Anúncio
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Anúncio
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Anúncio
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Anúncio
Intuition Engineered
Intuition Engineered
Intuition Engineered
Intuition Engineered
Próximos SlideShares
Health Management Information System in Ethiopia: Who Owns the HMISHealth Management Information System in Ethiopia: Who Owns the HMIS
Carregando em ... 3
1 de 18
Anúncio

Mais conteúdo relacionado

Apresentações para você(20)

Similar a Intuition Engineered(20)

Anúncio

Mais de Cognizant(20)

Intuition Engineered

  1. July 2021 Intuition Engineered The Theory and Practice Behind Engineering Intuition into Business
  2. How does Serena Williams know where to move before her opponent has hit the ball? How does Lionel Messi know to cut left just as the defender lunges in? How does Sebastian Vettel know to take the outside line, when the inside line seems clearer? Intuition. Williams had an “immediate insight”1 that the ball was going deep in the deuce court; Messi, that the fullback had moved a fraction to his left; and Vettel, that debris close to the edge of the Formula One™ racetrack could puncture a tire and send him careening out of control. All had an intuition, a sense of what they should do next. More often than not, their intuition is right. From such intuitions, legends are born. Intuition is a mysterious thing. Some call it a hunch, others a guess. But as we better understand the inner workings of the brain, through neuroimaging,2 positron emission tomography and other sophisticated medical tools, we are learning that intuition is not an ethereal spirit roaming free deep in our unconscious, but a mechanistic process that analyzes information captured through our senses from the second we are alive. To paraphrase Herbert A. Simon, the psychologist and Nobel laureate in economic studies: Most of what we call intuition, to respond to situations and just act, is based on an enormous accumulation of experience.3 Introduction 2 / Intuition engineered
  3. 3 / Intuition engineered In short, intuition isn’t a mystery at all. It is a biochemical feat of engineering. And what is true of people is increasingly true of businesses, too. The best modern enterprises act with the intuition of the great sport stars — faster, more precisely, more confident in their understanding of what to do, where to go, how to act. To invest, or not. To raise its prices, or not. To hire this person, or not. Like great masters, they build mechanistic processes that capture information, accumulate and synthesize data, refine theories based on what works and what doesn’t. The best organizations engineer the speed and insight of intuition into their organizations. How do leading enterprises act intuitively? How do they anticipate and act instantaneously? By engineering systems and processes based on machine-learning software, layered on top of hyperscale cloud processing power, manipulating brontobytes of data, aligned to business processes that create hyper-personalized, next-generation, consumer-grade experiences. By using modern tools and techniques that deliver outcomes fit for modern times. By decommissioning infrastructures and systems and interfaces that are no more than “legacy debt.” By hiring talent that is truly digital. “Intuition engineered” is the new goal for every business that wants to outperform in the Fourth Industrial Revolution, and beyond. As Gartner puts it: “The ability to predict outcomes, quickly assess innumerable alternatives, and take action … must become a core competency embedded throughout the organization.”4 In this report, we examine in more detail the technology and process components your organization should be building, or extending, and how it should apply them with modern technology optimization methodologies, to ensure you can act with the insight, precision and speed needed in a world moving faster than ever, and in a business world more unforgiving than ever.
  4. Four key elements of engineering intuition Modern businesses harness four key dynamics that are reshaping competition in every industry in every part of the world: 4 / Intuition engineered Software that learns: For the first time in human history, we have a tool that can make itself. With machine-learning software, systems improve on their own over time. The system learns how to recognize patterns and how to find hidden insights in data, all without being explicitly programmed on what to do or where to look. This is how, for example, Uber knows how to match the right driver with the right passenger, or how TikTok curates the For You feed. There are few people at these companies figuring these things out. That would be impossible, as in the case of TikTok there are about 100 million monthly active users.5 Instead, the machine learns about each and every one of those sessions, continually getting smarter, and improving the user’s experience. According to our research, over the next three years twice as many businesses expect to be in advanced stages of AI maturity versus today, and annual spending increases on AI will nearly double from 4.6% to 8.3%.6 A decisive majority — 64% — of executives in our study believe AI is considerably or very important for the future of their business. Massive processing power unlocked by the cloud: Moore’s Law (i.e., the number of transistors on a chip, and therefore processing power, doubles approximately every two years) persists, in spite of it being more than 50 years old. Lately, it has been turbocharged by the cloud, which enables hyper-powerful computers to be tied together. By way of comparison, a muscle car may have impressive horsepower, such as the 435 “horses” under the hood of a Ford Mustang GT, but you can’t glue two Mustangs together to go twice the speed. With cloud computing, however, you can — by tapping into multiple servers to achieve blazing-fast performance. Google’s Tensor Processing Unit, Amazon’s AWS custom web servers and software-defined networks, Microsoft’s Azure offerings (based on the Open Compute Project) and Nvidia’s Titan V are among a new wave of hardware and software architectures offering speed and performance levels unimaginable a mere three years ago. 64%of executives in a recent Cognizant study believe AI is considerably or very important for the future of their business.
  5. Combined, these four dynamics form the technological underpinnings that turn an organizational operating model from one that runs things to one that anticipates and acts, one that sees the “next best action,” one that acts as if on intuition. 5 / Intuition engineered Huge amounts of data: Data is the fuel of a modern business. The volumes of it are exploding in our hyper-connected, IoT-sensor-infused world. Every day, 2.5 quintillion bytes of it are created around the world. Each of us generates 1.7 megabytes each second, and the majority of data has been created in the last two years.7 Truly we are in a new world, where a new resource is becoming the most valuable resource there is. Every like, swipe, comment, tap, movement of a mouse, every typed or spoken word, even every heartbeat recorded by a health sensor, creates data that contains a story — a story of what somebody wants or needs or likes or is doing or thinking about or dreaming of. Every piece of data is a key to a lock that can be unlocked — if you know how. Design thinking in every experience: The embrace of the concept of “design thinking” has changed the nature of technology development in recent years. With the rise of Web 2.0, “consumerization” and the prominence of Stanford University’s d.school, modern business systems and processes — for customers and employees — have reached new levels of ease of use, elegance and beauty. These approaches, underpinned by new methods of software development (e.g., Agile, scrums, pods, etc.), are about much more than simple aesthetics, however. Rather, modern software-driven, hyper-personalized experiences generate higher sales and higher Net Promoter Scores. Forrester Research puts the ROI of design thinking at up to 107%.8
  6. What good looks like This is exactly what leading enterprises are doing right now: unlocking business opportunity by injecting AI into enterprise- wide work processes, and thereby accelerating their operational speed and their ability to derive real-time insight and foresight into all aspects of their business in material ways. Respondents in a recent Cognizant survey believe AI will improve decision-making by 17% during the next three years, through the use of data to generate beyond-human-speed insights and decisions,9 and these enterprises will spend about 35% of their AI budgets on data modernization toward this goal.10 Generating intuition at the pace required of a modern business is impossible without the right technology and process foundation. These realities have been made even more real by the pandemic.“We have a heavier emphasis on interpreting data using artificial intelligence metrics to guide decision-making at the corporate level,” said the Chief Information Officer of a retail company in a recent Cognizant study.11 In this same study, roughly two-thirds of companies said that since the emergence of COVID-19, they have been developing new analytics/models, evaluating and refreshing their existing analytics/models, refreshing databases and integrating new data streams such as geo-location, social media and cell phone data. Another three-quarters said that since the crisis they had started relying more heavily on scenario planning to assess the potential impact of extreme events, while 71% said they were making greater use of real-time data. As a result of these initiatives, almost 70% of companies that have made major or significant changes to their data management or analytics/ models are now more confident in their business decisions, compared with 45% among less active companies. They are also more likely than other companies to say they are now relying more on their analytics/models (78% vs. 55%) than they did before the pandemic. COVID hit at a time when many 20th century organizations around the world were already struggling to retool for relevancy in markets operating at 21st century speed. In the US, millennials now outnumber baby boomers (72.1 million to 71.6 million) according to the US Census, and are the prime audience for the big-ticket items that drive economies forward. Yet far too many household-brand-name companies have failed to respond to millennials’ expectations that getting a mortgage or filing an insurance claim should be as easy as selecting a hotel on sites like Booking.com or buying a car from an online business like Carvana. 6 / Intuition engineered 71%of respondents said they were making greater use of real-time data.
  7. As one Chief Financial Officer of a financial services company put it in a recent Cognizant survey,“The way our customers interact now has changed completely, so we are having a hard time projecting the new behavior because it’s nothing like we have seen before.”12 Organizations like this are being blindsided as their customers migrate to a new generation of outstanding experiences stemming from “digital first” providers. Having failed to engineer intuition, these old-line providers are increasingly at risk. In contrast, enterprises that have made effective digital progress are able to intuit their customers’ needs and wants in time to act. For example, we recently helped a large convenience store chain adjust its analytics and data to accurately identify which products were selling the fastest in its stores during the pandemic. This allowed the retailer to proactively take steps to ensure that it had those high-demand goods in stock, and to place them near checkout counters so customers could easily find them. Ultimately, the client said this drove an increase in per-customer purchases of those products of about 25%.13 The intuition engine If the combination of machine learning, cloud and data can be regarded as the engine of a modern enterprise, then, in extending this car analogy, there is more to an automobile than the engine alone. To truly engineer intuition, cloud, data and machine intelligence are brought together in the service of a specific business goal, realized by enabling a customer or employee or partner experience. This is where contemporary software engineering methodologies come into play. Far too many “digital transformation” activities have failed due to the superficial use of digital technology with little to no real understanding of the desired business outcome. While a new mobile front-end app often looks nice, if it is sitting atop a legacy business process, little real progress will be made. The project may have been quick, cheap, low risk and involved pivots along the way (seeming to be a la mode), but without the hard work of aligning the technology to something of real business value — and reengineering the supporting processes — it is like climbing a tree to get to the moon; it will seem as though you’re making progress toward your digital goal (and technically you are), but you will never reach your destination. Identifying the right use cases is critical for maximizing ROI. In fact, 77% of companies generating the highest returns from AI do this one thing well.14 7 / Intuition engineered Enterprises responding to a Cognizant survey said they will spend about 35%of their AI budgets on data modernization.
  8. In addition, these failures have in large part been due to the use of old-fashioned software development methodologies, which are increasingly unfit for the speed of business today. Traditional product development release cycles typically take 18-24 months — far too slow to compete successfully with startups and “Digitall”15 companies using Agile and next-gen software engineering approaches. New software engineering approaches — featuring scrums, guilds, pods, sprints and spirals — are central to optimizing for markets in which software is eating everything, including software. This is even more true since the pandemic hit, when virtual collaboration quickly became a new norm. Roughly 88% of respondents in a recent Cognizant study agreed that a pod-based approach is now the optimal option for software engineering. When Severn Trent Water, a UK water utility, adopted this approach, it generated a 300% faster application release cycle and a 40% increase in its “first-time-right” ratio. In fact, 88% of its employees agreed that the new culture improved collaboration and communication.16 Every organization must master this stack, and these new development approaches, at scale, to drive business in the Fourth Industrial Revolution. Applying these models — process by process, experience by experience — across every value chain is how the modern enterprise is built. How intuition is engineered (as revealed by the following examples). 8 / Intuition engineered
  9. 9 / Intuition engineered Quick take More answers, more quickly: responding with intuition in wealth management With fundamental changes in the wealth management market — clients living longer and living more — the pressure on wealth management providers (WMPs) in this highly competitive market continues to ratchet higher. One effective approach to this challenge, our research has found, is for WMPs to provide more clients more answers more quickly. To intuit what they need more precisely. In our work with one client, the challenge was to handle a volume of calls into its call center that was reaching humanly unmanageable levels. Machine learning and natural language processing (NLP) software was applied to these call-center processes by our teams. This triaged incoming traffic, siphoning off low-level issues to software- based bots, and reduced the number of calls human agents had to handle. Data streams surrounding high-volume inquiries into the call center were analyzed and mapped to answers to the most frequently asked questions. Self-learning algorithms began recognizing words and phrases and identifying objectives from a range of possible conversations. Bot-handled inquiries spiked materially when consistent incoming queries were recognized. Human agents were afforded more time to handle more complex issues. The outcome of the project so far? In the first year after its introduction, a $6.7 million reduction in annual operating costs and a 5% improvement in Net Promoter Scores. The aims of the next steps of the project? To take the impact of the NLP to the next level — processing in real time more and more phone-call content, including understanding (and acting on) a client’s underlying emotions through sophisticated sentiment analysis. Via the use of these cognitive systems, software bots and human agents can begin to deliver more insights to more clients more quickly, resulting in higher customer retention, lower agent turnover, and the generation of intuitions that will delight clients and generate higher customer lifetime values. These approaches will fast become prerequisites for businesses that need to engineer intuition. By 2022, Gartner believes, 40% of customer-facing employees and government workers will consult an AI virtual support agent daily for decision or process support. And by 2025, the top 10 retailers globally will leverage AI to facilitate prescriptive product recommendations, transactions and forward deployment of inventory for immediate delivery to consumers.17
  10. A natural language for the next best action A large global biotechnology company had a “good news, not-so-good news” challenge typical of the industry. It manually collected reams of data in a free-text format from its patient services team. Its goal: Isolate trends and identify patterns that help improve customer care and, ultimately, patient outcomes by combining this data with traditional data sources typically used to gain a deeper understanding of patients. However, the unstructured approach was arduous, error-prone and typically a day late and a dollar short. The company needed a way to accelerate time-to-value to better anticipate and address various constituent needs before they festered. Our answer: AI in the form of NLP. By applying NLP, our client can now more easily extract meaning from everyday language, opening a window into the company’s “call notes.” By doing so, the company can answer key questions that were unanswerable before, such as: ❙ How do patient experiences differ by group and subgroup? ❙ Which services provide the most value to patients? ❙ Which factors influence patients to continue treatment? 10 / Intuition engineered Quick take
  11. 11 / Intuition engineered Our team spent two months working closely with the client’s stakeholders, developing hypotheses and performing data validation. In a series of workshops, the team partnered with our client’s patient services managers to better understand products and disease states by identifying the word phrases that occur most frequently in the free-text notes. Using that information, our team built the custom taxonomies and ontologies required to inform the NLP engine, and further identified two dozen new data hypotheses to explore. The engagement yielded 30 meaningful insights and nine recommendations, which helped our client to proactively: ❙ Improve patient support: Predictive modeling identified the brands and patient types most sensitive to factors such as copay assistance and health concerns — factors that impact patients’ likelihood to continue therapy and that contribute to better outcomes. ❙ Correlate more complete notes with higher shipments: Patient notes that documented actions, reactions and follow-ups correlated with more frequent shipments of product. The finding reinforced the importance of establishing close connections with patients as a motivator for continuing therapy. ❙ Develop new KPIs: The project highlighted how each point in the patient journey — initiation of therapy, confirmation of copay assistance, etc.— affects customer experience. It identified tipping points in the patient journey that could increase the probability of a patient discontinuing therapy.
  12. 12 / Intuition engineered Anticipating which debt collection efforts are more likely to pay off Credit card collections is a laborious, costly business. Agents tirelessly call and send endless texts, emails and letters trying to cajole defaulting cardholders to pay up. And since agents are typically paid on commissions, turnover soars when they are unable to collect. Knowing in advance when collections efforts will pay off — and more important, when they won’t — is therefore mission-critical work. A large US-based issuer of branded credit cards came to us looking for solutions. The firm was writing off nearly $1 billion in consumer credit debt annually; recovery efforts were taking $30 million a year from the bottom line; and turnover was averaging 40%-plus. Clearly, this situation was unsustainable. Conversations with our client revealed that an AI-based causality engine would go a long way toward improving collections activities. A causality engine is a type of AI derived from information theory. It applies a query about why something happens to a large volume of data, without preconceptions or reliance on predetermined algorithms. A causality model’s self-learning capability allows it to produce outcomes even in a volatile business climate, where it ignores outlier or missing data, and takes in new data rapidly and adjusts accordingly. Our causality AI engine separated relevant and causal factors from nonrelevant correlative ones, giving business users insights into what drives certain outcomes and allowing them to choose the next best action. Rather than developing an algorithm and model based on preconceptions of a desired result and then testing it for efficacy, the causality model adopts a hypothesis as an outcome, then parses massive amounts of data to determine what variables relate more than others to that outcome. Using this approach, we were able to help the client determine which particular strategies — texts vs. calls, days vs. evenings — were most effective. The “proof-of-value”- based solution we engineered determined that directing collections activity toward certain “personas” (i.e., customer demographic segments) would result in $5 million to $7 million in increased revenue, and as much as $10 million in annual savings. In deploying this solution, our client is beginning to see higher customer collection volumes, which has increased employee commission compensation and, at the same time, reduced turnover rates, hiring expenses and training costs. This virtuous cycle has resulted from engineering intuitions that help agents pursue “winnable cases.” Quick take
  13. 13 / Intuition engineered Restocking life-saving supplies as if by intuition Having the right supplies on hand for every surgical procedure is a tall but essential order for hospital systems large and small seeking to make the Hippocratic Oath more than mere words on a piece of parchment paper. To make this lofty goal a reality, we helped a medical products maker to revamp its end-user applications ecosystem. We also instrumented every item on its virtual line card. This not only provided hospitals with a real-time view of critical surgical consumables on hand but also empowered them to automatically refresh supplies (powered by AI/machine learning algorithms) when available products hit certain nonlinear thresholds. This is helping our client’s customers to eliminate an all-too-common pain point: getting caught short when manual order miscalculations or supply chain disruptions strike. This results, for example, in not having the right item to hand off to a surgeon’s outstretched hand and then facing the burden of manual material audits. We engineered an edge-to-cloud platform that integrated various data sources and systems to help our client’s customers monitor supply levels on Internet Protocol (IP)-instrumented products across their facilities. The IoT-enabled application allows hospitals and networks to fulfill inventory proactively through an automated dispensing system. Moreover, hospitals and provider networks can create customized subscriptions that enable them to automatically order bundles of products and services on demand. So far, the results have been quite encouraging. Our client has seen: ❙ A 25% reduction in rush orders, manual orders and restocking charges ❙ Smarter staging of required supplies prior to procedures for better surgeon, nursing and patient experiences ❙ Optimized on-premise inventory management that reduces staff time by 20 hours a week — freeing up medical personnel to spend more time on patient care When intuition is engineered into healthcare processes, patients, payers and providers all benefit. Quick take
  14. Immediately understanding your work ahead In his well-known books, Blink18 and Outliers: The Story of Success,19 Malcolm Gladwell examined the role of our minds and methods in achieving extraordinary results. In Blink, Gladwell asserts that our ability to “thin slice” information, i.e., to use limited information from a very narrow period of experience to come to a conclusion, is the route to making spontaneous decisions that are often better than carefully considered ones. In Outliers, he offers the “10,000 hours” rule as a way to understand how Paul McCartney can write “Yesterday” during a dream, or Bill Gates can create PC-DOS during a fevered week. Blink and Outliers show the bio-mechanistic processes of engineering intuition. They articulate how the mystery of intuition is no mystery at all. They show that with the right systems, the right data and the right effort, ordinary human-level performance can be exceeded. The same is becoming true for businesses and enterprises. With the right systems (machine learning-based software running on hyperscale platforms), the right data (generated by billions and billions of cloud-connected devices) and the right effort (business processes and experiences engineered with modern software development technologies), extraordinary business-level results can be achieved. By trusting data and leveraging modern software engineering principles, any organization can be a modern enterprise. Any organization can engineer intuition. These three actions (among many) are foundational to propel your enterprise toward this objective: ❙ Become obsessive about data. In our work with clients, we have a one-question litmus test to determine a company’s digital readiness: Do they act on what the data tells them? If so, this is a good sign that the company is making true progress to engineering intuition.“Execution of complex decisions” and “execution of routine, rules- based decisions” are both areas in which high- performing respondents in a recent Cognizant survey expect to see a significant transition toward machine-based decisioning in the next three years — from 16% to 24% and from 15% to 23%, respectively.20 Just as most stock trading is now undertaken by machines, complex decision- making is increasingly being done more quickly and effectively by machines. ❙ Become obsessive about automation and modernization. Put simply, if you wish to compete at Amazon cost and Google speed, you have to automate and modernize significant portions of your operations during the next few quarters. 14 / Intuition engineered
  15. Organizations that are engineering intuition are automating processes in ways that make the last 25 years of Six Sigma and business process reengineering (BPR) seem like a mere overture to a major symphony. This is foundational work, yet it is work still to be undertaken by millions of organizations around the world. McKinsey estimates the percentage of companies that have automated at least one process end-to-end at 31%.21 Moreover, only 10% of companies use modern software engineering (MSE) methods in 50% of their projects, and only 7% use MSE “at scale.”22 ❙ Become obsessive about enhancing your employees. Building modern systems is simply a means to an end. That end? Making your employees more efficient, more productive, more resilient, more valuable to their customers and more satisfied in their work. As a consumer, you will favor companies with staff who are fast, precise and seem to enjoy their work — because they are using systems that enable them to anticipate what their customers need, so they act to supply it. Blending automation with AI and other cognitive technologies frees employees from repetitive tasks and augments their capabilities, unleashing productivity and innovation. As an employee, you will want to work for an organization that offers the tools to do great work, rather than one where you are mired in drudgery and inefficiency. With these three obsessions at the forefront of your strategy and tactics, you will have the wind at your back. Without them, there is tough sledding ahead. As the author of many seminal works on decision- making, psychologist Daniel Kahneman wrote, “You’re better off if you collect information first, and collect all the information in a systematic way, and only then allow yourself to take the global view and to have an intuition about the global view. This applies in many domains.” Including, we believe, how a business should set out to engineer intuition. Engineering your future The story of human evolution is, in many ways, the story of our tools. It has been said, and attributed to various luminaries,23 that “we shape our tools and then the tools shape us.” Now our new tools are shaping who and what we are again. From the sharpened stones used by the Australopithecus Garhi of East Africa 2.5 million years ago to the NVIDIA DIGITS DevBox applied by deep-learning pioneers today, we have used tools to lift ourselves from the savannah to the Sea of Tranquility and beyond. In this odyssey, we have traveled a long way from where we started. The intuitions humans have today bear little relation to those of our ancient ancestors. Evolution has engineered them to be far superior. Now modern enterprises are realizing that a new, accelerated period of business evolution is at hand. Intuition engineered offers an opportunity presented to optimize the digital metamorphosis taking place today, which will only accelerate in the coming decades and set a new expectation for how businesses that build our world should act: with the sensibility and speed of human intuition. 15 / Intuition engineered
  16. Endnotes 1 Oxford English Dictionary definition of intuition. 2 https://en.wikipedia.org/wiki/Neuroimaging 3 https://www.youtube.com/watch?v=1UqekPMfNk4 4 Carlie Idoine and Erick Brethenoux,“When and How to Combine Predictive and Prescriptive Techniques to Solve Business Problems,” Gartner, Aug. 11, 2020, ID G00723079. 5 http://cnb.cx/3rB8KhB 6 https://www.cognizant.com/whitepapers/ai-from-data-to-roi-codex5984.pdf 7 http://bit.ly/3rzkQaV 8 http://bit.ly/3encsaY 9 https://www.cognizant.com/the-work-ahead-ai-report/ai-is-core/ 10 https://www.cognizant.com/whitepapers/ai-from-data-to-roi-codex5984.pdf 11 https://www.cognizant.com/whitepapers/disruption-data-and-analytics-modernization-in-the-covid-19-era-codex6298.pdf 12 Op. cit., endnote 9. 13 Op. cit., endnote 9. 14 https://www.cognizant.com/whitepapers/ai-from-data-to-roi-codex5984.pdf 15 https://www.cognizant.com/whitepapers/from-to-everything-you-wanted-to-know-about-the-future-of-your-work-but-were- afraid-to-ask-codex4799.pdf (page 32) 16 https://www.cognizant.com/whitepapers/becoming-a-software-centric-business-best-path-forward-in-an-uncertain-post- covid-19-world-codex5451.pdf 17 Op. cit., endnote 4. 18 https://www.amazon.com/Blink-Power-Thinking-Without/dp/0316010669 19 https://www.amazon.com/Outliers-Story-Success-Malcolm-Gladwell/dp/0316017930/ref=pd_sbs_1?pd_rd_w=xUPzm&pf_ rd_p=3ec6a47e-bf65-49f8-80f7-0d7c7c7ce2ca&pf_rd_r=18B3FN26KR8Y7M8HZTRR&pd_rd_r=ea77b30d-cbbd-49ad-930d- 2f033eb391f2&pd_rd_wg=vZoNr&pd_rd_i=0316017930&psc=1 20 https://www.cognizant.com/the-work-ahead-ai-report/ai-data-mastery/ 21 https://www.mckinsey.com/business-functions/operations/our-insights/the-imperatives-for-automation-success 22 https://www.cognizant.com/perspectives/software-engineering-how-banking-and-financial-services-can-create-more- engaging-experiences 23 https://mcluhangalaxy.wordpress.com/2013/04/01/we-shape-our-tools-and-thereafter-our-tools-shape-us/ 16 / Intuition engineered
  17. Benjamin Pring Vice President, Head of Thought Leadership, and Managing Director, Cognizant’s Center for the Future of Work Ben Pring leads Cognizant’s Center for the Future of Work and is a coauthor of the books Monster: A Tough Love Letter On Taming the Machines that Rule our Jobs, Lives, and Future; What to Do When Machines Do Everything; and Code Halos: How the Digital Lives of Peoples, Things, and Organizations Are Changing the Rules of Business. In 2018, he was a Bilderberg Meeting participant. He previously spent 15 years with Gartner as a senior industry analyst, researching and advising on areas such as cloud computing and global sourcing. Alan Alper Vice President, Thought Leadership Programs In his role as a Corporate Vice President, Alan Alper is responsible for much of Cognizant’s thought leadership, globally. This includes white papers, case studies, blogs, short-form content that appears in the Latest Thinking section of Cognizant.com (and Digital Perspectives app), videos, podcasts, live-streaming video webinars and specialty publications, such as Cognizanti, the company’s flagship thought leadership journal. Over his 30-plus year career, Alan covered the business of IT for a variety of publications, including Computerworld, Managing Automation and Computer Industry Daily, the industry’s first daily online publication. He earned his bachelor’s degree in rhetoric and communications (minoring in journalism) at the State University of New York at Albany. Acknowledgments The authors would like to thank Cognizant’s Thea Hayden, Lynne La Cascia, Irene Sandler, Andreea Roberts, Rob Brown and Euan Davis for their invaluable contributions to this report. 17 / Intuition engineered About the authors
  18. © Copyright 2021, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the express written permission of Cognizant. The information contained herein is subject to change without notice. All other trademarks mentioned herein are the property of their respective owners. Codex 6591 World Headquarters 300 Frank W. Burr Blvd. Suite 36, 6th Floor Teaneck, NJ 07666 USA Phone: +1 201 801 0233 Fax: +1 201 801 0243 Toll Free: +1 888 937 3277 European Headquarters 1 Kingdom Street Paddington Central London W2 6BD England Phone: +44 (0) 20 7297 7600 Fax: +44 (0) 20 7121 0102 India Operations Headquarters #5/535 Old Mahabalipuram Road Okkiyam Pettai, Thoraipakkam Chennai, 600 096 India Phone: +91 (0) 44 4209 6000 Fax: +91 (0) 44 4209 6060 APAC Headquarters 1 Changi Business Park Crescent Plaza 8@CBP # 07-04/05/06 Tower A, Singapore 486025 Phone: + 65 6812 4051 Fax: + 65 6324 4051 Intuition engineered™ Cognizant (Nasdaq-100: CTSH) is one of the world’s leading professional services companies, transforming clients’ business, operating and technology models for the digital era. Our unique industry-based, consultative approach helps clients envision, build and run more innovative and efficient businesses. Headquartered in the U.S., Cognizant is ranked 185 on the Fortune 500 and is consistently listed among the most admired companies in the world. Learn how Cognizant helps clients lead with digital at www.cognizant.com or follow us @Cognizant. If you’d like to learn more about how Cognizant can help you engineer your business to anticipate customer needs and act to meet them with the speed and insight of human intuition, please contact us at Inquiry@Cognizant.com.
Anúncio