SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
macs10 – métodos de apoio à decisão
www.matematicaonline.pt
geral@matematicaonline.pt
1 / 4
Sistema de votação
Maioritário Por ordem de preferência Aprovação
• Método da maioria
simples ou relativa
• Método da maioria
absoluta
• Método da pluralidade
• Método de eliminação run-off simples
• Método de eliminação run-off sequencial
• Método de Borda
• Método de Condorcet
Sistema de votação maioritário
- Método da maioria simples ou relativa, vence a opção com maior número de votos.
- Método da maioria absoluta, vence a opção que tenha pelo menos metade dos votos mais um.
Sistema de votação por ordem de preferência
- Método da pluralidade, vence o candidato (opção) com o maior número de primeiros lugares (maioria simples).
- Método de eliminação run-off simples, na primeira análise são eliminados todos os candidatos à exceção dos dois que reúnem
maior número de primeiros lugares. Reorganiza-se o esquema de preferências e o vencedor é o candidato que reúne maior
número de primeiros lugares.
- Método de eliminação run-off sequencial, semelhante ao método anterior mas é eliminado um candidato de cada vez, a partir
do que tem menor número de primeiros lugares, isto é:
1. Faz-se a contagem dos primeiros lugares de cada candidato e elimina-se o que tiver o menor número de votos;
2. Reorganiza-se o esquema de preferências sem o candidato eliminado;
3. Faz-se novamente a contagem dos primeiros lugares de cada candidato e elimina-se o que tiver menor número;
4. Repetem-se os passos anteriores até obter o candidato vencedor.
- Método de Borda (contagem de borda), este método carateriza-se por contabilizar todas as preferências.
1. Para uma eleição com N candidatos, organiza-se os candidatos quanto às preferências;
2. Cada um deles recebe pontos conforme o grau de preferência dos eleitores, 1 ponto se for a última preferência, 2
pontos de for a penúltima preferência, …, N – 1 pontos se for a segunda preferência e N pontos de for a primeira
preferência;
3. Contabiliza-se o número de pontos de cada candidato e vence o que tiver mais pontos.
- Método de Condorcet, é feita uma análise do confronto direto entre cada dois candidatos. O candidato que vencer todos os
confrontos diretos é declarado como vencedor. Neste método nem sempre se encontra um vencedor, pois pode resultar numa
situação paradoxal (paradoxo de Condorcet).
Sistema de votação por aprovação
Os votantes podem votar em tantos candidatos quantos os que quiserem, recebendo, cada candidato aprovado, um voto. Vence
o candidato que reunir maior número de votos.
Neste sistema de votação, a adição ou exclusão de um candidato não influencia a pontuação total dos outros candidatos.
Métodos de partilha
- Partilhas no caso discreto: aplicam-se quando se tem de partilhar objetos indivisíveis como, por exemplo, casas, carros,
lugares no parlamento.
- Partilhas no caso contínuo: aplicam-se quando se tem de partilhar objetos que se podem dividir de infinitas maneiras com,
por exemplo, bolos, pizza, dinheiro.
- Partilhas no caso misto: aplicam-se quando se tem de partilhar objetos dos dois tipos anteriores, discretos e contínuos, como
por exemplo uma herança.
Partilhas no caso discreto – métodos de divisão justa
- Método do ajuste na partilha (aplica-se à divisão de bens entre dois herdeiros)
1. Cada um dos herdeiros avalia, segundo os seus critérios, os diferentes bens de uma forma secreta. Sendo que cada um
tem 100 pontos para distribuir secretamente pelos bens;
2. Cada bem é atribuído, temporariamente, a quem mais o valorizou;
3. Faz-se um balanço
• Se ambos tiverem o mesmo número de pontos, a partilha está feita
• Se não tiverem o mesmo número de pontos, terá de se ajustar a partilha
4. Calculam-se os quocientes referentes a cada um dos bens atribuídos ao herdeiro que ficou com mais pontos:
Número de pontos atribuídos ao bem pelo vencedor inicial
Número de pontos atribuídos ao bem pelo perdedor inicial
colocando-se os resultados por ordem decrescente;
5. Faz-se a transferência do bem a que corresponde o menor quociente e contabilizam-se novamente os pontos;
macs10 – métodos de apoio à decisão
www.matematicaonline.pt
geral@matematicaonline.pt
2 / 4
6. Se a transferência total do bem der vantagem ao herdeiro que recebe, terá de se efetuar a transferência apenas de uma
parte do bem, de forma a igualar o número de pontos.
- Método das licitações secretas (aplica-se à divisão de bens por dois ou mais herdeiros)
1. Cada um dos herdeiros atribui um valor em dinheiro a cada bem, segundo os seus critérios e de forma secreta;
2. Calcula-se então o que cada um dos herdeiros pensa ser a sua parte justa da partilha, que será igual ao quociente entre
o valor total que atribuiu aos bens e o número de herdeiros;
Valor total que atribuiu aos bens
Número de herdeiros
3. Atribui-se cada um dos bens a quem mais o valorizou;
4. Se o valor total dos bens recebidos por cada interveniente ultrapassar o que considerou justo, terá de pagar a diferença
aos outros. Caso, contrário, se os valores dos bens recebidos for inferior ao que considera justo, serão os outros
herdeiros a pagar-lhe a diferença;
5. O dinheiro excedente é dividido de igual forma por todos os herdeiros.
- Método dos marcadores (não é necessário haver dinheiro mas deverá haver um número de bens superior ao de herdeiros)
1. Ordenam-se os bens a dividir (pode-se atribuir um número a cada uma deles);
2. Utilizam-se marcadores para cada herdeiro dividir, secretamente, a fila de bens num número de partes igual ao de
herdeiros, de forma que cada um divida-a como considera mais justo;
3. Da esquerda para a direita procuram-se os primeiros marcadores de cada herdeiro. O dono do primeiro marcador a
aparecer na fila com os bens à esquerda e retiram-se todos os seus marcadores;
4. Observa-se novamente os bens da fila e procura-se agora os segundos marcadores de cada interveniente. O primeiro a
aparecer indica que os bens entre o seu primeiro marcador e o segundo serão seus;
5. Repete-se o processo até que todos tenham a parte que consideram justa;
6. As sobras podem dividir-se por sorteio ou, se ainda forem mais do que os intervenientes, aplica-se novamente o
mesmo método.
Partilhas no caso discreto – métodos de divisão proporcional
- Divisor padrão:
Total da População
Número de lugares
DP =
- Quota padrão:
População do Partido
QP
DP
=
- Quota inferior: QI = arredondamento por defeito ao número inteiro contido na QP
- Quota superior: QS = arredondamento por excesso ao número inteiro contido na QP
- Método de Hondt
1. Apura-se o número de votos;
2. Divide-se o número de votos de cada partido por 1, 2, 3, … (até ao número de mandatos a atribuir, se necessário) e
ordena-se os quocientes por ordem decrescente. Deverão ser tantos os quocientes quantos os mandatos a atribuir;
3. Cada lista recebe um número de mandatos igual ao número de quocientes que integrou a série do passo anterior;
4. No caso de restar apenas um mandato e os quocientes da série forem iguais, o mandato a atribui deverá pertencer à
lista com menor número de votos.
- Método de Sainte-Leaguë
1. Apura-se o número de votos;
2. Divide-se o número de votos de cada partido por 1, 3, 5, 7 , 9 … (números ímpares, tantos quantos o número de
mandatos a atribuir, se necessário) e ordena-se os quocientes por ordem decrescente. Deverão ser tantos os quocientes
quantos os mandatos a atribuir;
3. Cada lista recebe um número de mandatos igual ao número de quocientes que integrou a série do passo anterior;
4. No caso de restar apenas um mandato e os quocientes da série forem iguais, o mandato a atribui deverá pertencer à
lista com menor número de votos.
- Método de Hamilton
1. Calcular o DP;
2. Calcular a QP de cada partido;
3. A cada partido atribui-se a sua QI, que corresponde ao número de mandatos que cada um tem direito;
4. Se sobrarem lugares a atribuir, estes devem ser atribuídos, um a um, aos partidos por ordem decrescente da parte
decimal da sua QP.
macs10 – métodos de apoio à decisão
www.matematicaonline.pt
geral@matematicaonline.pt
3 / 4
- Método de Jefferson
1. Calcular o DP;
2. Calcular a QP de cada partido;
3. A cada partido atribui-se a sua QI, que corresponde ao número de mandatos que cada um tem direito;
4. Se a soma das QI for igual ao número de mandatos a atribuir, a partilha está concluída;
5. Se faltarem mandatos a atribuir é necessário, por tentativas, um divisor modificado (DM), para substituir o DP, de
modo que ao voltar a percorrer os passos 2. e 3., o processo termine.
População do Partido
QM
DM
=
- Método de Adams
Idêntico ao método de Jefferson, mas utilizando QS (quotas superiores).
- Método de Webster
1. Calcular o DP;
2. Calcular a QP de cada partido;
3. Atribuir a cada estado a:
• QI, se a parte decimal da QP for menor que 0,5 ou se QP for menor que a média aritmética das suas QI e QS;
• QS, se a parte decimal da QP for maior ou igual do que 0,5;
4. Se o somatório das quotas arredondadas (por defeito ou por excesso) for igual ao número de mandatos a atribuir, este
é, para cada partido, igual à quota arredondada correspondente.
Se o somatório das quotas arredondadas for diferente do número de mandatos a atribuir, então é necessário encontrar,
por tentativas, um divisor modificado (DM) para substituir o DP, de modo a calcular a quota modificada de cada
estado.
As quotas modificadas são em seguida arredondadas de acordo com o passo 3. O processo termina quando forem
atribuídos todos os mandatos.
- Método de Huntington-Hill
1. Calcular o DP;
2. Calcular a QP de cada partido;
3. Atribuir a cada estado a:
• QI, se a parte decimal da QP for menor do que a média geométrica dos dois números (QS e QI) entre os
quais ela se encontra
• QS, se a parte decimal da QP for maior ou igual do que a média geométrica das respetivas QS e QI
4. Se o somatório das quotas arredondadas (por defeito ou por excesso) for igual ao número de mandatos a atribuir, este
é, para cada partido, igual à quota arredondada correspondente.
Se o somatório das quotas arredondadas for diferente do número de mandatos a atribuir, então é necessário encontrar,
por tentativas, um divisor modificado (DM) para substituir o DP, de modo a calcular a quota modificada de cada
estado. O processo termina quando forem atribuídos todos os mandatos.
Nota: A média geométrica entre dois números p e q é dada por G
M p q
= 
Partilhas no caso contínuo
- Método de divisão e escolha
1. Faz-se um sorteio para saber quem divide (por exemplo, atirando uma moeda ao ar);
2. O que divide procede à divisão em duas partes que considera serem justas;
3. O que não divide escolhe uma das partes e o divisor fica com a que sobra.
- Método do selecionador único
1. Através um sorteio escolhem-se os divisores e o selecionador (existe apenas um selecionador);
2. O bem é dividido em tantas partes quantas os divisores;
3. Cada um dos divisores divide a sua parte em tantas partes quantos os herdeiros (divisores mais selecionador);
4. O selecionador escolhe uma fração de parte de cada um dos divisores. Cada divisor fica com a parte que o
selecionador não escolheu.
macs10 – métodos de apoio à decisão
www.matematicaonline.pt
geral@matematicaonline.pt
4 / 4
- Método do divisor único
1. Faz-se um sorteio para escolher quem divide;
2. O divisor divide o bem em tantas partas quantos os herdeiros;
3. Os selecionadores vão escolher, independentemente um do outro, uma ou mais partes, podendo ocorrer 3 casos, no
caso de serem três pessoas. Se A em três partes P1, P2 e P3:
• Se B escolher P1 e P2, C pode escolher qualquer uma das três partes, ficando B com P1 ou P2 e A com a
parte que sobra
• Se B escolher P1 e C P3, o A ficará com P2
• Caso B e C escolherem ambos P1, então A escolhe P2 (ou P3) e juntam-se novamente as partes P1 e P3,
Agora, entre A e B, um divide e o outro escolhe.
Neste método é também possível proceder de um modo em que, na maioria das vezes permite uma partilha mais
rápida;
1. Faz-se um sorteio para escolher quem divide;
2. O divisor divide o bem em tantas partas quantos os herdeiros;
3. Cada um dos herdeiros faz uma votação, secreta, atribuindo a cada parte um valor, pode ser em percentagem. Quem
atribuir o maior valor ao bem é quem fica com ele.
- Método do último a diminuir ou método da última redução
Consideremos para este método, por exemplo, 6 herdeiros, A, B, C, D, E e F.
1. Aleatoriamente ou através de sorteio, é atribuída uma ordem de jogar a cada um, por exemplo, A, B, C, D, E e F;
2. Começa A por divide o bem em duas partes e escolhe a parte que pensa corresponder a 1/6 do todo;
3. B joga e pode:
• Concordar com A e passa a vez de jogar a C
• Não concorda e considera que a parte escolhida por A representa mais do que 1/6 e retira-lhe um bocado
4. Repete-se o ponto 3., sendo agora C a jogar.
Segue-se o mesmo método com todos os herdeiros;
5. Depois de todos terem passado a vez de jogar, alterando ou não a parte dividida, o último herdeiro a ter diminuído fica
com essa parte e sai do processo;
6. O processo repete-se agora com menos um herdeiro;
7. Quando ficarem apenas dois herdeiros, utilizam entre eles o método da divisão e escolha.
- Método livre de inveja
Consideremos para este método, por exemplo, 4 herdeiros, A, B, C e D e o método consiste em dividir o bem em mais
uma parte que o número de herdeiros.
1. Aleatoriamente ou através de sorteio, escolhe-se um divisor e é atribuída uma ordem de jogar a cada um, por
exemplo, divisor o A, ordem de jogar B, C, D;
2. A divide o bem em cinco partes (mais uma que os herdeiros) julgando que o fez de forma igual;
3. O primeiro jogador, B, pode ajustar no máximo duas das cinco partes e passa a vez de jogar;
4. O herdeiro C pode ajustar uma das cinco partes de modo a considerar que existem pelo menos 2 partes iguais (pode
ajustar partes anteriormente ajustadas);
5. O último herdeiro na ordem de jogar, o D, escolhe a parte que pensa ser a maior (pode ser uma parte a justada ou
não);
6. O herdeiro C escolhe a seguir, das partes que restaram com a condição que irá escolher a parte que aparou se esta
ainda estiver disponível;
7. O herdeiro B escolhe despois, retirando a parte que pensa ser a maior com a condição de escolher a parte que aparou
ser esta ainda lá estiver;
8. Por último, o herdeiro A escolhe uma das duas fatias restantes.

Mais conteúdo relacionado

Mais de anabela explicaexplica

Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
anabela explicaexplica
 
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
anabela explicaexplica
 
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacaoFicha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
anabela explicaexplica
 

Mais de anabela explicaexplica (17)

Ebook aguas da_captacao_ao_consumo
Ebook aguas da_captacao_ao_consumoEbook aguas da_captacao_ao_consumo
Ebook aguas da_captacao_ao_consumo
 
13
1313
13
 
11
1111
11
 
4
44
4
 
exercicios
exerciciosexercicios
exercicios
 
Evolução da teoria atómica
Evolução da teoria atómicaEvolução da teoria atómica
Evolução da teoria atómica
 
Reações químicas 8º ano, 2014 2015
Reações químicas 8º ano, 2014 2015Reações químicas 8º ano, 2014 2015
Reações químicas 8º ano, 2014 2015
 
Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
Lei de lavoiser, e acerto de equações, 8º ano, 2014 2015
 
Ficha de trabalho 1
Ficha de trabalho 1Ficha de trabalho 1
Ficha de trabalho 1
 
Fichaavaliaoexemplo 121029060057-phpapp02
Fichaavaliaoexemplo 121029060057-phpapp02Fichaavaliaoexemplo 121029060057-phpapp02
Fichaavaliaoexemplo 121029060057-phpapp02
 
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
128969094 ficha-de-avaliacao-cn5-biosfera-revestimento-locomocao-pdf (1)
 
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacaoFicha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
Ficha de-avaliacao-de-ciencias-da-natureza-do-6ano-alimentacao
 
Mini teste 9
Mini teste 9Mini teste 9
Mini teste 9
 
582866 macro estruturas-revisao1a
582866 macro estruturas-revisao1a582866 macro estruturas-revisao1a
582866 macro estruturas-revisao1a
 
632882 folha5
632882 folha5632882 folha5
632882 folha5
 
Labirintos
LabirintosLabirintos
Labirintos
 
Http _www.gave.min-edu.pt_np3content__news_id=9&filename=lp_9_t1_enunciado_2010
Http  _www.gave.min-edu.pt_np3content__news_id=9&filename=lp_9_t1_enunciado_2010Http  _www.gave.min-edu.pt_np3content__news_id=9&filename=lp_9_t1_enunciado_2010
Http _www.gave.min-edu.pt_np3content__news_id=9&filename=lp_9_t1_enunciado_2010
 

Último

O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
VALMIRARIBEIRO1
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Pastor Robson Colaço
 
Plano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola públicaPlano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola pública
anapsuls
 

Último (20)

Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
Multiplicação - Caça-número
Multiplicação - Caça-número Multiplicação - Caça-número
Multiplicação - Caça-número
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
 
Planejamento 2024 - 1º ano - Matemática 38 a 62.pdf
Planejamento 2024 - 1º ano - Matemática  38 a 62.pdfPlanejamento 2024 - 1º ano - Matemática  38 a 62.pdf
Planejamento 2024 - 1º ano - Matemática 38 a 62.pdf
 
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdfEnunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
 
Meu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroMeu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livro
 
Geometria para 6 ano retas angulos .docx
Geometria para 6 ano retas angulos .docxGeometria para 6 ano retas angulos .docx
Geometria para 6 ano retas angulos .docx
 
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
 
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdfprova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
 
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docxUnidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 
Enunciado_da_Avaliacao_1__Sistemas_de_Informacoes_Gerenciais_(IL60106).pdf
Enunciado_da_Avaliacao_1__Sistemas_de_Informacoes_Gerenciais_(IL60106).pdfEnunciado_da_Avaliacao_1__Sistemas_de_Informacoes_Gerenciais_(IL60106).pdf
Enunciado_da_Avaliacao_1__Sistemas_de_Informacoes_Gerenciais_(IL60106).pdf
 
Plano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola públicaPlano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola pública
 
O que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaO que é, de facto, a Educação de Infância
O que é, de facto, a Educação de Infância
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptxEB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
EB1 Cumeada Co(n)Vida à Leitura - Livros à Solta_Serta.pptx
 
análise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdfanálise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdf
 

000 sintese metodos_de_apoio_a_decisao

  • 1. macs10 – métodos de apoio à decisão www.matematicaonline.pt geral@matematicaonline.pt 1 / 4 Sistema de votação Maioritário Por ordem de preferência Aprovação • Método da maioria simples ou relativa • Método da maioria absoluta • Método da pluralidade • Método de eliminação run-off simples • Método de eliminação run-off sequencial • Método de Borda • Método de Condorcet Sistema de votação maioritário - Método da maioria simples ou relativa, vence a opção com maior número de votos. - Método da maioria absoluta, vence a opção que tenha pelo menos metade dos votos mais um. Sistema de votação por ordem de preferência - Método da pluralidade, vence o candidato (opção) com o maior número de primeiros lugares (maioria simples). - Método de eliminação run-off simples, na primeira análise são eliminados todos os candidatos à exceção dos dois que reúnem maior número de primeiros lugares. Reorganiza-se o esquema de preferências e o vencedor é o candidato que reúne maior número de primeiros lugares. - Método de eliminação run-off sequencial, semelhante ao método anterior mas é eliminado um candidato de cada vez, a partir do que tem menor número de primeiros lugares, isto é: 1. Faz-se a contagem dos primeiros lugares de cada candidato e elimina-se o que tiver o menor número de votos; 2. Reorganiza-se o esquema de preferências sem o candidato eliminado; 3. Faz-se novamente a contagem dos primeiros lugares de cada candidato e elimina-se o que tiver menor número; 4. Repetem-se os passos anteriores até obter o candidato vencedor. - Método de Borda (contagem de borda), este método carateriza-se por contabilizar todas as preferências. 1. Para uma eleição com N candidatos, organiza-se os candidatos quanto às preferências; 2. Cada um deles recebe pontos conforme o grau de preferência dos eleitores, 1 ponto se for a última preferência, 2 pontos de for a penúltima preferência, …, N – 1 pontos se for a segunda preferência e N pontos de for a primeira preferência; 3. Contabiliza-se o número de pontos de cada candidato e vence o que tiver mais pontos. - Método de Condorcet, é feita uma análise do confronto direto entre cada dois candidatos. O candidato que vencer todos os confrontos diretos é declarado como vencedor. Neste método nem sempre se encontra um vencedor, pois pode resultar numa situação paradoxal (paradoxo de Condorcet). Sistema de votação por aprovação Os votantes podem votar em tantos candidatos quantos os que quiserem, recebendo, cada candidato aprovado, um voto. Vence o candidato que reunir maior número de votos. Neste sistema de votação, a adição ou exclusão de um candidato não influencia a pontuação total dos outros candidatos. Métodos de partilha - Partilhas no caso discreto: aplicam-se quando se tem de partilhar objetos indivisíveis como, por exemplo, casas, carros, lugares no parlamento. - Partilhas no caso contínuo: aplicam-se quando se tem de partilhar objetos que se podem dividir de infinitas maneiras com, por exemplo, bolos, pizza, dinheiro. - Partilhas no caso misto: aplicam-se quando se tem de partilhar objetos dos dois tipos anteriores, discretos e contínuos, como por exemplo uma herança. Partilhas no caso discreto – métodos de divisão justa - Método do ajuste na partilha (aplica-se à divisão de bens entre dois herdeiros) 1. Cada um dos herdeiros avalia, segundo os seus critérios, os diferentes bens de uma forma secreta. Sendo que cada um tem 100 pontos para distribuir secretamente pelos bens; 2. Cada bem é atribuído, temporariamente, a quem mais o valorizou; 3. Faz-se um balanço • Se ambos tiverem o mesmo número de pontos, a partilha está feita • Se não tiverem o mesmo número de pontos, terá de se ajustar a partilha 4. Calculam-se os quocientes referentes a cada um dos bens atribuídos ao herdeiro que ficou com mais pontos: Número de pontos atribuídos ao bem pelo vencedor inicial Número de pontos atribuídos ao bem pelo perdedor inicial colocando-se os resultados por ordem decrescente; 5. Faz-se a transferência do bem a que corresponde o menor quociente e contabilizam-se novamente os pontos;
  • 2. macs10 – métodos de apoio à decisão www.matematicaonline.pt geral@matematicaonline.pt 2 / 4 6. Se a transferência total do bem der vantagem ao herdeiro que recebe, terá de se efetuar a transferência apenas de uma parte do bem, de forma a igualar o número de pontos. - Método das licitações secretas (aplica-se à divisão de bens por dois ou mais herdeiros) 1. Cada um dos herdeiros atribui um valor em dinheiro a cada bem, segundo os seus critérios e de forma secreta; 2. Calcula-se então o que cada um dos herdeiros pensa ser a sua parte justa da partilha, que será igual ao quociente entre o valor total que atribuiu aos bens e o número de herdeiros; Valor total que atribuiu aos bens Número de herdeiros 3. Atribui-se cada um dos bens a quem mais o valorizou; 4. Se o valor total dos bens recebidos por cada interveniente ultrapassar o que considerou justo, terá de pagar a diferença aos outros. Caso, contrário, se os valores dos bens recebidos for inferior ao que considera justo, serão os outros herdeiros a pagar-lhe a diferença; 5. O dinheiro excedente é dividido de igual forma por todos os herdeiros. - Método dos marcadores (não é necessário haver dinheiro mas deverá haver um número de bens superior ao de herdeiros) 1. Ordenam-se os bens a dividir (pode-se atribuir um número a cada uma deles); 2. Utilizam-se marcadores para cada herdeiro dividir, secretamente, a fila de bens num número de partes igual ao de herdeiros, de forma que cada um divida-a como considera mais justo; 3. Da esquerda para a direita procuram-se os primeiros marcadores de cada herdeiro. O dono do primeiro marcador a aparecer na fila com os bens à esquerda e retiram-se todos os seus marcadores; 4. Observa-se novamente os bens da fila e procura-se agora os segundos marcadores de cada interveniente. O primeiro a aparecer indica que os bens entre o seu primeiro marcador e o segundo serão seus; 5. Repete-se o processo até que todos tenham a parte que consideram justa; 6. As sobras podem dividir-se por sorteio ou, se ainda forem mais do que os intervenientes, aplica-se novamente o mesmo método. Partilhas no caso discreto – métodos de divisão proporcional - Divisor padrão: Total da População Número de lugares DP = - Quota padrão: População do Partido QP DP = - Quota inferior: QI = arredondamento por defeito ao número inteiro contido na QP - Quota superior: QS = arredondamento por excesso ao número inteiro contido na QP - Método de Hondt 1. Apura-se o número de votos; 2. Divide-se o número de votos de cada partido por 1, 2, 3, … (até ao número de mandatos a atribuir, se necessário) e ordena-se os quocientes por ordem decrescente. Deverão ser tantos os quocientes quantos os mandatos a atribuir; 3. Cada lista recebe um número de mandatos igual ao número de quocientes que integrou a série do passo anterior; 4. No caso de restar apenas um mandato e os quocientes da série forem iguais, o mandato a atribui deverá pertencer à lista com menor número de votos. - Método de Sainte-Leaguë 1. Apura-se o número de votos; 2. Divide-se o número de votos de cada partido por 1, 3, 5, 7 , 9 … (números ímpares, tantos quantos o número de mandatos a atribuir, se necessário) e ordena-se os quocientes por ordem decrescente. Deverão ser tantos os quocientes quantos os mandatos a atribuir; 3. Cada lista recebe um número de mandatos igual ao número de quocientes que integrou a série do passo anterior; 4. No caso de restar apenas um mandato e os quocientes da série forem iguais, o mandato a atribui deverá pertencer à lista com menor número de votos. - Método de Hamilton 1. Calcular o DP; 2. Calcular a QP de cada partido; 3. A cada partido atribui-se a sua QI, que corresponde ao número de mandatos que cada um tem direito; 4. Se sobrarem lugares a atribuir, estes devem ser atribuídos, um a um, aos partidos por ordem decrescente da parte decimal da sua QP.
  • 3. macs10 – métodos de apoio à decisão www.matematicaonline.pt geral@matematicaonline.pt 3 / 4 - Método de Jefferson 1. Calcular o DP; 2. Calcular a QP de cada partido; 3. A cada partido atribui-se a sua QI, que corresponde ao número de mandatos que cada um tem direito; 4. Se a soma das QI for igual ao número de mandatos a atribuir, a partilha está concluída; 5. Se faltarem mandatos a atribuir é necessário, por tentativas, um divisor modificado (DM), para substituir o DP, de modo que ao voltar a percorrer os passos 2. e 3., o processo termine. População do Partido QM DM = - Método de Adams Idêntico ao método de Jefferson, mas utilizando QS (quotas superiores). - Método de Webster 1. Calcular o DP; 2. Calcular a QP de cada partido; 3. Atribuir a cada estado a: • QI, se a parte decimal da QP for menor que 0,5 ou se QP for menor que a média aritmética das suas QI e QS; • QS, se a parte decimal da QP for maior ou igual do que 0,5; 4. Se o somatório das quotas arredondadas (por defeito ou por excesso) for igual ao número de mandatos a atribuir, este é, para cada partido, igual à quota arredondada correspondente. Se o somatório das quotas arredondadas for diferente do número de mandatos a atribuir, então é necessário encontrar, por tentativas, um divisor modificado (DM) para substituir o DP, de modo a calcular a quota modificada de cada estado. As quotas modificadas são em seguida arredondadas de acordo com o passo 3. O processo termina quando forem atribuídos todos os mandatos. - Método de Huntington-Hill 1. Calcular o DP; 2. Calcular a QP de cada partido; 3. Atribuir a cada estado a: • QI, se a parte decimal da QP for menor do que a média geométrica dos dois números (QS e QI) entre os quais ela se encontra • QS, se a parte decimal da QP for maior ou igual do que a média geométrica das respetivas QS e QI 4. Se o somatório das quotas arredondadas (por defeito ou por excesso) for igual ao número de mandatos a atribuir, este é, para cada partido, igual à quota arredondada correspondente. Se o somatório das quotas arredondadas for diferente do número de mandatos a atribuir, então é necessário encontrar, por tentativas, um divisor modificado (DM) para substituir o DP, de modo a calcular a quota modificada de cada estado. O processo termina quando forem atribuídos todos os mandatos. Nota: A média geométrica entre dois números p e q é dada por G M p q =  Partilhas no caso contínuo - Método de divisão e escolha 1. Faz-se um sorteio para saber quem divide (por exemplo, atirando uma moeda ao ar); 2. O que divide procede à divisão em duas partes que considera serem justas; 3. O que não divide escolhe uma das partes e o divisor fica com a que sobra. - Método do selecionador único 1. Através um sorteio escolhem-se os divisores e o selecionador (existe apenas um selecionador); 2. O bem é dividido em tantas partes quantas os divisores; 3. Cada um dos divisores divide a sua parte em tantas partes quantos os herdeiros (divisores mais selecionador); 4. O selecionador escolhe uma fração de parte de cada um dos divisores. Cada divisor fica com a parte que o selecionador não escolheu.
  • 4. macs10 – métodos de apoio à decisão www.matematicaonline.pt geral@matematicaonline.pt 4 / 4 - Método do divisor único 1. Faz-se um sorteio para escolher quem divide; 2. O divisor divide o bem em tantas partas quantos os herdeiros; 3. Os selecionadores vão escolher, independentemente um do outro, uma ou mais partes, podendo ocorrer 3 casos, no caso de serem três pessoas. Se A em três partes P1, P2 e P3: • Se B escolher P1 e P2, C pode escolher qualquer uma das três partes, ficando B com P1 ou P2 e A com a parte que sobra • Se B escolher P1 e C P3, o A ficará com P2 • Caso B e C escolherem ambos P1, então A escolhe P2 (ou P3) e juntam-se novamente as partes P1 e P3, Agora, entre A e B, um divide e o outro escolhe. Neste método é também possível proceder de um modo em que, na maioria das vezes permite uma partilha mais rápida; 1. Faz-se um sorteio para escolher quem divide; 2. O divisor divide o bem em tantas partas quantos os herdeiros; 3. Cada um dos herdeiros faz uma votação, secreta, atribuindo a cada parte um valor, pode ser em percentagem. Quem atribuir o maior valor ao bem é quem fica com ele. - Método do último a diminuir ou método da última redução Consideremos para este método, por exemplo, 6 herdeiros, A, B, C, D, E e F. 1. Aleatoriamente ou através de sorteio, é atribuída uma ordem de jogar a cada um, por exemplo, A, B, C, D, E e F; 2. Começa A por divide o bem em duas partes e escolhe a parte que pensa corresponder a 1/6 do todo; 3. B joga e pode: • Concordar com A e passa a vez de jogar a C • Não concorda e considera que a parte escolhida por A representa mais do que 1/6 e retira-lhe um bocado 4. Repete-se o ponto 3., sendo agora C a jogar. Segue-se o mesmo método com todos os herdeiros; 5. Depois de todos terem passado a vez de jogar, alterando ou não a parte dividida, o último herdeiro a ter diminuído fica com essa parte e sai do processo; 6. O processo repete-se agora com menos um herdeiro; 7. Quando ficarem apenas dois herdeiros, utilizam entre eles o método da divisão e escolha. - Método livre de inveja Consideremos para este método, por exemplo, 4 herdeiros, A, B, C e D e o método consiste em dividir o bem em mais uma parte que o número de herdeiros. 1. Aleatoriamente ou através de sorteio, escolhe-se um divisor e é atribuída uma ordem de jogar a cada um, por exemplo, divisor o A, ordem de jogar B, C, D; 2. A divide o bem em cinco partes (mais uma que os herdeiros) julgando que o fez de forma igual; 3. O primeiro jogador, B, pode ajustar no máximo duas das cinco partes e passa a vez de jogar; 4. O herdeiro C pode ajustar uma das cinco partes de modo a considerar que existem pelo menos 2 partes iguais (pode ajustar partes anteriormente ajustadas); 5. O último herdeiro na ordem de jogar, o D, escolhe a parte que pensa ser a maior (pode ser uma parte a justada ou não); 6. O herdeiro C escolhe a seguir, das partes que restaram com a condição que irá escolher a parte que aparou se esta ainda estiver disponível; 7. O herdeiro B escolhe despois, retirando a parte que pensa ser a maior com a condição de escolher a parte que aparou ser esta ainda lá estiver; 8. Por último, o herdeiro A escolhe uma das duas fatias restantes.