parâmetros do solo de fundação do aterro Onde, Hi, espessura da subcamada i Z, profundidade da metade da altura de cada subcamada. OCR, calculado em função da profundidade (enunciado do problema). W(%), porcentagem de umidade que varia em função da profundidade. Cs, Cs, parâmetros calculados em função da umidade (enunciado do problema). O recalque do aterro deve ser estabilizado em uma cota fixa, por tanto, é preciso efetuar um cálculo iterativo para determinar a altura do aterro necessária para atingir aquela cota fixa (+3,0 m).
  3. 3. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo A equação para o cálculo do recalque por adensamento primário num solo sobreadensado como é o caso do problema que se está estudando é a seguinte: ∆ℎ = ℎ 𝑎𝑟𝑔 [ 𝐶𝑠 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑚 𝜎′ 𝑣𝑜 ) + 𝐶𝑐 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑜 + Δ𝜎𝑣 𝜎′ 𝑣𝑚 )] (1) Onde, Δ𝜎𝑣 = 𝐼(𝛾 𝑎𝑡ℎ 𝑎𝑡) + 𝛾′ Δℎ (2) O acréscimo de carga é calculado em função da geometria do problema, além disso, é preciso obter o fator de influência I da eq. (2) a partir do ábaco de Osterberg (Poulos, Davis, 1974). Figura 1. Fator de influência I para carregamento trapezoidal (Poulos, Davis, 1974). O valor de a, foi definido para um talude 3:1, por tanto os parâmetros para o cálculo do fator de influência em função da profundidade são: Talude 3:1 b1 5 m a 9 m Altura do aterro 3 m Tabela 2. Geometria do aterro 1 Metade do comprimento da plataforma
  4. 4. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Os resultados deste procedimento iterativo são os seguintes: Recalque - Cota Fixa (m) H i z(m) σ'vo (KPa) σ'vm (KPa) σ'vf (KPa) Gs eo It 1 It 2 It 3 It 4 It 5 a/z b/z I 2I 1 0,5 1,75 26,25 54,25 2,6 5,14 0,21 0,24 0,25 0,25 0,25 18,00 10,00 0,50 1,00 1 1,5 5,25 26,25 57,75 2,6 5,01 0,19 0,22 0,22 0,23 0,23 6,00 3,33 0,50 1,00 1 2,5 8,75 26,25 61,25 2,6 4,88 0,18 0,21 0,22 0,22 0,22 3,60 2,00 0,49 0,98 1 3,5 12,25 26,25 64,75 2,6 4,75 0,18 0,21 0,21 0,21 0,21 2,57 1,43 0,48 0,96 1 4,5 15,75 26,25 68,25 2,6 4,62 0,18 0,20 0,21 0,21 0,21 2,00 1,11 0,47 0,94 1 5,5 19,25 28,88 71,75 2,6 4,49 0,16 0,19 0,19 0,19 0,19 1,64 0,91 0,46 0,92 1 6,5 22,75 34,13 75,25 2,6 4,36 0,13 0,16 0,17 0,17 0,17 1,38 0,77 0,44 0,88 1 7,5 26,25 39,38 78,75 2,6 4,23 0,11 0,14 0,14 0,14 0,14 1,20 0,67 0,42 0,84 1 8,5 29,75 44,63 82,25 2,6 4,10 0,10 0,12 0,13 0,13 0,13 1,06 0,59 0,41 0,82 1 9,5 33,25 49,88 85,75 2,6 3,97 0,08 0,10 0,11 0,11 0,11 0,95 0,53 0,39 0,78 SOMA 1,51 1,79 1,84 1,85 1,85 m Tabela 3. Recalque por adensamento primário Portanto, o recalque total calculado por adensamento primário foi de 1,85 m. Na Figura 2, se apresentam os resultados gráficos do cálculo iterativo para a camada de argila sobreadensada do problema, mediante o procedimento de cota fixa. Figura 2. Variação do recalque em função das iterações
  5. 5. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 1.2 Recalques por compressão secundária Para o cálculo das deformações que ocorrem ao fim do adensamento primário e que não estão atribuídas à dissipação dos excessos de poropressão, são calculadas mediante um procedimento baseado em evidências experimentais de laboratório. Martins (2005) propõe que o recalque máximo por adensamento secundário é aquele correspondente à variação da deformação vertical da condição de fim do primário (OCR=1) para a reta OCR=1,5, para uma tensão efetiva vertical atuante na argila mole. Figura 3. Linha do adensamento secundário Da Figura 3, para 𝐶𝑅 = 𝐶 𝑣 1+𝑒 𝑜 , e uma relação 𝐶 𝑠 𝐶 𝑐 = 0,15, ∆ℎ 𝑠𝑒𝑐 = ℎ 𝑎𝑟𝑔 𝐶𝑅𝑙𝑜𝑔 ( 1,5𝜎′ 𝑣𝑓 𝜎′ 𝑣𝑓 ) − ℎ 𝑎𝑟𝑔(0,15𝐶𝑅)𝑙𝑜𝑔 ( 1,5𝜎′ 𝑣𝑓 𝜎′ 𝑣𝑓 ) (3) ∆ℎ 𝑠𝑒𝑐 ℎ 𝑎𝑟𝑔 = 0,15𝐶𝑅 (4) Na Tabela 4, se apresentam os resultados dos cálculos das deformações por compressão secundária. 1,5 σ’vfσ’vf
  6. 6. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo H i (m) z(m) OCR w (%) Cc eo CR Δhsec (m) 1 0,5 15,00 197,5 2,57 5,14 0,46 0,069 1 1,5 5,00 192,5 2,50 5,01 0,45 0,068 1 2,5 3,00 187,5 2,44 4,88 0,44 0,066 1 3,5 2,14 182,5 2,37 4,75 0,43 0,064 1 4,5 1,67 177,5 2,31 4,62 0,42 0,062 1 5,5 1,50 172,5 2,24 4,49 0,40 0,061 1 6,5 1,50 167,5 2,18 4,36 0,39 0,059 1 7,5 1,50 162,5 2,11 4,23 0,38 0,057 1 8,5 1,50 157,5 2,05 4,10 0,37 0,055 1 9,5 1,50 152,5 1,98 3,97 0,36 0,054 SOMA 0,61 m Tabela 4. Recalque por compressão secundária Dos resultados pode se observar que o valor do CR, varia entre 0,36 e 0,46 e o recalque total por compressão secundária foi de 0,61 m. 1.3 Recalque total A estimativa do recalque total foi baseada em dois cálculos: adensamento primário e compressão secundária, na Tabela 5 se apresenta um resumo dos resultados. Adensamento primário (cota fixa) 1,85 m Compressão Secundária (OCR =1,5) 0,61 m Total 2,46 m Tabela 5. Resumo dos resultados da estimativa de recalques 1.4 Variação do recalque por adensamento primário com o tempo Para conhecer a variação do recalque no tempo, é necessário empregar a teoria de Terzaghi. O cálculo do recalque em um tempo t é efetuado multiplicando o recalque por adensamento primário pela porcentagem média de adensamento U, da seguinte maneira: ∆ℎ(𝑡) = 𝑈 ∗ ∆ℎ (5) Onde U é função do fator tempo T, na Tabela 6, são apresentados diferentes valores da função U(T).
  7. 7. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Tabela 6. Valores de U(T), Martins (Notas de aula do curso de Adensamento). Conhecido o Fator Tempo, é possível calcular os tempos necessários para atingir as diferentes porcentagens de adensamento, empregando a seguinte expressão que é função do coeficiente de adensamento, Cv: 𝑇𝑣 = 𝐶 𝑣 𝑡 ℎ 𝑑 2 (6) No caso do problema estudado no presente trabalho, foi assumida uma condição de drenagem dupla, portanto, ℎ 𝑑 = ℎ 𝑎𝑟𝑔 2 . O coeficiente de adensamento vertical médio do projeto é Cv=4X10-8 m2 /s. Na Tabela 7, se apresentam os resultados das análises do adensamento em função do tempo. U(%) Tv t(meses) t(anos) Δh(t) 0 0 0 0 0 10 0,008 2 0 0,19 20 0,031 7 1 0,37 30 0,071 17 1 0,56 40 0,126 30 3 0,74 50 0,197 48 4 0,93 60 0,287 69 6 1,11 70 0,405 98 8 1,30 80 0,565 136 11 1,48 90 0,848 204 17 1,67 95 1,129 272 23 1,76 Tabela 7. Variação do grau de adensamento e recalque em função do tempo Dos resultados mostrados na Tabela 7, pode-se observar que para atingir um grau de adensamento de 95%, é preciso aguardar 272 meses ou 23 anos.
  8. 8. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 4, se apresenta a variação do recalque em função do tempo para uma análise de cota fixa. Figura 4. Variação dos recalques com o tempo para um aterro de 3,0 m de espessura. Dos resultados das análises do recalque em função do tempo, pode- se concluir que para fins práticos do projeto do aterro (tempo de execução de 24 meses) é necessário empregar técnicas que permitam acelerar os recalques (drenos verticais, sobrecarga, etc.). 2. Soluções para aceleração dos recalques 2.1 Sobrecarga temporária A sobrecarga temporária tem como objetivo a aceleração dos recalques por adensamento primário e a compensação dos recalques por compressão secundária. Uma parcela desta sobrecarga vai ser permanente em vista de que vai fazer parte da configuração do aterro uma vez recalcado e outra parte dela vai ser removida a fim de atingir a cota do projeto. A primeira análise efetuada no presente trabalho foi considerando sobrecarga em termos de diferentes espessuras de aterro e
  9. 9. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo observando quais são os tempos necessários para estabilizar os recalques primários. Na figura 5, se apresenta um resumo dos resultados desta análise na qual foram calculados os recalques para espessuras totais de aterro que atuariam como sobrecarga de 5m, 7m e 8m. Figura 5. Uso de sobrecarga sem drenos verticais Na Tabela 8, se apresenta um resumo comparativo dos tempos necessários para estabilizar o 95 % do recalque por adensamento primário2 e assim observar os efeitos desta solução. Espessura de aterro t para 95%*Δh primário (meses) 3 m 272 5 m 200 7 m 98 8 m 90 Tabela 8. Tempos para atingir o 95 % do recalque por adensamento primário 2 O cálculo dos recalques para as espessuras de 5m, 7m e 8m, foi efetuado mediante a metodologia de submersão e assim manter uma espessura do aterro constante para efetuar desta maneira as comparações.
  10. 10. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Dos resultados apresentados pode-se concluir que a sobrecarga tem um efeito importante na aceleração dos recalques, no entanto, sem uma medida adicional (como seria o caso de drenos verticais), a sobrecarga não seria suficiente para atender as condições do projeto. 2.2 Drenos Verticais Os drenos verticais são uma técnica que permite a aceleração dos recalques, baseada no fato de que o caminho de drenagem dentro da massa de solo é diminuído para cerca da metade da distância horizontal entre drenos. A instalação dos drenos vai fazer com que a água tenha uma movimentação predominantemente horizontal. Ao ser coletada pelo dreno, a água é conduzida na vertical até as camadas drenantes das extremidades da camada de solo mole, na Figura 6 se apresenta um esquema deste mecanismo. Figura 5. Percolação da água em drenos verticais 2.2.1 Dimensionamento O primeiro aspecto a considerar é determinar o diâmetro de influência do dreno, que é função da disposição em um sistema de malha quadrada ou triangular de lado l(Figura 6). Para o presente trabalho foi adotada uma disposição triangular em vista de que é mais eficiente em termos de drenagem.
  11. 11. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 6. Disposição geométrica dos drenos em arranjo quadrado e triangular No caso de malha triangular o diâmetro de influência esta definido como: 𝑑 𝑒 = 1,05 𝑙 (7) Onde l corresponde ao espaçamento entre os drenos, no caso do presente projeto l=1,75 m e de= 1,84 m. Uma vez definido o diâmetro de influência, se define o diâmetro equivalente do dreno com a seguinte expressão: 𝑑 𝑤 = 2(𝑎 + 𝑏) 𝜋 (8) Onde a e b são dimensões do dreno. No presente trabalho foram adotadas3 a=10 cm e b = 0,5 cm, portanto, dw = 6,68 cm. O passo a seguir é a determinação do grau de adensamento em função do tempo para drenagem radial pura4. Empregando a solução de Barron (1948), o grau de adensamento médio da camada é expresso como: 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)⁄ ] (9) Onde, 3 ALMEIDA, M. S. S. Aterros sobre solos moles projeto e desempenho. 2010. P 110. 4 Os cálculos do grau de adensamento considerando somente drenagem radial são conservativos para fins práticos do presente trabalho permitem maior simplicidade nos cálculos.
  12. 12. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 𝑇ℎ = 𝑐ℎ . 𝑡 𝑑 𝑒 2 (10) 𝐹(𝑛) ≅ ln(𝑛) − 0,75 (11) 𝑛 = 𝑑 𝑒 𝑑 𝑤 (12) Onde, 𝑑 𝑒= diâmetro de influência de um dreno 𝑑 𝑤= diâmetro do dreno ou diâmetro equivalente de um geodreno com seção retangular. Th= Fator tempo para drenagem horizontal F(n)= função de densidade de drenos. 𝑐ℎ = coeficiente de adensamento horizontal, no presente trabalho foi assumido igual a Cv, portanto, não se considera um comportamento anisotópico. O processo de cravação faz com que seja produzido um efeito de amolgamento da argila (Smear), diminuindo a permeabilidade do solo no seu entorno e, consequentemente, reduza velocidade do adensamento e a eficiência dos geodrenos, além de aumentar o recalque total. No presente trabalho, serão consideradas umas dimensões externas do mandril de 6cmx12cm, segundo recomendação da norma DNER/PRO 381/98- “Projeto de Aterros Sobre Solos Moles Para Obras Viárias” do DNIT. Considerando este efeito, a equação (9), pode ser rescrita como: 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)+𝐹𝑠 ⁄ ] = 1 − 𝑒 − [ 8𝑇ℎ (ln(𝑛)−0,75)+(( 𝑘ℎ 𝑘´ℎ −1)ln( 𝑑 𝑠 𝑑 𝑤 )) ] (13) Onde, 𝑑 𝑚 = √ 4 𝜋 𝑤 ∗ 𝑙 (14)
  13. 13. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo W, l, dimensões do mandril. 𝑑 𝑠 = 2𝑑 𝑚 Kh= permeabilidade horizontal. K’h= permeabilidade horizontal da área afetada pelo amolgamento. Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6, segundo as recomendações apresentadas na Tabela 4,1 do livro “Aterros sobre solos moles projeto e desempenho”(2010). Na Figura 7, se apresenta a evolução dos recalques do aterro estudado no presente trabalho sem drenos espaçados cada 1,5 m e com drenos. Figura 7. Evolução dos recalques do um aterro com drenos espaçados cada 1,5 m e sem drenos. Da Figura 7, pode-se observar que os drenos aceleram o grau de adensamento para um tempo de 24 meses, a porcentagem média de adensamento nesse caso é de 88% e sem drenos é de 35%. No entanto, é necessária uma medida adicional para acelerar os recalques ainda mais e assim cumprir o tempo de construção da obra, uma proposta é o emprego de uma combinação do sistema de drenos com sobrecarga.
  14. 14. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo O efeito do amolgamento influência nos cálculos do recalque em função do tempo, na Tabela 9, se apresenta uma comparação dos graus de adensamento sem considerar e considerando o efeito do amolgamento. U(%) Tempo Sem amolgamento Com amolgamento 12 meses 81% 66% 24 meses 96% 88% Tabela 9. Influência do amolgamento nos cálculos Estes efeitos têm uma influência importante na determinação do espaçamento dos drenos, a hipótese de não considerar a influência do amolgamento no desempenho do dreno, pode levar a determinar espaçamentos maiores dos drenos. 2.3 Construção em etapas, sobrecarga e drenos verticais No caso de que o a terro não for estável para a construção numa etapa, uma solução é a construção em etapas, de esta maneira o solo vai ganhar resistência no tempo antes da colocação da camada seguinte. O procedimento para o cálculo dos recalques no tempo para o aterro construído em etapas é o seguinte:  Calcular o recalque total para a primeira altura do aterro, neste caso vai se implementar uma medida de sobrecarga, por tanto a altura total do aterro considerando sobrecarga vai ser de 8 m e na primeira etapa a altura é de 4 m. Neste caso é empregado o procedimento de aterro com submersão, haterro= constante e a equação de recalque para solo sobreadensado. ∆ℎ = ℎ 𝑎𝑟𝑔 [ 𝐶𝑠 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑚 𝜎′ 𝑣𝑜 ) + 𝐶𝑐 1 + 𝑒 𝑣𝑜 𝑙𝑜𝑔 ( 𝜎′ 𝑣𝑜 + Δ𝜎𝑣 𝜎′ 𝑣𝑚 )] (15) Onde, Δ𝜎𝑣 = (𝛾 𝑎𝑡ℎ1) + 𝛾′ 𝑎𝑡Δℎ (16) h1= trecho não submerso do aterro h2=Dh = trecho recalcado e submerso do aterro
  15. 15. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Os resultados do procedimento iterativo para o cálculo do recalque por submersão se apresentam na Tabela 10 e na Figura 8. Recalque por Submersão (m) H i (m) z(m) OCR w (%) It 1 It 2 It 3 It 4 It 5 It 6 It 7 1 0,5 15,00 197,5 0,26 0,20 0,21 0,21 0,21 0,21 0,21 1 1,5 5,00 192,5 0,23 0,18 0,19 0,19 0,19 0,19 0,19 1 2,5 3,00 187,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19 1 3,5 2,14 182,5 0,23 0,17 0,19 0,18 0,19 0,19 0,19 1 4,5 1,67 177,5 0,22 0,18 0,19 0,19 0,19 0,19 0,19 1 5,5 1,50 172,5 0,21 0,17 0,18 0,17 0,18 0,17 0,17 1 6,5 1,50 167,5 0,19 0,14 0,16 0,15 0,15 0,15 0,15 1 7,5 1,50 162,5 0,17 0,13 0,14 0,13 0,13 0,13 0,13 1 8,5 1,50 157,5 0,15 0,11 0,12 0,12 0,12 0,12 0,12 1 9,5 1,50 152,5 0,14 0,10 0,11 0,11 0,11 0,11 0,11 SOMA 2,02 1,55 1,67 1,64 1,65 1,64 1,65 Tabela 10. Recalques da primeira etapa do aterro Figura 8. Variação do recalque em função das iterações  Calcular a variação do recalque em função do tempo até o tempo t1, que corresponde ao início da segunda etapa, no caso do presente trabalho, 12 meses. Na Tabela 11, se apresentam os resultados da variação do recalque em função do tempo para a primeira etapa com uma
  16. 16. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo altura inicial de 4 m, durante os 12 primeiros meses do projeto. Recalques no tempo Uh(%) Th t(meses) Δh(t) 0,00 0,000 0 0,00 0,09 0,031 1 0,14 0,17 0,061 2 0,28 0,24 0,092 3 0,40 0,31 0,123 4 0,50 0,37 0,154 5 0,60 0,42 0,184 6 0,70 0,47 0,215 7 0,78 0,52 0,246 8 0,85 0,56 0,276 9 0,92 0,60 0,307 10 0,99 0,63 0,338 11 1,04 0,67 0,368 12 1,10 Tabela 11. Recalques da primeira etapa do aterro Dos resultados, se observa que para um tempo de 12 meses, uma medida combinada de sobrecarga e drenos espaçados cada 1,5 m considerando a hipótese do amolgamento que diminui a eficiência do sistema de drenos, foi atingido um grau de adensamento de U1=66%.  Calcular os recalques após o tempo t1, atualizando os valores de cada subcamada, segundo o procedimento a seguir: Calcular as novas espessuras da camada: ℎ 𝑎𝑟𝑔1 = ℎ 𝑎𝑟𝑔 − ∆ℎ1 𝑈1 (17) Onde: U1=U1(t1) t1= 12 meses para o projeto ∆ℎ1= recalque da primeira etapa no período inicial de 12 meses  Calcular as tensões efetivas no tempo t1, assumindo submersão: 𝜎𝑣1 ´ = 𝜎𝑣0 ´ + (ℎ1 − ∆ℎ1 ∗ 𝑈1)𝛾 𝑎𝑡 + ∆ℎ1 ∗ 𝑈1 ∗ 𝛾 𝑎𝑡 ´ (18)
  17. 17. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Calcular os recalques após a instalação da segunda camada, tendo em consideração que a argila passa a ser normalmente adensada, atualizando os índices de vazios: ∆ℎ𝑗+1 = ℎ 𝑎𝑟𝑔 ∗ 𝐶𝑐 (1 + 𝑒 𝑣1) ∗ 𝑙𝑜𝑔 ( 𝜎𝑣1 ´ + 𝛾 𝑎𝑡ℎ2 + 𝛾 𝑎𝑡 ´ ∆ℎ𝑗 𝜎𝑣1 ´ ) (19) Onde, ev1= nova relação de vazios correspondente a tensão 𝜎𝑣1 ´ 𝑒 𝑣1 = 𝑒0 − [𝐶𝑠 ∗ (log(𝜎𝑣𝑚 ´ ) − log(𝜎𝑣0 ´ ))] − [𝐶𝑐 ∗ (log(𝜎𝑣1 ´ ) − log(𝜎𝑣𝑚 ´ ))] (20) Na tabela 12 Os resultados dos cálculos seguindo o procedimento mencionado: Recalque por Submersão (m) σ´v1(KPa) σ´vo (KPa) σ´vm (KPa) eo h1 arg (m) e1 It 1 It 2 It 3 It 4 It 5 It 6 59,3 1,75 26,3 5,14 0,86 3,77 0,16 0,17 0,17 0,17 0,17 0,17 62,8 5,25 26,3 5,01 0,87 3,79 0,15 0,16 0,16 0,16 0,16 0,16 66,3 8,75 26,3 4,88 0,88 3,72 0,14 0,15 0,16 0,16 0,16 0,16 69,8 12,25 26,3 4,75 0,88 3,62 0,14 0,15 0,15 0,15 0,15 0,15 73,3 15,75 26,3 4,62 0,88 3,51 0,13 0,14 0,14 0,14 0,14 0,14 76,8 19,25 28,9 4,49 0,88 3,47 0,12 0,14 0,14 0,14 0,14 0,14 80,3 22,75 34,1 4,36 0,90 3,49 0,12 0,13 0,13 0,13 0,13 0,13 83,8 26,25 39,4 4,23 0,91 3,48 0,11 0,12 0,13 0,13 0,13 0,13 87,3 29,75 44,6 4,10 0,92 3,44 0,11 0,12 0,12 0,12 0,12 0,12 90,8 33,25 49,9 3,97 0,93 3,40 0,10 0,11 0,12 0,12 0,12 0,12 SOMA 1,28 1,41 1,42 1,42 1,49 1,49 Tabela 12. Recalques da segunda etapa do aterro Na Figura 9, se apresenta o comportamento dos recalques em função do tempo de construção (24 meses), para um aterro com sobrecarga total de 8 m, dividida em duas etapas de 4 m cada uma e com drenos verticais espaçados cada 1,5 m.
  18. 18. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 9. Evolução dos recalques com o tempo Desta maneira a espessura a retirar de aterro adicional aos 24 meses é 8,0m-2,47 m -3,0m=2,53 m. Esta solução, precisa levar em consideração o volume de terraplanagem quando se usa sobrecarga para a compensação do recalque total, portanto, é preciso avaliar outras alternativas e fazer uma comparação final de qual apresenta menores custos de execução.
  19. 19. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 3. ESTABILIDADE DO ATERRO NÃO REFORÇADO E REFORÇADO 3.1 Parâmetros de projeto Resistência não drenada da argila A resistência não drenada da argila pode ser definida em termos da razão de sobreadensamento (OCR) e da tensão efetiva vertical: 𝑆 𝑢 𝜎´ 𝑣𝑜 = 0,3 ∗ 𝑂𝐶𝑅0,85 (1) Na Tabela 1, se apresenta a variação da resistência não drenada para diferentes profundidades. H i z(m) OCR s'vo (Kpa) Su (Kpa) 1 0,1 75,0 0,4 4,1 1 0,5 15,0 1,8 5,2 1 1,0 7,5 3,5 5,8 1 1,5 5,0 5,3 6,2 1 2,0 3,8 7,0 6,5 1 2,5 3,0 8,8 6,7 1 3,0 2,5 10,5 6,9 1 3,5 2,1 12,3 7,0 1 4,0 1,9 14,0 7,2 1 4,5 1,7 15,8 7,3 1 5,0 1,5 17,5 7,4 1 5,5 1,5 19,3 8,2 1 6,0 1,5 21,0 8,9 1 6,5 1,5 22,8 9,6 1 7,0 1,5 24,5 10,4 1 7,5 1,5 26,3 11,1 1 8,0 1,5 28,0 11,9 1 8,5 1,5 29,8 12,6 1 9,0 1,5 31,5 13,3 1 9,5 1,5 33,3 14,1 1 10,0 1,5 35,0 14,8 Média 9,0 Tabela 1. Variação da resistência não drenada com a profundidade
  20. 20. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 1, se apresenta a variação da resistência não drenada em termos da profundidade, com o valor médio que será empregado no cálculo da altura crítica assumindo Su constante na camada de argila mole e o ajuste linear que será empregado para a obtenção da altura crítica mediante o método dos ábacos desenvolvidos por Pinto (1966) e nos cálculos da estabilidade global do aterro para superfícies não circulares. Figura 1. Variação da resistência não drenada com a profundidade e ajuste linear dos dados calculados. 3.2 Ruptura da fundação: Altura crítica do aterro Entendendo a ruptura da fundação como um problema de capacidade de carga, o aterro participa como um carregamento sem considerar sua resistência. No presente trabalho se empregam três metodologias no cálculo da altura crítica das quais será escolhida a que apresente o menor valor, este resultado será o parâmetro de entrada nos cálculos da estabilidade global do sistema aterro-solo mole.
  21. 21. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Equação derivada da expressão clássica de capacidade de carga ℎ 𝑐𝑟 = 𝑁𝑐 ∗ 𝑆 𝑢 𝛾 𝑎𝑡 (2) Onde, Nc – Fator de capacidade de carga, 5,14 para Su constante (Mandel e Saleçon, 1972). Na Figura 2, se apresenta a variação do fator Nc em termos da profundidade e da geometria do aterro, nesta primeira abordagem é assumida uma relação B/D <1,5 (Figura 2b). Figura2. Variação do fator Nc Substituindo os correspondentes valores na equação (2), a altura crítica do aterro é: ℎ 𝑐𝑟 = 5,14 ∗ 9,0 𝐾𝑁/𝑚² 17,5 𝐾𝑁/𝑚³ = 2,65 𝑚 A altura admissível para um fator de segurança de 1,3, admitindo uma condição temporária que implica também construção em etapas é: ℎ 𝑎𝑑𝑚 = ℎ 𝑐𝑟 𝐹. 𝑆 = 2,65 𝑚 1,5 = 2,04 𝑚
  22. 22. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Ábaco de Pinto A altura crítica pelo método do ábaco de Pinto para resistência crescente com a profundidade foi obtida para um F.S =1,3 a seguir se apresenta um resumo dos resultados: Tabela 2. Altura admissível Figura3. Ábaco de Pinto  Programa de computador Nesta abordagem, foram efetuadas análises de estabilidade assumindo superfície de ruptura circular e o aterro como uma sobrecarga a fim de observar qual altura é a necessária para atingir um fator de segurança de 1,3 e assim estabelecer uma comparação dos resultados. q = Nco.co Hcrit = Nco.co/gat co 3,68 Kpa c1 1,02 Kpa/m D 10,0 m H 3,0 m m 3,0 m d 9,0 m c1*D/co 2,8 c1*d/co 2,5 Nco 12,0 Hcr 2,5 m Had 1,9 m
  23. 23. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para as análises foi empregado o software SLIDE da Rocscience, os parâmetros de entrada são os seguintes: Figura4. Parâmetros de resistência da argila mole Para uma altura de 1 m, a sobrecarga equivalente do aterro é de 17,5 KN/m. Figura5. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 1 m de altura, método de Bishop. 3,07
  24. 24. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para uma altura de 2 m, a sobrecarga equivalente do aterro é de 35 KN/m. Figura6. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 2 m de altura, método de Bishop. Figura7. Análise de estabilidade para um aterro sem resistência e sobrecarga equivalente a 3 m de altura, método de Bishop. 1,54 1,03
  25. 25. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 3, se apresenta um resumo dos resultados empregando diferentes alturas e metodologias de análise de estabilidade. Altura (m) Sobrecarga equivalente (KN/m) F.S (Spencer) F.S (Bishop) 1,0 17,5 3,07 3,07 2,0 35,0 1,54 1,54 2,2 38,5 1,36 1,36 2,4 41,1 1,31 1,30 3,0 52,5 1,02 1,03 Tabela 3. Análise de estabilidade para um aterro sem resistência Para um F.S de 1,3, hcrit=2,4 m e Su=9,0 KPa, recalculando o fator Nc da equação (2), tem-se que: Nc=5,98 > 5,14 Que permite concluir que a metodologia das superfícies de ruptura circulares tem relação com uma solução de limite superior. Dos resultados das metodologias expostas, pode se observar que o método do ábaco de Pinto fornece um menor valor da altura admissível (hadm=1,9 m) em comparação com a metodologia da equação de capacidade carga e a metodologia das superfícies de ruptura circulares, nas quais foi assumida uma resistência não drenada média e constante ao longo da camada. Na Tabela 4, se apresenta um resumo dos resultados. Metodologia hadm (m) Equação de capacidade de carga 2,0 Ábaco de Pinto 1,9 Software de análise de estabilidade 2,4 Tabela 4. Altura admissível do aterro 3.3 Análise de estabilidade global do aterro sem reforço  Superfícies de ruptura não circulares Nesta análise foi desenvolvida uma planilha eletrônica que permite compreender o mecanismo de ruptura de uma superfície não circular. Este procedimento consiste em calcular o Fator de Segurança para varias superfícies calculando a resistência não drenada para
  26. 26. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo diferentes profundidades na base da superfície de ruptura não circular. Na Figura 8, se mostram as forças atuantes na análise pelo método de blocos. Figura 8. Método dos blocos ou cunhas A expressão geral no cálculo do Fator de Segurança pelo método de blocos é a seguinte: 𝐹. 𝑆 = 𝐸 𝑝 + 𝑆 + 𝑇 𝐸 𝑎𝑡 + 𝐸 𝑎𝑟𝑔 (3) Onde, Ep - Empuxo passivo na argila: 𝐸 𝑝 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧2 ∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (4) S - Força cisalhante mobilizada na argila mole: 𝑆 = 𝑆 𝑢 ∗ 𝐿 (5) T - Força correspondente ao reforço Eat – Empuxo ativo no aterro arenoso, sem considerar coesão: 𝐸 𝑎𝑡 = 1 2 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 2 ∗ 𝐾 𝑎𝑎𝑡 (6)
  27. 27. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Earg – Empuxo ativo na camada de argila: 𝐸 𝑎𝑟𝑔 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔 2 ∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾 𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (7) Foi efetuada uma análise variando a profundidade cada 0,5 m e a fim de efetuar uma verificação do procedimento “manual”, foram obtidos os fatores de segurança para superfícies de ruptura com geometrias como a apresentada na Figura 8 no software de análise de estabilidade SLIDE. Na Tabela 5, se apresenta o cálculo do empuxo ativo do aterro e na Tabela 6 se apresentam os resultados das análises para cada profundidade estudada e os fatores de segurança obtidos pelo software de análise de estabilidade. γat 17,5 KN/m3 Hat 1,94 m F´at 30 Graus Ka 0,333 Eat 10,99 KN/m γarg 13,5 KN/m3 m 3 Tabela 5. Empuxo ativo do aterro z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S (Blocos) F.S (Spencer) F.S (Morgenstern) 0,5 4,19 14,48 5,88 24,39 0 1,19 1,19 1,15 1,0 4,70 31,32 16,15 27,36 0 1,03 1,07 1,05 1,5 5,21 50,51 30,82 30,33 0 0,99 1,02 0,99 2,0 5,72 72,05 49,88 33,30 0 1,00 1,02 1,00 2,5 6,23 95,95 73,34 36,27 0 1,02 1,03 1,03 3,0 6,74 122,21 101,19 39,24 0 1,05 1,05 1,03 3,5 7,25 150,82 133,43 42,21 0 1,09 - - 4,0 7,76 181,78 170,08 45,18 0 1,12 - - 4,5 8,27 215,10 211,11 48,15 0 1,15 - - 5,0 8,78 250,78 256,55 51,12 0 1,18 - - 5,5 9,29 288,81 306,37 54,09 0 1,20 - - 6,0 9,80 329,20 360,59 57,06 0 1,23 - - 6,5 10,31 371,94 419,21 60,03 0 1,25 - - 7,0 10,82 417,03 482,22 63,00 0 1,27 - - 7,5 11,33 464,48 549,63 65,97 0 1,29 - - 8,0 11,84 514,29 621,43 68,94 0 1,31 - - 8,5 12,35 566,45 697,63 71,91 0 1,33 - - 9,0 12,86 620,96 778,22 74,88 0 1,35 - - 9,5 13,37 677,83 863,21 77,85 0 1,37 - - 10,0 13,88 737,06 952,59 80,81 0 1,38 - - Tabela 6. Fatores de segurança – Superfície de ruptura não circular
  28. 28. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo No caso da análise no software SLIDE, foi considerada a resistência variável da argila na profundidade, como apresentado na Figura 9. Figura 9. Parâmetros da argila mole – Superfície não circular Na Figura 10, se apresenta um resumo dos resultados das análises para superfícies não circulares com profundidades entre 0,5 m e 2,5 m. Figura 10. Análise de estabilidade pelo método de Spencer
  29. 29. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Foi feita uma verificação da resistência na base das superfícies de ruptura empregada no programa de análise de estabilidade, por exemplo, para uma fatia aleatória cuja base esta a 2,5 m de profundidade (ver Tabela 6), os resultados são os seguintes: Figura 11. Verificação da análise de estabilidade Dos resultados apresentados na Tabela 6, pode-se observar que os três métodos coincidem em termos do menor Fator de Segurança que corresponde à superfície cuja profundidade da base esta a 1,5 m. A vantagem do método em planilha eletrônica é a possibilidade de compreender o processo de cálculo do Fator de Segurança e a facilidade de controlar as variáveis a fim de efetuar possíveis análises de sensibilidade com parâmetros como o ângulo de atrito do aterro, a altura do mesmo e a possibilidade de incluir facilmente uma força T que corresponde ao reforço na base do aterro no contato direto com a argila mole sem aterro de conquista.  Superfícies de ruptura circulares Foi adotada uma abordagem com Su constante na profundidade (média aritmética, Figura 1) e Su variando na profundidade para um aterro com altura igual à hcrit.
  30. 30. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Figura 12, se apresenta o F.S obtido pelo método de Spencer para superfície de ruptura circular e Su constante na profundidade. Figura 12. Análise de estabilidade para superfície circular Na Figura 13, se apresenta o F.S obtido pelo método de Spencer para superfície de ruptura circular e Su variável na profundidade. Figura 13. Análise de estabilidade para superfície circular Na Tabela 7, se apresenta um resumo dos resultados obtidos no cálculo do F.S empregando as diferentes metodologias e hipóteses de cálculo. Pode-se observar que dependendo da hipótese de cálculo adotada o F.S apresenta variações, como se observa no caso de adotar um valor médio constante de Su na profundidade no caso de superfície de ruptura circular. Dos resultados das hipóteses restantes se conclui que o aterro precisa de uma medida de reforço que permita garantir a estabilidade durante a construção da 1,41 0,89
  31. 31. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo primeira etapa e observar como vai ser o comportamento do mesmo no momento da construção das seguintes etapas, considerando o ganho de resistência após o carregamento da argila mole. haterro = hcrit = 1,94 m Superfície de ruptura Método F.S Hipótese Não circular Planilha- Blocos 0,99 Su variável na profundidade Spencer 1,03 Morgenstern - Price 1,02 Circular Spencer 0,89 Su variável na profundidadeMorgenstern - Price 0,89 Spencer 1,41 Su constante na profundidadeMorgenstern - Price 1,41 Tabela 7. Resumo dos métodos de análise de estabilidade 3.4 Dimensionamento do reforço  Verificação da expulsão do solo mole Na figura 14, se observam as forças atuantes que devem ser consideradas no cálculo do F.S no caso da expulsão do solo mole. Figura 14. Diagrama de forças para verificação de expulsão de solo mole Onde, Pp-Empuxo passivo na argila: 𝑃𝑝 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧2 ∗ 𝐾 𝑝𝑎𝑟𝑔 + 2𝑆 𝑢 ∗ 𝑧 (8) hat L m
  32. 32. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Rb - Força cisalhante na base do bloco: 𝑅 𝑏 = 𝑆 𝑢 𝑏𝑎𝑠𝑒 ∗ 𝐿 (9) Rt - Força cisalhante no topo do bloco: 𝑅𝑡 = 𝑆 𝑢 𝑡𝑜𝑝𝑜 ∗ 𝐿 (10) Pa – Empuxo ativo na camada de argila mole: 𝐸 𝑎𝑟𝑔 = 1 2 𝛾𝑎𝑟𝑔 ∗ 𝑧 𝑎𝑟𝑔 2 ∗ 𝐾𝑎𝑎𝑟𝑔 − 2𝑆 𝑢 ∗ 𝑧 𝑎𝑟𝑔 ∗ √ 𝐾𝑎𝑎𝑟𝑔 + 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 ∗ 𝑧 𝑎𝑟𝑔 ∗ 𝐾𝑎𝑎𝑟𝑔 (11) O Fator de Segurança nesta análise é calculado como: 𝐹. 𝑆 𝑒𝑥𝑝𝑢𝑙𝑠ã𝑜 = 𝑅 𝑇 + 𝑅 𝑏 + 𝑃𝑝 𝑃𝑎 (12) zarg (m) Su f(z) (Kpa) Pa (KN/m) Pp (KN/m) Rt (KN/m) Rb (KN/m) F.S 0,0 3,7 - 21,4 - Topo da argila 0,5 4,2 14,5 5,9 21,4 24,4 3,57 1,0 4,7 31,3 16,1 21,4 27,4 2,07 1,5 5,2 50,5 30,8 21,4 30,3 1,63 2,0 5,7 72,1 49,9 21,4 33,3 1,45 2,5 6,2 96,0 73,3 21,4 36,3 1,37 3,0 6,7 122,2 101,2 21,4 39,2 1,32 3,5 7,2 150,8 133,4 21,4 42,2 1,31 4,0 7,8 181,8 170,1 21,4 45,2 1,30 4,5 8,3 215,1 211,1 21,4 48,1 1,30 5,0 8,8 250,8 256,5 21,4 51,1 1,31 5,5 9,3 288,8 306,4 21,4 54,1 1,32 6,0 9,8 329,2 360,6 21,4 57,1 1,33 6,5 10,3 371,9 419,2 21,4 60,0 1,35 7,0 10,8 417,0 482,2 21,4 63,0 1,36 7,5 11,3 464,5 549,6 21,4 66,0 1,37 8,0 11,8 514,3 621,4 21,4 68,9 1,38 8,5 12,3 566,4 697,6 21,4 71,9 1,40 9,0 12,9 621,0 778,2 21,4 74,9 1,41 9,5 13,4 677,8 863,2 21,4 77,8 1,42 10,0 13,9 737,1 952,6 21,4 80,8 1,43 Tabela 8. Análise da expulsão do solo mole
  33. 33. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 8, se observa que para a altura crítica previamente calculada (hcrit = 1,94 m) e uma inclinação do talude do aterro m=3, é possível atingir um F.S mínimo de 1,3 que é aceitável para uma condição temporária como é o caso da construção da primeira etapa do aterro. Para diferentes inclinações do talude do aterro (m na Figura 14), foi efetuada uma comparação a fim de analisar a influência deste parâmetro no fator de segurança no caso da expulsão do solo, como se mostra na Figura 15. Figura 14. Influência da inclinação do talude do aterro no F.Sexpulsão  Deformação y esforço permissível no reforço Para o presente trabalho, se considera a resistência não drenada da argila crescente com a profundidade, por tanto, é empregada a metodologia de Hinchberger e Rowe (Geosynthetic reinforced embankments on soft Clay foundations: predicting reinforcement strains at failure, 2003). Na Figura 15, se apresenta a geometria típica que será empregada nesta análise.
  34. 34. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 15. Geometria do aterro (Hinchberger e Rowe, 2003). Da Figura 15, Cuo corresponde a resistência não drenada do solo no contato aterro – argila mole e rc é o incremento da resistência na profundidade. Segundo a metodologia proposta, é preciso multiplicar a resistência do solo por um fator de redução equivalente ao Fator de Segurança do projeto e assim obter uns parâmetros reduzidos (Cuo* e rc*). Este fator parcial no presente trabalho será adotado como PF=(1/1,3)=0,77, por tanto, os parâmetros reduzidos serão Cuo*=PF x Cuo e rc*=PF x rc. No presente trabalho Cuo*=0,77 x 3,68 KPa =2,84 KPa;rc*= 0,77 x 1,02 KPa/m=0,79 KPa/m Definida a altura crítica do aterro (hcrit=1,94 m), e rc*= 0,79 KPa/m a deformação permissível do reforço (εa)segundo a Figura 16 é da ordem de 2,9 %. Figura 16. Ábaco para projeto (Hinchberger e Rowe, 2003).
  35. 35. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Uma vez definida a altura crítica do aterro e a deformação permissível admitindo resistência variável com a profundidade como se mostra na Figura 15, é necessário definir a altura que pode atingir o aterro perfeitamente reforçado (Perfectly reinforced embankment), como de apresenta no artigo de Rowe e Myllevile (1993). Novamente são adotados parâmetros de resistência reduzidos e se assume que o reforço é suficiente para fazer com que o aterro apresente comportamento de uma fundação rígida. A altura de colapso Hu, é calculada empregando equações de capacidade de suporte para sapatas rígidas adaptadas para a análise da carga e geometria do aterro. Se a altura requerida do projeto é maior do que a altura do aterro perfeitamente reforçado, o reforço por si só não vai oferecer uma adequada estabilidade e é preciso adotar medidas de estabilização adicionais (aterros leves, drenos verticais, construção por etapas, etc). Se a altura do projeto (haterro) é maior do que a altura crítica (hcrit) e menor do que Hu, é necessário escolher o reforço que vai fornecer a força estabilizante. As variáveis definidas no cálculo da altura de um aterro perfeitamente reforçado se apresentam na Figura 17. Figura 17. Variáveis no cálculo da altura do aterro perfeitamente reforçado (Rowe e Myllevile, 1993) O procedimento de cálculo de Hu, é o seguinte: Definir os parâmetros do solo multiplicados por um fator de redução o amplificação. Cuo*=0,77 x 3,68 KPa =2,84 KParc*= 0,77 x 1,02 KPa/m=0,79 KPa/m γat*=17,5KN/m3 *1,2=21KN/m3
  36. 36. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para H=3m e da Figura 17 e n definido como a inclinação da face do aterro, nesta análise n=3. ℎ = (2 + 𝜋)𝐶 𝑢𝑜 ∗ 𝛾 𝑎𝑡 ∗ = (2 + 𝜋)2,84 𝐾𝑃𝑎 20 𝐾𝑁 𝑚3⁄ = 0,7 𝑚 𝑏 = 𝐵 + 2𝑛(𝐻 − ℎ) = 10 + 2 ∗ 3(3 − 0,7) = 23,8 𝑚 𝑛ℎ = 3 ∗ 0,7 = 2,1 𝑚 𝜌𝑐 ∗ 𝑏 𝐶 𝑢𝑜 ∗ = 0,79 ∗ 23,8 2,84 = 6,61 Da Figura 18, d/b=0,23 Figura 18. Efeito da não homogeneidade na profundidade da zona de ruptura sob uma fundação rígida (Rowe e Myllevile, 1993). Portanto, d = 0,23*23,8 = 5,7 m. X=min(d;D)=min(5,7;10)=5,7 m >nh=2,1 m5 𝑞 𝑠 = 𝑛𝛾ℎ2 2𝑋 = 3 ∗ 20 ∗ 0,72 2 ∗ 5,7 = 2,6 𝐾𝑃𝑎 𝑏 𝐷 = 23,8 10 = 2,38 5 No caso de x<nh, pode-se consultar com maior detalhe o artigo de RoweandMylleville, 1993.
  37. 37. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Da Figura 19, Nc=12 Figura 19. Fator de capacidade de carga para solo não homogêneo (Rowe e Myllevile, 1993). 𝑞 𝑢 = 𝑁𝑐 𝑐 𝑢𝑜 ∗ + 𝑞 𝑠 = 12 ∗ 2,84 + 2,6 = 36,6 𝐾𝑃𝑎 𝑞 𝑎 = 𝛾[𝐵𝐻 + 𝑛(𝐻2 − ℎ2 )] 𝑏 = 20[10(3) + 3(32 − 0,72 )] 23,8 = 37,27 𝐾𝑃𝑎 𝑞 𝑢 𝑞 𝑎 = 0,98 Em vista de que a relação qu/qa é menor do que 1,0 a altura desejada para projeto não pode ser atingida empregando somente reforço, por tanto, é preciso complementar com outras medidas (aterro em etapas, colunas granulares, aterro leve, geodrenos, etc). A altura crítica que garante uma relação qu/qa=1,0 é Hu=2,5 m. Este valor representa a altura do aterro na primeira etapa. Empregando a metodologia de análise de blocos, foi calculada a força T que permita garantir um F.S de 1,3 para uma altura do aterro de 2,5 m. Na Tabela 9, se apresentam os resultados.
  38. 38. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) Tr (KN/m) F.S 0,5 4,19 19,37 5,88 31,42 95 3,52 1,0 4,70 41,10 16,15 35,25 95 2,47 1,5 5,21 65,18 30,82 39,07 95 1,98 2,0 5,72 91,62 49,88 42,90 95 1,71 2,5 6,23 120,41 73,34 46,72 95 1,55 3,0 6,74 151,56 101,19 50,55 95 1,45 3,5 7,25 185,07 133,43 54,37 95 1,39 4,0 7,76 220,92 170,08 58,20 95 1,35 4,5 8,27 259,14 211,11 62,02 95 1,33 5,0 8,78 299,70 256,55 65,85 95 1,31 5,5 9,29 342,63 306,37 69,67 95 1,31 6,0 9,80 387,91 360,59 73,50 95 1,30 6,5 10,31 435,54 419,21 77,32 95 1,30 7,0 10,82 485,53 482,22 81,15 95 1,31 7,5 11,33 537,87 549,63 84,97 95 1,31 8,0 11,84 592,57 621,43 88,80 95 1,32 8,5 12,35 649,62 697,63 92,62 95 1,33 9,0 12,86 709,03 778,22 96,45 95 1,33 9,5 13,37 770,79 863,21 100,27 95 1,34 10,0 13,88 834,91 952,59 104,10 95 1,35 Tabela 9. Força T que garante a estabilidade do aterro com uma altura de 2,5 m Definida a altura do aterro na primeira etapa, é preciso calcular um fator de correção α (Tabela 10), que é função da altura que vai ser atingida na primeira etapa e a altura critica do aterro: ℎ − ℎ 𝑐𝑟𝑖𝑡 𝐻 𝑢 − ℎ 𝑐𝑟𝑖𝑡 = 2,5 − 1,9 2,5 − 1,9 = 1,0 Tabela 10. Fator de correção do reforço (Hinchberger e Rowe, 2003) Por tanto, o módulo de rigidez mínimo do reforço é: 𝐽 𝑚𝑖𝑛 = 𝛼 𝑟 𝑇𝑟 𝜀 𝑎 = 2,0 ∗ 95 0,029 = 6550 𝐾𝑁/𝑚
  39. 39. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Para uma deformação admissível do reforço de 5%, tem-se que: 𝐽 𝑚𝑖𝑛 = 𝛼 𝑟 𝑇𝑟 𝜀 𝑎 = 2,0 ∗ 95 0,05 = 3800 𝐾𝑁/𝑚 Dos resultados se observa que a deformação admissível é um parâmetro muito sensível na definição do módulo de rigidez do reforço.  Comprimento do reforço Para a determinação do comprimento de ancoragem (Lanc), admitiu-se Fanc=1,5 e Ci=0,8, já que a geogrelha do projeto possui malha quadrada com abertura entre 20mm e 40mm, o valor de Lanc é: 𝐿 𝑎𝑛𝑐 = 𝐹𝑎𝑛𝑐 ∗ 𝑇 2 ∗ 𝐶𝑖 ∗ (𝑐 𝑎𝑡 + 𝛾 𝑎𝑡 ∗ 𝐻 ∗ 𝑡𝑎𝑛𝜙) = 1,5 ∗ 95 2 ∗ 0,8 ∗ (0 + 17,5 ∗ 2,5 ∗ 𝑡𝑎𝑛30) = 3,5 𝑚 Figura 20. Comprimento do reforço A partir da superficie de ruptura crítica que se apresenta na Figura 20, obtida pelo método de blocos cuja base está a 1,5 m de profundidade, o comprimento total do reforço é: 𝐿 = 3,5 + 8,6 = 12,1 𝑚
  40. 40. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 3.5 Ganho de resistência ao longo do tempo O aterro será construído em etapas para aproveitar o ganho de resistência à medida que o aterro é executado. Foi efetuada uma segunda análise em termos de recalques para 3 etapas cada 8 meses, cada uma com altura de 2,5 m. Os resultados destes cálculos se apresentam na Figura 21. Figura 20. Aterro em 3 etapas
  41. 41. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo O ganho de resistência será estimado segundo a equação proposta por Leroueil (1985): 𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡) = 0,25 ∗ (𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 ) ´ + 𝑈𝑥(𝑡) ∗ ∆𝜎𝑣𝑥 ´ ) Onde, 𝑆 𝑢 (𝑐𝑎𝑚𝑎𝑑𝑎 𝑖)(𝑡): Resistência não drenada da camada i ao final de um tempo t, devido ao adensamento da etapa x. 𝑈𝑥(𝑡): Porcentagem de dissipação de poropressão que ocorreu em um tempo t da etapa x. 𝜎𝑣(𝑥−1)(𝑐𝑎𝑚𝑎𝑑𝑎 𝑖 ) ´ : Tensão vertical efetiva inicial da camada i antes da construção da etapa x. ∆𝜎𝑣𝑥 ´ : Acréscimo de carga da etapa x. Na Tabela 11 e na Figura 21, se apresentam os valores da resistência não drenada das etapas 2 e 3. z arg (m) Su (Kpa) Etapa 2 Su (Kpa) Etapa 3 0,5 3,88 12,63 1,0 5,56 14,31 1,5 7,25 16,00 2,0 8,94 17,69 2,5 10,63 19,38 3,0 12,31 21,06 3,5 14,00 22,75 4,0 15,69 24,44 4,5 17,38 26,13 5,0 19,06 27,81 5,5 20,75 29,50 6,0 22,44 31,19 6,5 24,13 32,88 7,0 25,81 34,56 7,5 27,50 36,25 8,0 29,19 37,94 8,5 30,88 39,63 9,0 32,56 41,31 9,5 34,25 43,00 10,0 35,94 44,69 Média 19,91 28,66 Tabela 11, Figura 21. Variação de Su na profundidade para as etapas 2 e 3
  42. 42. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Assumindo os valores médios da resistência não drenada das etapas 2 e 3, os resultados para superfícies de ruptura circulares sem considerar a força fornecida pelo reforço são apresentados nas Figuras 21 e 22: Figura 22. Análise de estabilidade pelo método de Spencer para uma altura de aterro haterro=5,0 m – Etapa 2 e resistência média constante. Figura 23. Análise de estabilidade pelo método de Spencer para uma altura de aterro haterro=7,5 m – Etapa 3 e resistência média constante. 1,34 1,35
  43. 43. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo A fim de estabelecer uma comparação dos resultados das análises com superfícies não circulares, empregando o procedimento dos blocos e as mesmas condições das análises anteriores, foram obtidos os resultados que se apresentam na Tabela 12 e na Tabela 13. z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 19,91 25,53 21,60 298,65 0 3,25 1,0 19,91 54,43 46,57 298,65 0 2,71 1,5 19,91 86,71 74,92 298,65 0 2,34 2,0 19,91 122,36 106,64 298,65 0 2,08 2,5 19,91 161,39 141,74 298,65 0 1,88 3,0 19,91 203,79 180,21 298,65 0 1,73 3,5 19,91 249,57 222,06 298,65 0 1,61 4,0 19,91 298,72 267,28 298,65 0 1,52 4,5 19,91 351,25 315,88 298,65 0 1,45 5,0 19,91 407,15 367,85 298,65 0 1,39 5,5 19,91 466,43 423,20 298,65 0 1,34 6,0 19,91 529,08 481,92 298,65 0 1,30 6,5 19,91 595,11 544,02 298,65 0 1,26 7,0 19,91 664,51 609,49 298,65 0 1,23 7,5 19,91 737,29 678,34 298,65 0 1,21 8,0 19,91 813,44 750,56 298,65 0 1,18 8,5 19,91 892,97 826,16 298,65 0 1,16 9,0 19,91 975,87 905,13 298,65 0 1,15 9,5 19,91 1062,15 987,48 298,65 0 1,13 10,0 19,91 1151,80 1073,20 298,65 0 1,12 Tabela 12. Análise de estabilidade pelo método dos blocos para haterro= 5,0 m – Etapa 2 z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 28,66 38,65 30,35 644,85 0 3,33 1,0 28,66 80,68 64,07 644,85 0 2,90 1,5 28,66 126,08 101,17 644,85 0 2,57 2,0 28,66 174,86 141,64 644,85 0 2,32 2,5 28,66 227,01 185,49 644,85 0 2,12 3,0 28,66 282,54 232,71 644,85 0 1,96 3,5 28,66 341,44 283,31 644,85 0 1,84 4,0 28,66 403,72 337,28 644,85 0 1,73 4,5 28,66 469,37 394,63 644,85 0 1,64 5,0 28,66 538,40 455,35 644,85 0 1,57 5,5 28,66 610,80 519,45 644,85 0 1,50 6,0 28,66 686,58 586,92 644,85 0 1,45 6,5 28,66 765,73 657,77 644,85 0 1,40 7,0 28,66 848,26 731,99 644,85 0 1,36 7,5 28,66 934,16 809,59 644,85 0 1,32
  44. 44. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 8,0 28,66 1023,44 890,56 644,85 0 1,29 8,5 28,66 1116,09 974,91 644,85 0 1,27 9,0 28,66 1212,12 1062,63 644,85 0 1,24 9,5 28,66 1311,52 1153,73 644,85 0 1,22 10,0 28,66 1414,30 1248,20 644,85 0 1,20 Tabela 13. Análise de estabilidade pelo método dos blocos para haterro= 7,5 m – Etapa 3 Na Tabela 14 e na Tabela 15, se observam os resultados da metodologia dos blocos assumindo a influência da força T=95 KN/m definida no item 3,4. z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 19,91 25,53 21,60 298,65 95 4,22 1,0 19,91 54,43 46,57 298,65 95 3,46 1,5 19,91 86,71 74,92 298,65 95 2,94 2,0 19,91 122,36 106,64 298,65 95 2,56 2,5 19,91 161,39 141,74 298,65 95 2,29 3,0 19,91 203,79 180,21 298,65 95 2,07 3,5 19,91 249,57 222,06 298,65 95 1,91 4,0 19,91 298,72 267,28 298,65 95 1,78 4,5 19,91 351,25 315,88 298,65 95 1,67 5,0 19,91 407,15 367,85 298,65 95 1,59 5,5 19,91 466,43 423,20 298,65 95 1,51 6,0 19,91 529,08 481,92 298,65 95 1,45 6,5 19,91 595,11 544,02 298,65 95 1,40 7,0 19,91 664,51 609,49 298,65 95 1,36 7,5 19,91 737,29 678,34 298,65 95 1,32 8,0 19,91 813,44 750,56 298,65 95 1,29 8,5 19,91 892,97 826,16 298,65 95 1,26 9,0 19,91 975,87 905,13 298,65 95 1,24 9,5 19,91 1062,15 987,48 298,65 95 1,22 10,0 19,91 1151,80 1073,20 298,65 95 1,20 Tabela 14. Análise de estabilidade pelo método dos blocos para haterro= 5,0 m – Etapa 2 – Incluindo Treforço z arg (m) Su f(z) (Kpa) Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 28,66 38,65 30,35 644,85 95 3,80 1,0 28,66 80,68 64,07 644,85 95 3,28 1,5 28,66 126,08 101,17 644,85 95 2,90 2,0 28,66 174,86 141,64 644,85 95 2,60 2,5 28,66 227,01 185,49 644,85 95 2,37 3,0 28,66 282,54 232,71 644,85 95 2,18 3,5 28,66 341,44 283,31 644,85 95 2,02 4,0 28,66 403,72 337,28 644,85 95 1,90 4,5 28,66 469,37 394,63 644,85 95 1,79 5,0 28,66 538,40 455,35 644,85 95 1,70
  45. 45. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 5,5 28,66 610,80 519,45 644,85 95 1,63 6,0 28,66 686,58 586,92 644,85 95 1,56 6,5 28,66 765,73 657,77 644,85 95 1,50 7,0 28,66 848,26 731,99 644,85 95 1,45 7,5 28,66 934,16 809,59 644,85 95 1,41 8,0 28,66 1023,44 890,56 644,85 95 1,37 8,5 28,66 1116,09 974,91 644,85 95 1,34 9,0 28,66 1212,12 1062,63 644,85 95 1,31 9,5 28,66 1311,52 1153,73 644,85 95 1,28 10,0 28,66 1414,30 1248,20 644,85 95 1,26 Tabela 15. Análise de estabilidade pelo método dos blocos para haterro= 7,5 m – Etapa 3 – Incluindo Treforço Os resultados das análises permitem observar que os fatores de segurança obtidos para superfícies circulares são maiores do que os de superfícies não circulares. Além disso, a força resistente do reforço necessária para garantir a estabilidade da primeira etapa, não é suficiente nas seguintes etapas, portanto, é preciso empregar um reforço de maior módulo. Na Tabela 16, se apresenta um resumo dos resultados. F.S Etapa Espessura do Aterro (m) Circular Não Circular 1 (Reforçada) 2,5 1,64 1,30 2 5,0 1,34 1,12 3 7,5 1,35 1,20 Tabela 16. Fatores de segurança para superfícies circulares e não circulares REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. DOMINONI, C.M, Análise de estabilidade e compressibilidade de um aterro sobre solo mole no Porto de Suape, Região Metropolitana do Recife. UFRJ, Escola Politécnica, 2011. HINCHBERGER S.D; ROWE, R.K, Geosynthetic reinforced embankments on soft clay foundations: predicting reinforcement strains at failure. Geotextiles and Geomembranes v. 21, p 151-175, 2003. ROWE, R.K; MYLLEVILLE B.L, The stability of embankments reinforced with steel. Can, Geotech J.30, pp 768-180, 1993.
  46. 46. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 4. ATERRO SOBRE COLUNAS GRANULARES TRADICIONAIS O método das colunas granulares consiste em inserir no corpo do material compressível um material de melhor qualidade que permita aumentar a resistência do solo e diminuir os recalques, portanto, representam uma técnica de melhoramento da massa de solo (Figura 1). As colunas granulares representam um material com um mínimo de propriedades coesivas. As colunas granulares são construídas com material que possui uma rigidez entre 5 a 10 vezes a rigidez do solo ao redor delas. Estas colunas são de forma cilíndrica e são instaladas, analogamente ao caso de drenos verticais segundo um padrão definido por uma malha retangular ou triangular. Em termos das metodologias de construção, o procedimento consiste em criar uma cavidade para a inserção do material granular, a medida que a cavidade é preenchida, são empregados mecanismos vibratórios que permitem densificar os materiais granulares. Dependendo da técnica de instalação as o grau de alteração das propriedades é variável. Figura 1. Técnica de execução de colunas granulares 4.1 Princípios de projeto e análise Definir o diâmetro das colunas e o espaçamento, para este fim, foram empregadas recomendações da literatura (Almeida e Marques, 2010, pág. 173), definindo assim: Espaçamento, l = 2,0 m; Diâmetro, d = 0,8 m
  47. 47. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Calcular o diâmetro equivalente, que depende da distribuição das colunas em malha retangular ou quadrada, para o presente trabalho foi adotada uma malha triangular 𝑑 𝑒 = 1,05 ∗ 𝑙 = 1,05 ∗ 2 = 2,10 𝑚  Área da coluna granular 𝐴 𝑐 = 𝜋 ∗ 𝑑2 4 = 𝜋 ∗ 0,82 4 = 0,5 𝑚2  Área total da célula: 𝐴 = 𝜋 ∗ 𝑑 𝑒 2 4 = 𝜋 ∗ 2,12 4 = 3,46 𝑚2  Área total de solo mole 𝐴 𝑠 = 𝐴 − 𝐴 𝑐 = 3,46 − 0,5 = 2,96 𝑚2  Razão de substituição 𝑎 𝑐 = 𝐴 𝑐 𝐴 = 0,5 3,46 = 0,15  Razão de existencia de solo mole 𝑎 𝑠 = 𝐴 𝑠 𝐴 = 2,96 3,46 = 0,85  Definição do fator de concentração de tensões Segundo a recomendação de Han (2010), é adotada no presente trabalho uma relação entre os módulos da coluna e da argila mole Ec/Es=20, portanto empregando a equação de Han (2010), tem-se que: 𝑛 = ∆𝜎𝑣𝑐 ∆𝜎𝑣𝑠 = 1 + 0,217 ( 𝐸𝑐 𝐸𝑠 − 1) = 1 + 0,217(20 − 1) ≅ 5 Na Figura 2, se observa como é esta distribuição de tensões na coluna e no solo.
  48. 48. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 2. Fator de concentração de tensões  Acréscimo de tensão vertical média Fazendo equilíbrio de forças na célula unitária da Figura 2, o incremento de tensão vertical na coluna e no solo é calculado como: ∆σvs = ∆𝜎 [1 + (𝑛 − 1)𝑎 𝑐] = 17,5 ∗ 3 [1 + (5 − 1) ∗ 0,15] = 32,81 𝐾𝑃𝑎 ∆σvc = 𝑛 ∗ ∆𝜎 [1 + (𝑛 − 1)𝑎 𝑐] = 5 ∗ 17,5 ∗ 3 [1 + (5 − 1) ∗ 0,15] = 164,06 𝐾𝑃𝑎 Onde, ∆𝜎 = acréscimo de tensão vertical média igual ao peso específico do aterro vezes a altura do aterro. Desta maneira no cálculo do fator de redução de recalques, deve ser empregado o recalque calculado por submersão.  Fator de redução de recalques O fator de redução de recalques está definido como: 𝛽 = ∆ℎ ∆ℎ 𝑠 Δσvc ΔσvsΔσvs Δσ
  49. 49. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, ∆ℎ= recalque do solo nao melhorado ∆ℎ 𝑠= recalque do solo tratado A questão esta em calcular o fator β, a primeira abordagem é conhecida como homogeneização que descreve um sistema perfeitamente elástico onde as tensões que recebe o solo e a coluna granular estão em proporção direta com suas rigidezes (Figura 3). Figura 3. Cálculo do fator β A equação de cálculo empregando esta abordagem é: 𝛽 = 1 + (𝑛 − 1)𝑎 𝑐 = 1 + (5 − 1) ∗ 0,15 = 1,6 O método de Priebe (1995) é outra abordagem do problema que considera a coluna granular incompressível com comportamento plástico e o solo apresentando comportamento elástico. Outra hipótese de este método é que os recalques do solo e da coluna são iguais. A seguinte equação que resume as hipóteses do método de Priebe (1995) é a seguinte: 𝛽 = 1 + 𝑎 𝑐 [ (5 − 𝑎 𝑐) [4𝐾𝑎𝑐(1 − 𝑎 𝑐)] − 1] = 1 + 0,15 [ (5 − 0,15) [4 ∗ 0,22(1 − 0,15)] − 1] = 1,8 Onde, 𝐾𝑎𝑐 = 𝑡𝑎𝑛2 (45 − ∅ 𝑐 2 ) = 𝑡𝑎𝑛2 (45 − 40 2 ) = 0,22 Assumindo um ângulo de atrito de o solo granular de 40 graus, segundo as recomendações da literatura (Almeida e Marques, 2010, pág. 173). Δσ Δσ
  50. 50. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Por tanto, conhecido o recalque sem colunas do capítulo 16 do presente trabalho, é possível estimar o recalque com colunas: ∆ℎ 𝑐 = ∆ℎ 1,8 = 1,19 1,8 = 0,66 4.2 Análises de estabilidade Neste caso é necessário calcular os parâmetros do solo misturado com o material granular (cm, φm, γm), que são calculados em função dos parâmetros de resistência da argila mole (cs=Su, φs=0) e da coluna granular (φc) e do parâmetro m, que é a parcela de carga suportada pela coluna. A brita utilizada nas análises do presente trabalho, possui as seguintes propriedades: Ângulo de atrito φc =40°. Peso específico γ =18,0 KN/m3 Coesão c=0,0 KPa Os valores ponderados pelo método de Priebe (1978, 1975), são calculados da seguinte maneira: 𝑡𝑎𝑛∅ 𝑚 = 𝑚𝑡𝑎𝑛∅ 𝑐 + (1 − 𝑚)𝑡𝑎𝑛∅ 𝑠 = 0,47 tan(40) + (1 − 0,47) tan(0) = 0,39 ∅ 𝑚 = 21,3° 𝑐 𝑚 = (1 − 𝑚)𝑐 𝑠 = (1 − 0,47) ∗ 9,01 = 4,78 𝐾𝑃𝑎 Cs média – Capitulo 3.1 𝛾 𝑚 = 𝛾𝑐 𝑎 𝑐 + 𝛾𝑠(1 − 𝑎 𝑐) = 18 ∗ 0,15 + 13,5(1 − 0,15) = 14,18 𝐾𝑁 𝑚3 Onde, 𝑚 = 𝑎 𝑐 𝑛 [1 + (𝑛 − 1)𝑎 𝑐] = 0,15 ∗ 5 [1 + (5 − 1)0,15] = 0,47 Para as diferentes profundidades a resistência do solo, e a análise de estabilidade empregando o valor de m, o ângulo de atrito calculado, a coesão ponderada e uma altura do aterro Haterro = 3,0 m, se apresentam na Tabela 1. 6 Calculado assumindo submersão do aterro, um cálculo empregando cota fixa implicaria que a altura do aterro é variável e, portanto o acréscimo de tensão vertical média também seria variável no tempo.
  51. 51. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo z arg (m) Su f(z) (Kpa) m Cm Фm γm Earg KN/m (ativo) Earg KN/m (passivo) S (KN/m) T (KN/m) F.S 0,5 4,19 0,47 1,97 21,30 14,18 11,74 12,82 37,71 0 1,33 1,0 4,70 0,47 2,21 21,30 14,18 24,81 35,43 42,30 0 1,52 1,5 5,21 0,47 2,45 21,30 14,18 39,21 67,82 46,89 0 1,75 2,0 5,72 0,47 2,69 21,30 14,18 54,94 110,00 51,48 0 1,99 2,5 6,23 0,47 2,93 21,30 14,18 72,00 161,97 56,07 0 2,22 3,0 6,74 0,47 3,17 21,30 14,18 90,38 223,73 60,66 0 2,44 3,5 7,25 0,47 3,41 21,30 14,18 110,09 295,27 65,25 0 2,64 4,0 7,76 0,47 3,65 21,30 14,18 131,13 376,60 69,84 0 2,84 4,5 8,27 0,47 3,89 21,30 14,18 153,50 467,72 74,43 0 3,02 5,0 8,78 0,47 4,13 21,30 14,18 177,20 568,63 79,02 0 3,18 5,5 9,29 0,47 4,37 21,30 14,18 202,22 679,32 83,61 0 3,34 6,0 9,80 0,47 4,61 21,30 14,18 228,58 799,80 88,20 0 3,48 6,5 10,31 0,47 4,85 21,30 14,18 256,26 930,06 92,79 0 3,62 7,0 10,82 0,47 5,09 21,30 14,18 285,27 1070,11 97,38 0 3,75 7,5 11,33 0,47 5,32 21,30 14,18 315,60 1219,95 101,97 0 3,87 8,0 11,84 0,47 5,56 21,30 14,18 347,27 1379,58 106,56 0 3,98 8,5 12,35 0,47 5,80 21,30 14,18 380,26 1549,00 111,15 0 4,08 9,0 12,86 0,47 6,04 21,30 14,18 414,58 1728,20 115,74 0 4,18 9,5 13,37 0,47 6,28 21,30 14,18 450,23 1917,19 120,33 0 4,28 10,0 13,88 0,47 6,52 21,30 14,18 487,21 2115,96 124,92 0 4,36 Tabela 1. Análise de estabilidade pelo método dos blocos empregando parâmetros ponderados pelo método de Priebe (1878, 1995). Na Figura 4, se apresenta a análise de estabilidade para o aterro com uma altura Haterro = 3,0 m definindo a região das colunas como um novo material com propriedades definidas pelos parâmetros ponderados Figura 4, assumindo uma coesão equivalente ao valor médio dos Cm da Tabela 1. Figura 4. Parametros do material composto. SLIDE
  52. 52. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 5. Análise de estabilidade pelo método de Janbu Na análise de estabilidade da Figura 5, foi assumindo um aterro com resistência nula a fim de adotar um enfoque conservativo. Dos resultados se observa que as colunas de brita melhoraram as condições de resistência do solo de fundação. Na Tabela 2, se apresenta um resumo dos resultados das análises. Altura do aterro = 3 m Método F.S min Blocos 1.33 Janbu 1.42 4,3 Velocidade de recalques Considerando a coluna granular como um dreno e empregando a equação geral de cálculo do grau de adensamento no tempo e adotando os parâmetros de entrada apresentados a seguir, foi possível obter a curva apresentada na Figura 6 do recalque em função do tempo a fim de observar o efeito que tem as colunas granulares.
  53. 53. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Parâmetros de entrada: de=2,10 m dw=0,8 m (diâmetro do dreno) ds=1,6dw (área afetada pelo amolgamento) Espaçamento=2,0 m. 𝑈ℎ = 1 − 𝑒 −[ 8𝑇ℎ 𝐹(𝑛)+𝐹𝑠 ⁄ ] = 1 − 𝑒 − [ 8𝑇ℎ (ln(𝑛)−0,75)+(( 𝑘ℎ 𝑘´ℎ −1)ln( 𝑑 𝑠 𝑑 𝑤 )) ] Onde, Kh= permeabilidade horizontal. K’h= permeabilidade horizontal da área afetada pelo amolgamento. Foram adotadas uma relação Kh/K’h=2,5 e uma relação ds/dm=1,6, segundo as recomendações apresentadas na Tabela 4,1 do livro “Aterros sobre solos moles projeto e desempenho” (2010). Figura 5. Análise comparativa dos recalques sem drenos, com colunas granulares espaçadas cada 2 m e drenos espaçados cada 1,5 m. Dos resultados apresentados na Figura 6, se observa que as colunas granulares representam uma solução que além de fornecer uma maior
  54. 54. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo resistência ao solo, permite acelerar os recalques por adensamento. REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. PASHOALIN, J.A; VANZOLINI G; KENHITI D. Análise de estabilidade de um aterro apoiado sobre estacas de brita executadas em solo mole. BUSCHMEIER B; MASSE FREDERIC. Discusión sobre las diferencias de la metodologia de diseno entre las inclusiones granulares y las inclusiones rígidas. XXVI Reunión de Mecánica de Suelos e Ingeniería Geotécnica, 2012. 5. ATERRO ESTRUTURADO COM PLATAFORMA DE GEOSSINTÉTICO Na atualidade existe uma grande tendência para a utilização de aterros estaqueados como técnica para transferir a carga às camadas de solo mais resistente, porque esta técnica apresenta grande adaptabilidade a terrenos difíceis, obras de espaço reduzido e menores tempos de execução. Em regiões de solo mole com pouca espessura, é possível adotar soluções como a remoção e substituição por um material com melhores propriedades. Em outras condições é possível empregar bermas, drenos e reforço. Mas em situações nas quais as áreas de empréstimos estão a grandes distâncias ou existem restrições de espaço para a utilização de bermas ou o cronograma exige a construção do aterro em tempos reduzidos, uma solução viável seria a utilização de aterros estaqueados (Figura 1).
  55. 55. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Figura 1. Aterro Estruturado x Aterro sobre drenos e reforço (Almeida e Marques, 2004). Nos aterros estruturados, as estacas suportam o peso do aterro e transmitem a carga para uma camada mais resistente. As estacas são menos deformáveis do que o solo, portanto, ocorrem recalques diferenciais dentro do corpo do aterro e este movimento da origem ao arqueamento que aumenta a carga nas estacas e alivia a tensão atuante no solo mole. Os capitéis permitem aumentar a área de influência das estacas e a incorporação de reforço de geossintético permite o uso de estacas mais espaçadas e a transmissão das cargas para as estacas que não foram transmitidas pelo arqueamento (Figura 2). Figura 2. Deformações num aterro estruturado sobre solo mole (Hartmann, 2012).
  56. 56. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo 5.1 Dimensionamento do aterro estruturado Para o presente trabalho, foi definida a geometria do problema da seguinte maneira (Figura 3): Espaçamento, s= 2,5 m Largura de capitel, b= 1,0 m Altura de aterro, hat= 3,0 m Figura 3. Capiteis quadrados em malha quadrada (Almeida e Marques, 2010). Verificando os critérios mencionados no livro Aterro sobre solos moles, projeto e desempenho, pag.166(Almeida e Marques, 2010), tem-se que: (s-b)= (2,5-1,0) =1,5 m →(s-b)≤3,0 m b/s=1,0/2,5=0,4 → b/s≥0,15 (s-b)= (2,5-1,0) =1,5 m → (s-b)≤1,4hat (s-b)*= (1,5²+1,5²)0,5=2,12 m → (s-b)* ≤ hat Para hat≥0,66(s-b)*, Φat=30° A altura crítica do aterro, acima da qual os recalques diferenciais são nulos, foi calculada com a seguinte expressão (McGuire ET al. 2012): hc> 1,15s* + 1,44b Onde, s*=(s-b)*/2 = 2,12/2 = 1,06 m
  57. 57. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Substituindo os valores: 1,15(1,06)+1,44(1)= 2,66 m ok Esta altura crítica é menor do que a altura do aterro (hat=3,0m), portanto, o aterro não apresentaria recalques diferenciais. 5.2 Tensões verticais atuantes no solo A fim de avaliar as tensões atuantes no solo mole e assim definir os esforços de tração no reforço, foram empregadas diferentes metodologias de cálculo.  Terzaghi, (1943) A equação geral, baseada no efeito do arqueamento nos solos é a seguinte: Onde, Cat = coesão do aterro (KN/m²) Φat= ângulo de atrito interno do aterro Kaat= coeficiente de empuxo ativo no aterro S-b=distância entre capitéis (m) γat= peso específico do material de aterro (KN/m³) q= sobrecarga uniforme na superfície por unidade de área (KN/m²), no presente trabalho equivale a zero. hat= altura do aterro Substituindo os valores na equação, para q=o KN/m² e c=o KN/m², tem-se que: 𝜎𝑣 = (2,5 − 1,0) ∗ 17,5 𝑡𝑎𝑛2 (45 − 30 2 ) tan(30) (1 − 𝑒 −𝑡𝑎𝑛2(45− 30 2 ) tan(30)∗ 3 2,5−1,0) = 43,57 𝐾𝑃𝑎
  58. 58. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Russell e Pierpoint, (1997) Este método não considera a reação do solo mole subjacente ao geossintético, que é uma hipótese adequada no caso de argilas muito moles. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 (𝛾 𝑎𝑡ℎ 𝑎𝑡 + 𝑞) = 𝑠2 − 𝑏2 4ℎ 𝑎𝑡 ∗ 𝑏 ∗ 𝐾𝑎𝑎𝑡 ∗ 𝑡𝑔∅ 𝑎𝑡 {1 − 𝑒 −4ℎ 𝑎𝑡∗𝑏∗𝐾 𝑎𝑎𝑡∗𝑡𝑔∅ 𝑎𝑡 𝑠2−𝑏2 } As variáveis desta equação já foram definidas anteriormente, substituindo, tem-se que: 𝜎𝑣 (17,5 ∗ 3,0 + 0) = 2,5² − 1,02 4 ∗ 3 ∗ 1 ∗ 𝑡𝑎𝑛2 (45 − 30 2 ) ∗ 𝑡𝑔(30) {1 − 𝑒 −4∗3∗1∗𝑡𝑎𝑛2(45− 30 2 )∗𝑡𝑔(30) 2,52−1,02 } = 0,81 → 𝜎𝑣 = 0,81 ∗ 17,5 ∗ 3 = 42,53 𝐾𝑃𝑎  Abusharar et al., (2009) Este método foi proposto para análise de aterros granulares sobre solos moles, suportados por uma malha retangular de estacas, considerando a inclusão de geossintético. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 = 𝛾𝑠(𝑠 − 𝑎)(𝐾 𝑝 − 1) 2(𝐾 𝑝 − 2) + ( 𝑠 − 𝑎 𝑠 ) 𝐾 𝑝−1 [𝑞 + 𝛾𝑠 𝐻 𝑎𝑡 − 𝛾𝑠 ∗ 𝑠 2 (1 + 1 𝐾 𝑝 − 2 )] Onde, Kp = coeficiente de empuxo passivo no aterro γs = peso específico do solo mole Substituindo na equação: 𝜎𝑣 = 13,5(2,5 − 1)(𝑡𝑎𝑛2 (45 + 30 2 ) − 1) 2(𝑡𝑎𝑛2(45 + 30 2 ) − 2) + ( 2,5 − 1 2,5 ) 𝑡𝑎𝑛2(45+ 30 2 )−1 [0 + 13,5 ∗ 3 − 13,5 ∗ 2,5 2 (1 + 1 𝑡𝑎𝑛2(45 + 30 2 ) − 2 )] → 𝜎𝑣 = 32,4 𝐾𝑃𝑎
  59. 59. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo  Low et al., (1994) Low et al., (1994) utilizaram para sua análise um arco semicilíndrico bidimensional com espessura igual à metade da dimensão do capitel. A equação para o cálculo da tensão atuante na base do aterro é a seguinte: 𝜎𝑣 𝛾 𝑎𝑡 ∗ ℎ 𝑎𝑡 = (𝐾 𝑝 − 1)(1 − 𝛿)𝑠 2ℎ 𝑎𝑡(𝐾 𝑝 − 2) + (1 − 𝛿) 𝐾 𝑝−1 [1 − 𝑠 2ℎ 𝑎𝑡 − 𝑠 2ℎ 𝑎𝑡(𝐾 𝑝 − 2) ] Onde, δ=b/s – Relação largura do capitel/espaçamento das estacas Substituindo na equação: 𝜎𝑣 17,5 ∗ 3 = (𝑡𝑎𝑛 2 (45 + 30 2 ) − 1) (1 − 1 2,5 ) 𝑠 2 ∗ 3 ∗ (𝑡𝑎𝑛2 (45 + 30 2 ) − 2) + (1 − 1 2,5 )𝑡𝑎𝑛 2 (45+ 30 2 )−1 [1 − 2,5 2 ∗ 3 − 2,5 2 ∗ 3(𝑡𝑎𝑛2 (45 + 30 2 ) − 2) ] → 𝜎𝑣 = 29,4 𝐾𝑃𝑎  Método de Kempfert et al., (2004) Este método é baseado na teoria da elasticidade, para um ângulo de atrito do material do aterro Fat=30º, foi empregado o ábaco da Figura 4 a fim de calcular a tensão atuante na base do aterro. Figura 4. Cálculo de tensões verticais sobre o reforço (Adaptado de Kempfert et al., 2004)
  60. 60. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, Hat/s=3/2,5=1,2 b/s=1/2,5=0,4 𝜎𝑣 𝛾 𝑎𝑡 ∗ 𝐻 𝑎𝑡 + 𝑞 ≅ 0,30 → 𝜎𝑣 ≅ 17,5 ∗ 3 ∗ 0,3 ≅ 15,75 𝐾𝑃𝑎 Na tabela 1, se apresenta um resumo dos resultados obtidos. Metodologia 𝜎𝑣 (KPa) Terzaghi, (1943) 43,57 Russell e Pierpoint, (1997) 42,53 Abusharar et al., (2009) 32,4 Low et al., (1994) 29,4 Kempfert et al., (2004) 15,75 Das tensões calculadas empregando as diferentes metodologias, foi escolhida a calculada pelo método de Terzaghi, em vista de que é a que apresenta um maior valor. 5.3 Cálculo do esforço de tração atuante no reforço Os métodos que empregados no presente trabalho, serão apresentados em função do valor de módulo de reforço J do geossintético e será apresentado um cálculo efetuado em função da deformação específica (ε), a fim de efetuar uma comparação entre metodologias.  Método da parábola – BS 8006 (BSI,1995) Neste método se calcula a tensão no reforço T, admitindo-se que a deformação do reforço no vão (s-b) tem forma parabólica. O valor de T é dado pela seguinte equação em função do módulo de reforço que para o presente trabalho é J=3000 KN/m: 96𝑇3 − 6𝐾𝑔 2 𝑇 − 𝐾𝑔 2 𝐽 = 0 96T³-314039T-157019468=0
  61. 61. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, 𝐾𝑔 = 𝜎𝑣(𝑠2 − 𝑏2 ) 𝑏 S =2,5 m; b =1,0 m definidos anteriormente. 𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi) Resolvendo, tem-se que: T=127,06 KN/m  Método da membrana tensionada (Collin, 2004) Conhecendo-se o valor do módulo J, o valor de T é definido pela seguinte equação: 2√2 ∗ 𝑇 ∗ 𝐽 𝜎𝑣(𝑠 − 𝑏) 𝑠𝑒𝑛−1 [ 𝜎𝑣(𝑠 − 𝑏) 2√2 ∗ 𝑇 ] − 𝑇 − 𝐽 = 0 129,82*T*sen-1(23,11/T) –T –J =0 Onde, S =2,5 m; b =1,0 m definidos anteriormente. 𝜎𝑣=43,57 KPa (Calculado pelo método de Terzaghi) J=3000 KN/m Resolvendo, tem-se que: T=65,63 KN/m  Método de Kempfert et al., (2004) Este método apresenta um ábaco adimensional que considera a contribuição favorável da reação do solo abaixo do reforço, mas isto não é recomendável no caso de argilas muito moles. Portanto, não considerar esta contribuição, se assume que o módulo de reação da argila mole no contato aterro-solo (subgrade reaction), seja zero, ks,k=0. Sequência de cálculo 1. Com σv= σzo, calcula-se Fk, conforme abaixo:
  62. 62. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Onde, d = 1,0 m - Largura do capitel Substituindo, 𝐴𝑙 = 1 2 ∗ (1,52) − 12 2 = 2,63 𝑚2 𝐹𝑘 = 2,63 ∗ 43,57 = 114,39 𝐾𝑁 2. Com Fk, Jk= 3000KN/m e a largura do capitel b = 1,0 m determina-se ε e f/lw no ábaco. 𝐹𝑘/𝑏 𝐽 𝑘 = 114,39/1,0 3000 = 0,038 ks,k=0 Figura 4. Ábaco de cálculo (Kempfert et al., 2004) 3. Com ε ≈ 5,2 % do ábaco, determina-se então a tração no reforço: T=ε*Jk=0,052*3000=156 KN/m 4. Com Lw = distância entre capitéis (s-b) e f/lw ≈ 0,15 (do ábaco), estima-se o recalque f = deformação vertical da geogrelha. 𝑓 𝑙 𝑤 = 0,15 → 𝑓 = 0,15 ∗ (2,5 − 1,0) = 0,225 𝑚
  63. 63. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Na Tabela 2, se apresenta uma lista das deformações máximas do reforço no caso de aterros estruturados com geossintético a partir de diversas fontes. Desta lista, se observa que as deformações estão entre 3% e 6%. O valor obtido pelo método de Kempfert ε ≈ 5,2 % está dentro da recomendação da BS8006-1:2010. Tabela 2. Deformações máximas do reforço na base de aterros estruturados (Lawson C.R)  Calcular T a partir da deformação No método da BS8006, se apresentam as seguintes equações que permitem o cálculo da Tensão no geossintético em função da deformação vertical da geogrelha: 𝜀 = 8𝑤 𝑚𝑎𝑥 2 3(𝑠 − 𝑏)2 = 8 ∗ 0,225² 3 ∗ (2,5 − 1,0)² = 6% Onde, Wmax= deformação vertical da geogrelha, foi assumida a calculada pelo método de Kempfert. 𝑇 = 𝑊𝑡(𝑠 − 𝑏) 2𝑏 √1 + 1 6𝜀 = 43,57(2,5 − 1,0) 2 ∗ 1,0 √1 + 1 6 ∗ 0,06 = 67,02 𝐾𝑁/𝑚 Onde, Wt = carga distribuída por unidade de cumprimento, Wt = σv*b Da anterior equação, uma diminuição da deformação de por exemplo, 6% para 3%, faz com que a carga no reforço seja aumentada em um 30%, portanto, é importante uma avaliação adequada da deformação do reforço. Na Tabela 3, se apresenta um resumo dos resultados obtidos.
  64. 64. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo Metodologia T (KN/m) Método da parábola – BS 8006 127,06 Método da membrana tensionada 65,63 Método de Kempfert et al 156,00 T a partir da deformação 67,02 5.4 Análise de estabilidade do aterro Finalmente, foi efetuada uma análise de estabilidade interna do aterro, sem considerar a argila mole a fim de determinar a inclinação do talude. Os resultados e as hipóteses adotadas se apresentam a seguir, o talude adotado foi de 2,5:1. Figura 5. Análise de estabilidade do aterro sem considerar a resistência da argila (impenetrável) – Método de Bishop. Na figura 5, se observa que as superfícies com menor Fator de Segurança são aquelas que estão perto da face do talude, o mínimo F.S calculado pelo método de Bishop, foi de 1,44. 6. CONSIDERAÇÕES FINAIS No presente trabalho, foram abordadas as metodologias de cálculo da magnitude dos recalques e sua variação no tempo, num problema de solos moles, incluindo a estimativa do recalque por compressão secundária. Foram efetuados cálculos empregando técnicas de aceleração de recalques (geodrenos e sobrecarga) a fim de conhecer
  65. 65. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo os efeitos destas técnicas no comportamento em termos de recalques do aterro. Efetivamente uma combinação de sobrecarga com geodrenos adequadamente dimensionados com base em recomendações provenientes da experiência e de fontes bibliográficas, faz com que possa ser atingido o recalque (primário + secundário), no entanto, é importante levar em consideração os volumes de terraplanagem. No capítulo 3, foi abordado o problema da estabilidade do aterro não reforçado e reforçado, incluindo a construção em etapas. A ruptura global foi avaliada tendo em consideração superfícies circulares e não circulares. O método dos blocos resulta ser de fácil uso em vista de que é facilmente implantado em uma planilha de cálculo e os resultados foram verificados com cálculos efetuados em um software de análise de estabilidade. Em geral, os fatores de segurança obtidos pelo método dos blocos resultaram menores do que os calculados assumindo superfícies circulares. No capítulo 4, foi a abordada a alternativa de colunas granulares tradicionais definindo a geometria e distribuição destes elementos empregando as recomendações da literatura. Dois aspectos importantes desta alternativa nos resultados dos cálculos efetuados foram: o ganho de resistência do solo quando se adotaram parâmetros de material composto e os efeitos da aceleração dos recalques no tempo que podem ser comparados ao efeito dos drenos. Finalmente, no capítulo 5, se apresentaram os cálculos de um aterro estruturado com capiteis e plataforma de geossintético, empregando diferentes metodologias de cálculo da tensão na base do aterro e diferentes metodologias no cálculo do esforço de tração atuante no reforço. Alguns autores apresentam o valor de este esforço em termos de uma deformação prescrita, mas para obter valores consistentes é melhor uma abordagem em termos do valor do módulo do reforço. REFERÊNCIAS BIBLIOGRÁFICAS ALMEIDA, M.S.S; MARQUES, M.E.S. Aterros sobre solos moles – Projeto e desempenho. Oficina de Textos, 2010. ECHEVARRÍA, S.P. Efeitos de Arqueamento em Aterros sobre solo Estaqueado. Dissertação de Mestrado. Departamento de Engenharia Civil e Ambiental. Universidade de Brasilia, 2006.
  66. 66. Trabalho prático Aterros sobre solos moles Cristian Yair Soriano Camelo FEI, K; A Simplified Method for Analysis of Geosynthetic Reinforcement Used in Pile Supported Embankments. Scientific World Journal, 2014. HARTMANN, D.A; Modelagem centrífuga de aterros estruturados com reforço de geossintético. UFRJ/COPPE, 2012. GHARPURE, A.D; KORULLA, M; JAYAKRISHNAN, P.V; SCOTTO, M; NAUGHTON, P. Design methods for pile supported basal reinforced embankments over soft clay. Proceeding of the 4th Asian Regional Conference on Geosynthetics. Shanghai-China, 2008.

×