SlideShare uma empresa Scribd logo
1 de 35
GOVERNO DO ESTADO DO TOCANTINS
                          SECRETARIA DA EDUCAÇÃO
                       SUPERINTENDÊNCIA DE EDUCAÇÃO
                  DIRETORIA DE ENSINO FUNDAMETNAL E MÉDIO
          COORDENADORIA DE CURRÍCULO DO ENSINO FUNDAMENTAL E MÉDIO




ORIENTAÇÕES PARA O COORDENADOR (A):


Mais um ano letivo começa e logo se apresenta um grande desafio: o
planejamento. Garantir que esse momento possibilite trocas entre especialistas,
gestores, coordenadores pedagógicos, professores e representantes da
comunidade escolar é fundamental para que as ações previstas para o ano
sejam implantadas com qualidade.
Por isso, nesse processo é importante garantir que sejam seguidas três etapas:
a elaboração, a execução e a avaliação. Na primeira, é necessário que o grupo
explicite os ideais que norteiam suas ações. Qual realidade sonhamos
vivenciar? Que tipo de pessoas formamos? Que Educação queremos para
crianças e jovens? Conhecendo o desejado, é hora de analisar a realidade
existente. Para que o planejamento seja realmente um instrumento de trabalho,
é preciso colocá-lo em prática, ou seja, agir de acordo com o que foi imaginado.
E só será possível perceber se o quadro encontrado no início do ano está
sendo transformado na direção da realidade desejada se houver algum tipo de
acompanhamento das ações.
O planejamento de ensino é o instrumento que possibilita a disseminação das
políticas públicas educacionais entre os gestores, coordenadores pedagógicos
e professores.
Quando realizar o planejamento ou formação em Matemática, por exemplo,
agendar a atividade para o dia em que a maioria dos professores da disciplina
estão fora de sala, para que haja maior aproveitamento do trabalho e possibilite
uma socialização de conhecimento mais efetiva.
É importante que no planejamento seja valorizada a realidade da escola e
oferecidas condições para que as diretrizes sejam implementadas.
Nesse contexto o papel do Suporte Pedagógico é muito importante, espera-se
que os coordenadores desenvolvam as competências relacionadas a seguir:

o Apropriar-se dos objetivos e metodologia do ensino de matemática, através
   do estudo das orientações gerais da disciplina e formação continuada,
   articulando o planejamento das aulas com: Referencial Curricular, Proposta
   Curricular, Projeto Estadual do Programa Gestar II, TPs e AAAs, Matriz do
   ENEM, Banco de dados da Olimpíada Brasileira de Matemática, Provas de
   Vestibulares da UFT, contextualização do programa de alimentação escolar
   (sugestões da equipe) e outras.

o Acompanhar o professor em sala de aula consiste na realização do
   planejamento com o professor, no acompanhamento da execução em sala
   de aula, na verificação dos resultados, na busca de alternativas para sanar
   dificuldades no ensino e na aprendizagem.

o Elaborar planejamento de aula para o desenvolvimento das habilidades
   previstas juntamente com o professor durante a hora atividade selecionando
   as atividades que correspondam à real necessidade dos alunos.

o Interferir imediatamente quando identificado os baixos rendimentos. Analisar
   com o professor os resultados de desempenho dos alunos e a partir destes
   planejar novas formas de trabalhar o conteúdo.

o Acompanhar o processo de avaliação e seus instrumentos para garantir a
   qualidade e a coerência entre o conteúdo trabalhado e as habilidades
   avaliadas, deixar clara a habilidade em cada avaliação. Orientar ao
   professor que toda atividade de sala de aula é avaliativa, seus resultados
   devem ser registrados e considerados como instrumento de monitoramento
   e acompanhamento do aluno.

o Acompanhar a aprendizagem dos alunos no cotidiano da escola, da sala de
   aula, das avaliações mensais e dos resultados do SARE. Todo processo
   avaliativo deverá ter como referência o desenvolvimento das habilidades
   previstas para o bimestre.
o Orientar as práticas do professor visando promover oportunidades de
   reflexão sobre as estratégias adotadas, redefinindo-as, em conjunto, quando
   necessário. Incentivar também a aprendizagem permanente, a troca de
   experiências e o crescimento profissional dos professores.

o Interagir com os Assessores de Currículo que acompanham sua escola.

o Orientar o trabalho dos professores para que eles atuem de acordo com o
   Referencial Curricular e Proposta Curricular, e desenvolvam planejamentos
   de   qualidade,    compreendam     profundamente     o   processo   ensino-
   aprendizagem e viabilizem o alcance das competências necessárias pelos
   alunos.

o Estudar e orientar os professores para fazer estudo dos manuais do
   Laboratório de Matemática, bem como Laboratório de Informática e assim
   levá-los a fazer aulas práticas.




EDUCAÇÃO MATEMÁTICA
A MATEMÁTICA ESCOLAR COMO INSTRUMENTO DE EDUCAÇÃO
Walderez Soares Melão-Mestre em Educação


O fracasso escolar, as repetidas reprovações e desistências têm atingido um
número bastante significativo de crianças no sistema educacional brasileiro.
Resolver tal situação requisita das autoridades responsáveis uma atuação no
sentido de fazer modificações de grande porte tanto no aparato institucional
quanto na formação de professores e professoras. É esperado também que se
tomem medidas para tentar reduzir o impacto dessas dificuldades na formação
das crianças que estão atualmente na escola, enquanto as mudanças mais
amplas e efetivas não acontecem cada professor ou professora em sua sala de
aula é agente das intervenções necessárias para que se possa oferecer um
ensino de melhor qualidade a essas crianças.
A matemática escolar é responsável por uma parcela bastante significativa
desse processo fracassado. Isto se deve ao fato de que uma visão tradicional
de ensino tem prevalecido em muitas classes, com professores e professoras
posicionados como transmissores de conhecimento, e alunos e alunas como
meros receptores. Essa visão não leva em conta que trabalhar com a
matemática escolar é trabalhar com educação, e que o objeto de trabalho da
educação é o ser humano e não a ciência em si e por si. Acrescente-se aí que
essa visão de ensino privilegia a idéia de que a matemática é ciência dura, que
tem conteúdo fixo e definido, que não abre espaço para a criatividade, para a
dúvida ou para a investigação. Em resumo, essa visão do ensino não oferece
condições favoráveis para que as crianças aprendam, apreciem e valorizem a
matemática. Com o firme objetivo de tornar possível para as crianças a
aprendizagem, o gosto e a valorização da matemática, o trabalho em sala deve
apoiar-se em uma perspectiva para o trabalho com a matemática escolar que
apresente a matemática como ciência dinâmica, que se faz e se refaz
continuamente, enquanto está sendo estudada, enquanto está sendo
experimentada. Ela se torna objeto de investigação, passando a ser possível
duvidar dela, questionar suas certezas, evidenciar os aspectos que ela não
consegue apreender. Essa forma de conceber o trabalho com a matemática
escolar será aqui denominada de educação matemática.
Não é conhecida uma receita para fazer acontecer esse trabalho nas classes,
mas é possível esboçar um elenco de condições que o favoreçam. A ordem em
que estão expressas essas condições não representa intenção de valorizar
algumas mais do que outras.
1) Para que possa ajudar seu aluno ou sua aluna a percorrer o caminho do
conhecimento matemático, de forma intensa e prazerosa, é necessário que o
professor ou professora tenha convicção de que estudar matemática, além de
necessário, pode ser uma atividade agradável e desafiadora. De outro modo,
não será tarefa fácil convencer as crianças da importância de estudar
matemática, nem da possibilidade de se constituir em atividade que pode ser
prazerosa.
2) É importante pensar na organização dos conteúdos de modo a privilegiar a
integração entre eles. Isso quer dizer, por exemplo, lidar com a geometria
ancorada na álgebra e, ao mesmo tempo, apoiando-a, permeando essa
articulação com os conteúdos referentes às medidas e à aritmética. Um
trabalho desarticulado torna-se mecânico e enfadonho, fadado ao insucesso.
3) Um modo privilegiado de fazer o trabalho articulado referido acima é estudar
matemática a partir da resolução de problemas. Os problemas devem
representar um ponto de partida na busca pelo conhecimento e não um fim, não
apenas um recurso para aplicação de métodos e técnicas.
É o problema que vai puxar o fio do conteúdo e, a partir do que a criança já
sabe, vai possibilitar encontrar caminhos para a construção de novos
conhecimentos. Esses novos conhecimentos passam a ser ferramentas para
solução de outros problemas e assim por diante. Desse modo, há uma boa
chance de os alunos e alunas construírem seus próprios significados para o
fazer matemático. A escolha dos problemas a serem utilizados precisa ser
cuidadosa: não deve ser algo muito simples, que não represente um desafio,
nem tampouco deve ser difícil, a ponto de representar um impedimento. As
crianças precisam sentir que, se fizerem um esforço possível, conseguirão
chegar a uma solução.
O estímulo do professor ou professora é decisivo para que a classe aceite
resolver desafios e sinta-se gratificada nesse trabalho.
4) A organização da classe em pequenos grupos possibilita maior interação
entre os alunos e alunas. Tal interação é fundamental na medida em que a
proximidade física promove a curiosidade pelo trabalho do outro e estimula as
discussões a respeito dos diferentes modos de solução dos problemas,
possibilitando o treino da argumentação, tão necessária na comunicação das
idéias. Esta organização é especialmente recomendada para as salas de apoio.
Reunindo as crianças que apresentam dificuldades comuns, é possível planejar
atividades diferentes para grupos com necessidades diferentes e dar
explicações para cada grupo, reduzindo a quantidade de atendimentos
necessários e possibilitando melhorar a observação do trabalho de cada um.
5) A exigência com a formalização do vocabulário e dos procedimentos
matemáticos deve ser gradativa. No ensino fundamental, especialmente nas
salas de apoio, a ênfase deve ser na organização dos registros escritos e/ou
pictóricos dos raciocínios executados, com o objetivo de torná-los claros, para
que a própria criança consiga entendê-los e explicá-los. Nas séries finais do
ensino fundamental, pode - se investir um tanto nos aspectos mais formais
desses registros, deixando ainda uma boa parcela para ser efetivada no ensino
médio.
6) O desenvolvimento das atividades deve ser feito com ênfase nos
conhecimentos que os alunos e alunas trazem das etapas anteriores de
escolarização e também das suas vidas extra-escola, tanto nas classes
regulares como e, especialmente, nas salas de apoio à aprendizagem. Se uma
criança está sendo encaminhada para esse trabalho, o professor ou professora
da sala de apoio deve recebê-la como alguém que está precisando de ajuda,
para   fazer   ou   completar   aprendizagens   que   não   conseguiu   realizar
anteriormente. Uma conversa franca com o professor ou professora regente de
classe sobre os motivos que o fizeram recomendar a sala de apoio para aquela
criança, pode ser de grande valia para definir exatamente a dificuldade
apresentada por ela e orientar a escolha das atividades a serem realizadas.
Além dos aspectos pontuados, é importante fazer algumas ponderações a
respeito da avaliação da aprendizagem, que costuma ser, com muita
freqüência, considerada uma tarefa difícil.
Entender a avaliação como apenas dar notas ou como instrumento para
classificar cada um dos aprendizes é reduzi-la a mero instrumento de punir, de
desconfiar, de subtrair a auto-estima e a autoconfiança dos alunos e alunas. A
avaliação, enquanto processo, precisa exercer o papel que lhe é devido: ser
auxiliar privilegiado da aprendizagem. Acreditamos em uma forma de avaliar
que possa servir como baliza para o trabalho da professora ou professor. No
processo de avaliar, é fundamental: que se levem em conta as diferenças
individuais, abandonando o caráter homogeneizante da avaliação seletiva. Isso
será uma meta alcançável na medida em que a professora ou professor deixar
de pautar-se pela comparação de seus alunos e alunas com um padrão ideal e
passar a considerar o processo de aprendizagem de cada um, os avanços e
conquistas que faz; que se considerem os erros como indicativos de correção
de rotas no trabalho em sala de aula e não como resultado de um processo de
aprendizagem fracassado. Desse modo, a importância dada ao erro alcança
outro patamar, passando a apontar caminhos a serem trilhados, deixando de
ser passível de punição; que se incluam no rol de instrumentos de avaliação a
observação das atividades cotidianas, coletivas e individuais, tanto escritas
como orais ou de construção, deixando de privilegiar apenas provas e testes.
Nesse sentido, pode-se dizer que a matemática escolar é um instrumento de
educação, pois quando os alunos têm a oportunidade de freqüentar uma sala
de aula em que o professor ou professora os respeita enquanto indivíduos
capazes e autônomos podem experimentar o prazer, a satisfação, o gosto bom
de estudar para aprender, para descobrir mais, para conhecer. E isso é algo
esperado no processo educativo. Quando a sala de aula de matemática passa
a ser um lugar em que alunos e alunas podem desfrutar de muitas experiências
de conhecimento, podem saborear desafios, aprendem a ter confiança em si
como solucionadores de problemas, aprendem a comunicar suas idéias
matemáticas, pode-se dizer que a matemática esteve a serviço da educação,
que é o que se espera da matemática escolar.


Primeiros dias de aulas


         Nesse primeiro momento, é importante que sejam promovidos momentos de
integração, favorecendo o grupo a se tornar, aos poucos, uma turma de verdade.
Aproveitar o primeiro dia de aula para apresentar a metodologia com a qual costuma
trabalhar, a proposta e os objetivos de estudo.
      Nesta hora, ouvir e considerar os pontos de vista dos alunos pode ajudar
bastante para manter um elo de comprometimento entre as partes.
O importante é saber que, como em toda relação, no início, são sim
estabelecidas algumas regras, que nem sempre são necessárias de serem
ditas verbalmente, pois as atitudes e os comportamentos se fazem mais
eficazes. Portanto, é indispensável que o professor assuma uma conduta de
educador e não se preocupe em querer apenas agradar seus alunos, mas fazer
o melhor para eles. Dicas:
     Para descontrair, no primeiro dia de aula, é adequado fazer algum tipo de
brincadeira em que todos possam participar.
 A apresentação é importante, mas fica mais interessante se vai além da
simples identificação dos nomes.
      Os primeiros dias de aula são favoráveis para que as regras da escola e
de convivência sejam apresentadas ou estabelecidas.
       Falar sobre a importância dos estudos, da escola e da série serve como
incentivo ao comprometimento dos alunos.
      Ouvir os alunos é indispensável e, no primeiro dia de aula, é uma bela
oportunidade para isso.
Os primeiros dias de aula são de grande importância para “quebrar” as
possíveis resistências e começar a construção de uma relação de confiança.
São, também, momentos propícios para, por exemplo, conhecer o grupo quanto
às experiências escolares já vividas; as profissões que, atualmente,
desempenham ou a forma como ganham a vida; as cidades de origem; os
grupos familiares, as expectativas em relação ao futuro etc.
Nessas conversas, vão sendo percebidos os “jeitos” de cada um - quem é muito
falante, quem é mais tímido, quem está sempre risonho, quem desponta logo
como uma liderança enfim, as características de cada um dos alunos.


Estabelecendo as regras
 No primeiro dia de aula uma de nossas tarefas como professores é ler e
explicar o regimento escolar aos alunos e durante o ano todo, quando alguma
atitude dos alunos infringe essas regras elas estão lá à mão e podemos citá-las
com toda a propriedade e portando responder por seus atos.
Se a sua escola não tem esse procedimento, você pode providenciar pelo
menos algumas ‘regras de convivência’ e deixá-las bem à vista, com letra bem
legível, para que possam ser lidas pelos alunos ou citadas por você, se for o
caso. Isso também deixa claro para os alunos que não haverá arbitrariedade, as
regras não mudarão de acordo com as circunstâncias. Convém que as regras
sejam claras e objetivas e que não sejam muitas, faça um exame de
consciência e reduza-as ao mínimo indispensável para que sejam entendidas,
lembradas e cumpridas.


ATIVIDADE DIAGNOSTICA INICIAL
A Atividade Diagnostica Inicial é um instrumento que permitirá ao professor
observar e conhecer as características do pensamento dos alunos, ou seja, o
que pensam o que sabem e o que precisam saber para aprender, a fim de
desenvolver um trabalho diversificado e possibilitar o avanço da aprendizagem
dos mesmos. Lembramos que essa atividade diagnostica deve abordar
habilidades referentes ao ano anterior presentes no Referencial Curricular e na
Proposta Curricular do Ensino Médio.
A nossa intenção é contribuir para construção e re-significação de um olhar
diferenciado para o processo de ensino e aprendizagem. Isto nos remete a
repensar a prática avaliativa numa perspectiva da ação/reflexão/ação.
Nesta direção, considera-se a Avaliação Inicial um instrumento de cunho
diagnóstico que permitirá ao professor observar e conhecer as características
do pensamento dos alunos, ou seja, o que pensam, o que sabem e o que
precisam saber para aprender, a fim de desenvolver um trabalho diversificado e
possibilitar o avanço da aprendizagem dos mesmos. Em outras palavras,
conhecer a ZONA DE DESENVOLVIMENTO REAL (refere-se àquilo que o
aluno já aprendeu e realiza com independência e compreensão sozinho), para
que se possa fazer as intervenções na ZONA DE DESENVOLVIMENTO
PROXIMAL (refere-se às capacidades que estão em processo de maturação,
mas que poderão se tornar funções consolidadas com a mediação de pessoas
mais experientes) e levar os alunos à ZONA DE DESENVOLVIMENTO
POTENCIAL (refere-se à capacidade que o aluno vai ser capaz de realizar com
independência após um aprendizado mediado por outras pessoas mais
capazes).
        Os critérios de avaliação indicam as expectativas que se quer alcançar
com a aprendizagem dos alunos, considerando as competências e habilidades
propostas para cada área de conhecimento, de modo a refletir sobre os
conteúdos conceituais, procedimentais e atitudinais, de forma que os critérios
refiram-se ao que é essencial, fundamental e indispensável para que o aluno
possa continuar aprendendo, lembrando “(...) que o período de escola é um
período de desenvolvimento intelectual do aluno em que ele precisa se preparar
para entender a linguagem em contexto, os mais diversos (...)”. (Moreto p.51-
2002)
        O professor, em sua prática pedagógica, deve ter consciência de que
essas dimensões são objetos de aprendizagem, presentes em todas as
atividades e contribuem para o desenvolvimento da capacidade dos alunos para
uma participação ativa e transformadora. Sendo necessário, portanto, observar
o tratamento, a seleção e a organização que são dados a esses componentes
essenciais no processo avaliativo.
A ação avaliativa oferece subsídios para os educadores refletirem sobre a
prática pedagógica, no intuito de procurar identificar os conhecimentos prévios
do aluno, auxiliando-o no seu processo de desenvolvimento e construção da
sua autonomia. A prática da avaliação deverá ser coerente com a metodologia
de   ensino   utilizada   pelo   professor.   Ensinar   e   avaliar   devem   ter
correspondências quanto aos níveis de complexidade adotados, ou seja, não
ser simplista ao ensinar e complexo ao avaliar e vice versa.
As quatro dimensões a seguir apresentam         um sentido amplo mediante a
necessidade de formação do educando; são interligadas e não podem ser
dissociadas umas das outras.
Dimensão           Função                                              Permite Verificar
Diagnóstica        Permite        a         verificação          do    -particularidades
(aprender          conhecimento         prévio         do    aluno,    (experiências,        valores,
a conhecer)        favorecendo         ao    professor         uma     crenças,              culturas,
                   investigação quanto ao caminho                      necessidades e interesses)
                   que      se    deve       percorrer         para    dos alunos;
                   promover a aprendizagem.                            - saberes que os alunos
                   Normalmente, essa avaliação faz-se                  possuem;
                   necessária para saber quem é esse                   -     conhecimentos        que
                   aluno,     o   que       ele     sabe,      suas    precisam ser aprendidos;
                   necessidades,              hábitos             e    -competências e habilidades
                   preferências, para depois adotar                    que        deverão         ser
                   estratégias          e          intervenções        desenvolvidas
                   pedagógicas adequadas para cada
                   um dos problemas detectados.
                   Neste     momento,         esta      avaliação
                   oportuniza ao aluno conhecer seu
                   grau de dificuldade e avanços em
                   determinadas áreas do saber.
Formativa          Acontece de forma processual e                      -     os   avanços     e    as
(aprender      a   contínua, auxiliando o processo                     dificuldades                de
fazer)             ensino          e              aprendizagem,        aprendizagem;
                   possibilitando            ao         professor      - a correção dos desvios,
                   acompanhar          a     construção          do    intervenções imediatas;
                   conhecimento             do         educando,       - o processo pedagógico.
                   intervindo de imediato no processo
                   pedagógico,              orientando            a
                   reelaboração do seu planejamento,
                   isto quer dizer, o fazer na prática.
Somativa           -É a soma de um ou mais                             - o progresso adquirido pelo
(aprender      a   resultados que acumulam os dados                    aluno no período letivo;
viver junto)       que vão permitir a ampliação das                    - parâmetros seguros para
                   possibilidades       de        aprendizagem,        qualificação     da    prática
                   considerando             cada            aspecto    pedagógica, assim como a
                   progressivo         na     produção           do    qualificação do aluno ao
                   conhecimento, procurando analisar                   final do período;
                   e     identificar    as        conquistas      e    - a prática educacional.
                   dificuldades dos alunos, professores
                   e toda a gestão pedagógica e
                   administrativa, contribuindo para o
                   desenvolvimento                da         prática
                   educacional.
Assim, podemos dizer que a avaliação do processo de ensino e aprendizagem
é uma constante Ação         Reflexão/ Reação         Ação.


A verdadeira avaliação deve ser essencialmente preventiva, uma vez que
levanta o diagnóstico da situação cognitiva do educando       para verificar   o
progresso adquirido, como também indicar as limitações a serem superadas.


Mediante o exposto:
O que avaliar durante a AVALIAÇÃO DIAGNÓSTICA INICIAL?
As competências e as habilidades já construídas ou as que estão em processo
de construção, tendo em vista objetivos e capacidades que se pretendem
avaliar, em relação a determinado objeto de conhecimento.
Para que avaliar?
Para conhecer as experiências e conhecimentos que os alunos trazem para a
escola, ou seja, seus conhecimentos prévios, seus conceitos espontâneos,
detectando o que precisa ser construído, aprofundado, sistematizado e/ou
socializado.
Quando avaliar?
Nas primeiras semanas de cada ano letivo.
Como avaliar?
Através de conversas informais, auto-avaliação, avaliações escritas, ficha de
observação sistemática, dentre outros instrumentos, de acordo com as
competências e habilidades que se quer avaliar em cada segmento de ensino.
O que fazer com os resultados?
  Planejar situações didáticas que favoreçam o desenvolvimento das
competências e habilidades que ainda não foram construídas ou que estão em
processo de construção, permitindo ao professor realizar intervenções reais e
significativas através de trabalhos diversificados.
PROCEDIMENTOS
PROFESSOR (A):
Determine alguns dias para fazer o acolhimento dos novos e veteranos alunos e
estabelecer vínculos entre professor-aluno, aluno-aluno e aluno conhecimento,
assim como para fazer dinâmicas de integração do grupo utilizando música,
jogos, brincadeiras, dentre outros.
Sugerimos a aplicação da avaliação diagnóstica inicial na 1ª quinzena do ano
letivo, com alternância das situações de aplicação das atividades, planejadas
por você, o que contribuirá para evitar, por parte dos alunos, a idéia de uma
avaliação exaustiva e estressante.
Tem a finalidade de reconhecer os conhecimentos, saberes, experiências e
conceitos espontâneos que os alunos que estão iniciando trazem para escola,
assim como saber o que assimilaram durante os anos anteriores de
escolarização.
É importante frisar que para ensinar a ler, escrever e contar, é necessário que a
professora    reconheça    e   compreenda    este   conjunto     de   informações
previamente, a fim de que possa transformá-las em recursos para planejar
situações didáticas que atendam às reais necessidades de aprendizagem dos
alunos, e não para categorizá-los como tendo imaturidade emocional ou
dificuldades de aprendizagem, originárias das suas condições bio-psico
sócioeconômico-cultural.


SUGESTÃO DE AVALIAÇÃO DIAGNÓSTICA:
    AVALIAÇÃO DE ENTRADA DO GERTAR II, Matriz de Referência de
Matemática - Saeb / Prova Brasil - Tópicos e Descritores, Provas do ENEM,
Banco de dados da OBMEP, bem como link com maiores esclarecimentos
sobre a referida Prova para que seja utilizada juntamente com o Referencial
Curricular e Proposta Curricular EM durante o Planejamento nas Unidades
Escolares objetivando melhorar o processo de ensino e aprendizagem.
A avaliação é um ato preventivo, sendo para tanto, necessário que o professor
conheça o nível de desempenho do aluno em cada etapa do processo
educativo e compare essa informação com as competências e habilidade
relevante a serem desenvolvidas, em relação aos conteúdos trabalhados e,
finalmente, tome as decisões que possibilitem atingir os resultados esperados,
pois seja a avaliação diagnóstica, formativa, emancipatória, somativa, ela
deverá necessariamente contribuir para o desenvolvimento do educando, não
limitando apenas como instrumento para formalizar e legitimar          uma nota
classificatória.
DICAS PARA SE ELABORAR UMA SITUAÇÃO PROBLEMA
•    A situação problema a ser elaborada deve levar o aluno a:
 Comparar seus resultados com os de outros alunos;
 Validar seus procedimentos;
 Elaborar um ou vários procedimentos de resolução (como, por exemplo,
    realizar simulações, fazer tentativas, formular hipóteses).


•   O que deve ser evitado:


O problema certamente não é um exercício em que o aluno aplica, de forma
quase mecânica, uma fórmula ou um processo operatório. Só há problema se o
aluno for levado a interpretar o enunciado da questão que lhe é posta e a
estruturar a situação que lhe é apresentada.
•   Comece trabalhando com problemas simples e, pouco a pouco, apresente
    problemas mais complexos. Isso fortalece a auto-estima e a autoconfiança
    do aluno.
•   Valorize o processo, a maneira como o aluno resolveu o problema e não
    apenas o resultado.
•   Estimule o aluno a fazer a verificação da solução, a revisão do que fez.
•   Deixe claro que é permitido errar. Aprendemos muito por tentativa e erro e
    não por tentativa e acerto. Quando está implícito que é proibido errar, o
    aluno não se arrisca não se aventura, não gera novas idéias, não explora
    caminhos novos e diferentes.


Pesquisa é coisa séria.
Antes de pedir uma pesquisa como tarefa de casa, é preciso ensinar os alunos
a realizá-la.
Muitos professores trocam os exercícios do livro didático por pesquisas,
pensando estar propondo uma tarefa de casa melhor. Se esquecem, porém, de
ensinar o aluno a executá-la. "A pesquisa é uma das melhores maneiras de se
aprender", diz a escritora e orientadora educacional Ruth Rocha, autora do livro
Pesquisar e Aprender (Scipione).
Antes de pedir uma pesquisa, explica Ruth, o professor deve conhecer seus
alunos e verificar o material de que dispõem. "Cheque o acervo das bibliotecas
da escola e do bairro", recomenda. Só assim, você poderá indicar com precisão
a bibliografia para a turma. Escolhido o tema, limite o seu alcance. Se o assunto
for amplo, como Independência do Brasil, determine apenas um aspecto a ser
desenvolvido.
Os alunos têm dificuldade para fazer sínteses. Comece indicando pequenos
capítulos de livros que falem sobre o tema em estudo e peça que o resumam
em vinte linhas. Outro caminho é formular perguntas. "Respondendo com suas
próprias palavras, o aluno irá ao centro da questão", diz Ruth.
Em Pesquisar e Aprender, Ruth Rocha ensina como fazer uma boa pesquisa.
Passe estas dicas a seus alunos:
•   Roteiro - Formule perguntas sobre o tema da pesquisa.
•   Cronograma - Estabeleça etapas de acordo com o prazo.
•   Caderno - Anote as informações em um caderno. Folhas soltas se perdem.
•   Plano de pesquisa - Relacione os nomes de pessoas a serem entrevistadas,
    além de dicionários, enciclopédias, atlas, livros didáticos, jornais e revistas
    que for utilizar.
•   Síntese - Em vez de copiar trechos dos livros, escreva um texto sintetizando
    o assunto.
•   Apresentação - Coloque título, nomes dos autores, índice, textos, fotos e
    bibliografia nos trabalhos escritos.


Orientações importantes para o aluno
•   Procure pesquisar em fontes (livros, apostilas, enciclopédias e sites) confiáveis
    ou com indicação de seu professor. Lembre-se que, principalmente na Internet,
    existem informações corretas e incorretas.
•    Não transforme seu trabalho numa simples cópia de livros ou sites. Usando
    deste artifício, além de você não aprender nada, ainda corre o risco de tirar
    uma nota baixa.
•    Leia o material pesquisado, faça um resumo destacando as principais
    informações levantadas e escreva um texto com suas próprias palavras.
•    Um bom trabalho começa por uma boa capa. Coloque nela todas as
    informações necessárias, tais como: nome, número, série, nome do professor e
    da matéria, título do trabalho, data e outras informações solicitadas pelo
professor. A estética ajuda muito e causa uma boa impressão, portanto,
    capriche na organização da capa.
•    Cuidado com a redação do trabalho. Faça sempre uma correção com o
    propósito de corrigir erros ortográficos e gramaticais. Peça ajuda os pais ou
    responsáveis.
•   Peça para algum amigo ou parente para ler seu trabalho. Para você o trabalho
    pode estar muito bom e claro, mas uma segundo opinião é sempre bem vinda.
•   Quando utilizar imagens procure sempre colocar legenda. As fotos e figuras
    não servem somente para ilustrar o trabalho, mas também são ótimas
    referências e fontes de informação.
•   Caso o trabalho seja digitado, procure utilizar fonte arial ou times new roman
    (tamanho 12). Os títulos e subtítulos podem ser em tamanho 14 e negrito. Caso
    seja pedido por escrito.
Divida seu trabalho em partes:
          Todo trabalho de pesquisa deverá ter quatro itens indispensáveis e os
anexos como opcional:
Introdução, Desenvolvimento, Conclusão, Bibliografia e Anexos (opcional).
É claro que estamos falando de uma pesquisa escolar que seja realizada ou
proposta para alunos de 9 a 14 anos aproximadamente, ou seja, do 4º ao 9º
ano. Também pode ser trabalhado com as séries do ensino médio.
1- Introdução: deve apresentar a idéia geral do trabalho: o que se pretende
abordar, quais serão as partes principais, como será a organização, quais os
objetivos.
2- Desenvolvimento: é a parte nuclear do trabalho, daí muitos autores
denominá-lo “corpo do trabalho”. É a parte mais extensa da redação, pois dever
conter a descrição e análise do assunto além da argumentação pertinente, ou
seja, a validade das idéias descritas. Muita atenção agora. Esse é o momento
mais importante de uma pesquisa. Em linguagem pessoal e comunicativa,
ordene suas anotações de maneira lógica, seguindo o roteiro.
A partir do roteiro, tente alinhavar todas as anotações feitas anteriormente,
reescrevendo-as com suas palavras e encaixando-as nos itens que você se
propõe a desenvolver. Lembre-se: em um trabalho bem-feito, os textos são bem
encadeados e os conteúdos, relacionados. Não perca tempo escrevendo coisas
que estão além do que foi proposto – aquilo que chamamos "fugir do tema".
Depois de tudo escrito, faça um balanço do material, verificando se a redação
final está compreensível e bem encadeada, se você já escreveu tudo o que
sabe e acha importante sobre o tema ou se ainda falta alguma coisa.
Se mencionar frases ou trechos de algum livro, não se esqueça de fazê-lo entre
aspas, indicando a fonte (nome do autor, título do livro, número da edição,
editora, local, data da publicação, volume e número da página).
3- Conclusão: não admite nenhuma idéia, nenhum fato ou argumento novo,
pois é a síntese interpretativa do desenvolvimento. Por ser síntese ou resumo,
deve ser breve, exata, concisa.
4- Bibliografia: A bibliografia é fundamental e não pode faltar em nenhum
trabalho de pesquisa. A bibliografia deve incluir os dados sobre todo o material
que você utilizou para desenvolver a pesquisa, incluindo endereços dos sites
consultados                                     na                                   internet.
Ela deve ter os seguintes dados, seguindo a ordem em que serão citados:
autor, título da obra, edição, local da publicação, editora e ano da publicação.
Ao        todo,       normalmente,        são        3       itens          na    bibliografia.
•-Livros: comece citando o título da obra, siga com o nome do autor ou autores,
identifique       a   editora   que   a   publicou       e    a      data    de   publicação.
EXEMPLOS: 1. CARNEIRO LEÃO, Emmanuel. Aprendendo a pensar. 2ª ed.
Petrópolis: Vozes, 1989. 268p.
•-Artigos de revistas e jornais: escreva os títulos dos artigos (como os capítulos
dos livros), os nomes das publicações, números das edições e as datas de
publicação.
EXEMPLO: FREITAS, Juarez. Diálogo com o pensamento jurídico de Norberto
Bobbio. Ventas, Porto Alegre, v. 36, n. 141, p. 63-78, mar/mai. 1991.
• Páginas da Internet - Em primeiro escrever o título da página e após a palavra
"em" o endereço completo em letras destacadas.


PARA O PLANEJAMENTO


O planejamento é um processo de racionalização, organização e coordenação
da ação docente, articulando a atividade escolar e a problemática do contexto
social.
A ação de planejar, portanto não se reduz ao simples preenchimento de
formulário para controle pedagógico; deve ser uma atividade consciente de
previsão das ações docentes, fundamentadas em opções político-pedagógicas,
e tendo como referência permanente as situações didáticas concretas (ou seja,
problemática social, econômica, política e cultural que envolve a comunidade
escolar que interagem no processo de ensino).


Funções do Planejamento
- Assegurar a racionalização, organização e coordenação do trabalho docente,
permitindo ao professor e escola um ensino de qualidade, evitando a
improvisação e a rotina;


- Explicitar princípios, diretrizes e procedimentos do trabalho docente que
assegurem a articulação entre as tarefas da escola e as exigências do contexto
social e do processo de participação democrática.


- Expressar os vínculos entre o posicionamento filosófico, político-pedagógico e
profissional e as ações efetivas que o professor irá realizar na sala de aula,
através de objetivos, conteúdos, métodos e formas organizativas do ensino;


-Assegurar a unidade e a coerência do trabalho docente, inter-relacionando: os
objetivos (para que ensinar), os conteúdos (o que ensinar), os alunos (a quem
ensinar), os métodos e técnicas (como ensinar) e a avaliação.


- Atualizar o conteúdo do plano, aperfeiçoando-o em relação aos progressos
feito no campo de conhecimentos e a experiência cotidiana;


- Facilitar a preparação das aulas: selecionar o material didático em tempo
hábil, saber o que professor e aluno devem executar, replanejar o trabalho
frente a novas situações que parecem no decorrer das aulas.


Para que os planos sejam efetivamente instrumentos para ação, devem:
- ser um guia de orientação;
- apresentar uma ordem seqüencial;
- ter objetividade;
- ter coerência;
- apresentar flexibilidade;


Tipos de planos:


Plano da instituição: é um documento mais global que expressa as ligações
entre o projeto pedagógico da escola com os planos de ensino propriamente
dito;


Plano da disciplina (em algumas escolas, chamado plano de unidades): é um
documento elaborado para um ano ou semestre, dividido por unidades
seqüenciais,       no   qual   aparecem   objetivos   específicos,   conteúdos   e
encaminhamento                                                       metodológico.


Plano de aula: é a previsão do desenvolvimento do conteúdo para uma aula ou
conjunto de aulas e tem um caráter específico.


Recomendações:


- Os planos precisam estar vinculados à prática, por isso muitas vezes precisam
ser revistos e refeitos.
- O professor precisa ir criando e recriando sua própria didática, enriquecendo
sua prática profissional e ganhando mais segurança.
- O planejamento deve ser encarado também como uma oportunidade de
reflexão e avaliação da sua prática.


 PLANEJAMENTO DE AULA:


A aula é a forma predominante de organização didática do processo de ensino.
É na aula que organizamos ou criamos as situações docentes, isto é, as
condições e meios necessários para que os alunos assimilem ativamente
conhecimentos, habilidades e desenvolvam suas capacidades cognoscitivas.
O plano de aula é o detalhamento do plano de ensino. As unidades didáticas e
subunidades (tópicos) que foram previstas em linhas gerais são agora
especificadas e sistematizadas para uma situação didática real. A preparação
da aula é uma tarefa indispensável e, assim como o plano de ensino, deve
resultar num documento escrito que servirá não só para orientar as ações do
professor como também para possibilitar constantes revisões e aprimoramentos
de ano para ano. Em todas as profissões o aprimoramento profissional depende
da acumulação de experiências conjugando a prática e a reflexão criteriosa
sobre a ação e na ação, tendo em vista uma prática constantemente
transformadora para melhor.
Na elaboração do plano de aula, deve-se levar em consideração, em primeiro
lugar, que a aula é um período de tempo variável. Dificilmente completamos
numa só aula o desenvolvimento de uma unidade didática ou tópico de unidade,
pois o processo de ensino e aprendizagem se compõe de uma seqüência
articulada de fases.


A IMPORTÂNCIA DOS JOGOS MATEMÁTICOS COMO ALTERNATIVA
DIDÁTICA     PARA      O   DESENVOLVIMENTO      DAS    HABILIDADES      NÃO
DESENVOLVIDAS
Ensinar matemática é desenvolver o raciocínio lógico, estimular o pensamento
independente, a criatividade e a capacidade de resolver problemas. Nós como
educadores matemáticos, devemos procurar alternativas para aumentar a
motivação para a aprendizagem, desenvolver a autoconfiança, a organização,
concentração, atenção, raciocínio lógico-dedutivo e o senso cooperativo,
desenvolvendo a socialização e aumentando as interações do indivíduo com
outras pessoas.
Os jogos, se convenientemente planejados, são um recurso pedagógico eficaz
para a construção do conhecimento matemático. Referimo-nos àqueles que
implicam conhecimentos matemáticos.
O uso de jogos e curiosidades no ensino da Matemática tem o objetivo de fazer
com que os adolescentes gostem de aprender essa disciplina, mudando a
rotina da classe e despertando o interesse do aluno envolvido. A aprendizagem
através de jogos, como dominó, palavras cruzadas, memória e outros permite
que o aluno faça da aprendizagem um processo interessante e até divertido.
Para isso, eles devem ser utilizados ocasionalmente para sanar as lacunas que
se produzem na atividade escolar diária. Neste sentido verificamos que há três
aspectos que por si só justificam a incorporação do jogo nas aulas. São estes: o
caráter lúdico, o desenvolvimento de técnicas intelectuais e a formação de
relações sociais.
Jogar não é estudar nem trabalhar, porque jogando, a aluno aprende,
sobretudo, a conhecer e compreender o mundo social que o rodeia.
Os jogos são educativos, sendo assim, requerem um plano de ação que
permita a aprendizagem de conceitos matemáticos e culturais de uma maneira
geral. Já que os jogos em sala de aula são importantes, devemos ocupar um
horário dentro de nosso planejamento, de modo a permitir que o professor
possa explorar todo o potencial dos jogos, processos de solução, registros e
discussões sobre possíveis caminhos que poderão surgir.
Os jogos podem ser utilizados pra introduzir, amadurecer conteúdos e preparar
o aluno para aprofundar os itens já trabalhados. Devem ser escolhidos e
preparados com cuidado para levar o estudante a adquirir conceitos
matemáticos de importância.
Devemos utilizá-los não como instrumentos recreativos na aprendizagem, mas
como facilitadores, colaborando para trabalhar os bloqueios que os alunos
apresentam em relação a alguns conteúdos matemáticos.
Devemos     escolher   jogos      que   estimulem   a   resolução   de   problemas,
principalmente quando o conteúdo a ser estudado for abstrato, difícil e
desvinculado da prática diária, não nos esquecendo de respeitar as condições
de cada comunidade e o querer de cada aluno. Essas atividades não devem ser
muito fáceis nem muito difíceis e ser testadas antes de sua aplicação, a fim de
enriquecer as experiências através de propostas de novas atividades,
propiciando mais de uma situação.


Os jogos trabalhados em sala de aula devem ter regras, esses são classificados
em três tipos:
•   jogos estratégicos, onde são trabalhadas as habilidades que compõem o
    raciocínio lógico. Com eles, os alunos lêem as regras e buscam caminhos
    para atingirem o objetivo final, utilizando estratégias para isso. O fator sorte
    não interfere no resultado;
•    jogos de treinamento, os quais são utilizados quando o professor percebe
     que alguns alunos precisam de reforço num determinado conteúdo e quer
     substituir as cansativas listas de exercícios. Neles, quase sempre o fator
     sorte exerce um papel preponderante e interfere nos resultados finais, o que
     pode frustrar as idéias anteriormente colocadas;
•    jogos geométricos, que têm como objetivo desenvolver a habilidade de
     observação e o pensamento lógico. Com eles conseguimos trabalhar figuras
     geométricas, semelhança de figuras, ângulos e polígonos.
Os jogos com regras são importantes para o desenvolvimento do pensamento
lógico, pois a aplicação sistemática das mesmas encaminha a deduções. São
mais adequados para o desenvolvimento de habilidades de pensamento do que
para o trabalho com algum conteúdo específico. As regras e os procedimentos
devem ser apresentados aos jogadores antes da partida e preestabelecer os
limites e possibilidades de ação de cada jogador. A responsabilidade de cumprir
normas e zelar pelo seu cumprimento encoraja o desenvolvimento da iniciativa,
da mente alerta e da confiança em dizer honestamente o que pensa.
Os jogos estão em correspondência direta com o pensamento matemático. Em
ambos      temos    regras,   instruções,   operações,   definições,   deduções,
desenvolvimento, utilização de normas e novos conhecimentos (resultados).


O Laboratótio de Matemática Brink Mobil
        Uma vez que muitas escolas da rede Pública de Ensino do Estado do
Tocantins contam com um Laboratótio de Matemática Brink Mobil, os
Professores têm a oportunidade de aprimorar seus conhecimentos profissionais
de modo a oferecerem uma aula de qualidade, por meio da proposição e
desenvolvimento de atividades que instiguem a curiosidade dos alunos.
• O Laboratótio de Matemática Brink Mobil se constitui de um espaço onde
reúnem-se recursos didáticos como jogos educativos (tangran, dominós com
operações, Torre de Hanói, entre outros), instrumentos didáticos (ábaco,
material dourado, sorobã, entre outros), recursos áudio-visuais e tecnológicos
(vídeos, documentários, calculadoras científicas, softwares educativos, entre
outros), bem como bibliografia de pesquisa e prática do ensino da Matemática.
    De acordo com o manual do Professor (Laboratório Didático da Matemática
Brink Mobil, sd, p. 2), “o Laboratótio de Matemática Brink Mobil é um espaço
aberto para investigações de diversas correntes metodológicas e concepções
de ensino.” Nele constam sugestões para elaboração de atividades enfatizando:
a) necessidade do planejamento;
b) o mapeamento dos conceitos a serem trabalhados;
c) a seleção de jogos para desenvolver os conceitos;
d) a seleção de situações-problema com os conceitos a serem trabalhados;
e) o registro do desenvolvimento das atividades e os resultados obtidos;
f) a importância do trabalho em equipe e compartilhamento das experiências
com Assessores da própria escola. (id ibidem)


      Esse manual é de suma importância que o Professor conheça e faça
estudo, pois, além de apresentar uma série de sugestões e indicar os materiais
disponíveis, possibilita autonomia no processo de ensino, por meio da
proposição de atividades por eles pensadas, elaboradas e sistematizadas.


O ESTUDO DA TABUADA COMO FACILITADOR PARA RESOLUÇÃO DE
SITUAÇÃO PROBLEMA ENVOLVENDO AS QUATRO OPERAÇÕES
A palavra tabuada vem da Idade Média, quando surgiram as tábuas com
resultados de somas de parcelas iguais. Virou pesadelo de crianças durante
muito tempo, obrigadas a decorar as multiplicações para não sofrerem punições
nas escolas. A decoreba da tabuada era freqüente no modelo de educação
tradicional, em que primeiro se aprendia o conteúdo, depois se descobria para o
que ele servia.
A tabuada continua do mesmo jeito. E as crianças continuam precisando saber
quanto é 2x3, 7x8, 9x4. Mas não se usa mais o verbo decorar nas escolas. A
educação atual fala em memorizar a tabuada, mas com a condição de que ela
seja compreendida antes. Professores inventam todo tipo de jogos, brincadeiras
e materiais para fazer os alunos entenderem o conceito da multiplicação e seu
uso no cotidiano.
ANEXOS:


SUGESTÕES:


Sugestão de Plano de Aula


Competência
Ser capaz de ver que a geometria, contribui para aprendizagem dos números e
medidas, estimulando a observação, a percepção de semelhanças e diferenças,
a construção, a aplicação de propriedades e a transformação de figuras.
Eixo
Espaço e forma


Habilidades
Ampliar e reduzir figuras, bem como reconhecer as características de figuras
semelhantes.
Descritor 7/Matriz do Saeb
Reconhecer semelhança de figuras


Conteúdo
Semelhança
Transposição didática:Semelhança, atividade do TP3, página 102.
Atividade da prova Brasil 2009.
Ampliando o triângulo ABC, obtém-se um novo triângulo A’B’C’, em que cada
lado é o dobro do seu correspondente em ABC.
Em figuras ampliadas ou reduzidas, os elementos que conservam a mesma
medida são
(A) as áreas.
(B) os perímetros.
(C) os lados.
(D) os ângulos.


Análise
O trabalho de ampliação e redução de figuras traz ao aluno a noção de
semelhança de figuras planas (homotetia). Esse tipo de atividade contribui para
a observação de que é a manutenção dos ângulos dos vértices o que permite
às formas ser correspondentes.


Orientações
O uso de diferentes malhas (quadriculada, retangular etc.) ajuda a compreender
que quando se alteram os ângulos de uma figura há uma distorção na que é
obtida e elas deixam de ser semelhantes. Complemente o trabalho nessa área
com instrumentos geométricos com a utilização de softwares de geometria
dinâmica. Um exemplo é o Geogebra (com download gratuito). A vantagem
desse recurso está na rapidez da construção e na possibilidade de alteração de
uma determinada figura e a verificação, quase imediata, da consequência sobre
a que foi construída.
Paradidático: Para que serve a matemática? Semelhança, de Imenis, Jakubo e
Lelis.
Neste     livro a noção de semelhança é desenvolvida por meio de recursos
visuais: ampliação e redução de fotos, miniaturas de carros e naves espaciais,
zoom em monitor de computador, adaptação de filmes de cinema para telas de
televisão, projeção de slides, efeitos especiais com câmaras de vídeo, formatos
de folha de papel.
Utilizar atividades dos cadernos Atividades de Apoio ao Aluno( AAA).
AAA3 – Aula 6 e 7
AAA5 – Aula 8
Utilizar o banco de questões da Olimpíada Brasileira das Escolas Públicas
-OBMEP que estão relacionados a habilidades trabalhadas no planejamento.
Apropriar-se do manual e utilizar o Laboratório de Matemática caso sua escola
já possui.
Usar atividades do livro didático utilizado na escola.


Avaliação
Provas, debates, trabalhos em classe e extraclasse, trabalhos em grupos,
avaliando a participação ativa nas atividades propostas, o poder matemático do
aluno, a resolução de problemas, a comunicação e o raciocínio do aluno, a
compreensão dos conceitos, procedimento matemático, e, principalmente, o
desenvolvimento do alunos servirá como diagnóstico do processo ensino
aprendizagem, que irá nortear os novos rumos do trabalho e será um suporte
pára verificação da necessidade de uma nova metodologia ou de um processo
de recuperação.


ATIVIDADE CONSTRUINDO A TABUADA
Professor: Alexandre Costa Barros


Uma das maiores dificuldades no ensino da tabuada é que o aluno entenda que
a multiplicação é a soma de uma mesma parcela varias vezes e essa atividade
pretende facilitar esse entendimento.


REGRAS:
•   Terá que ser trabalhado com os alunos sobre o posicionamento do que são
    linhas e colunas.
•   Para saber o resultado da multiplicação o aluno terá que localizar o ponto de
    encontro da linha com a coluna e contar quantos retângulos temos naquela
    região.
X   1   2   3   4   5   6   7   8   9   1
    (   (   (   (   (   (   (   (   (   0
    C   C   C   C   C   C   C   C   C   (
    )   )   )   )   )   )   )   )   )   C
                                        )
1
(
L
)
2
(
L
)
3
(
L
)
4
(
L
)
5
(
L
)
6
(
L
)
7
(
L
)
8
(
L
)
9
(
L
)
1
0
(
L
)
Assim ele deve montar a tabuada de multiplicação casa por casa.
4x1 = 4 (4 é o número de retângulos da região de encontro entre a linha 4 e a
coluna 1)


X       1      2       3      4       5      6       7      8       9      1
        (      (       (      (       (      (       (      (       (      0
        C      C       C      C       C      C       C      C       C      (
        )      )       )      )       )      )       )      )       )      C
                                                                           )
1
(
L
)
2
(
L
)
3
(
L
)
4
(
L
)
5
(
L
)
6
(
L
)
7
(
L
)
8
(
L
)
9
(
L
)
1
0
(
L
)

4x2 = 8 (8 é o número de retângulos da região de encontro entre a linha 4 e a
coluna 2)
4x3 =
4x4 =
4x5 =
4x6 =
4x7 =
4x8 =
4x9=
4x10 =
O objetivo principal é que quando ele não se lembrar do resultado de uma
multiplicação ele tenha recursos de encontrar esse valor sem ter que olhar em
uma tabuada ou utilizar uma calculadora.
Exemplo: Se eu não sei o resultado de uma multiplicação tento lembrar o
resultado de multiplicações anteriores a essa para encontrar o resultado
desejado.
9x5 = 45
9x6 = ?
9x7 = ?
Fazendo o uso dessa atividade esperamos que o aluno possa ter o seguinte
raciocínio.


9x5 = 45
9x6 = 45 + 9 = 54
9x7 = 54 + 9 = 63




REFERENCIAS BIBLIOGRAFICAS


BRASIL. MEC. – Parâmetros Curriculares Nacionais 6° a 9° anos. 1997.
Matemática.
GROENWALD, Claudia Lisete Oliveira e TIMM, Ursula Tatiana . Utilizando
curiosidades e jogos matemáticos em sala de aula. Disponível em:
www.somatematica.com.br. Acessado em: 17 de dezembro de 2009 as 17:00h.
SOUZA, José Maria de Jesus, CHAQUIAM, Miguel e SÁ, Pedro Franco. O
Domínio das quatro operações na visão de professores do PARÁ. Paginas 69 a
76.                              Disponível                              em:
www.nead.unama.br/site/bibdigital/pdf/artigos_revistas/272.pdf. Acessado em:
17 de dezembro de 2009 as 17:12h.
TOCANTINS, Secretaria de Estado da Educação e Cultura, Referencial
Curricular do Ensino Fundamental. Palmas, dezembro de 2009.
http://www.dominiopublico.gov.br/download/texto/me4552.pdfhttp://paixaodeedu
car.blig.ig.com.br/
http://www.bernerartes.com.br/ideiasedicas/dinamicas/index.htm
http://64.233.169.104/search?
q=cache:Ghb1AnXUoisJ:www.analuciapsicologa.com/Dinamicas.pdf+
%22dinamicas%22+primeiro+dia+de+aula&hl=pt-
BR&ct=clnk&cd=21&gl=br&lr=lang
www.teofilorezende.com.br/mural/artigos/pesquisa.doc
http://festadosaber4serie.blogspot.com/2008/05/como-fazer-uma-pesquisa-
escolar.html
http://portal.mec.gov.br/seb/arquivos/pd…
BORDENAVE, Juan Díaz; PEREIRA, Adair Martins. Estratégias de ensino-
aprendizagem. 11 ed. Petrópolis: Vozes, 1989. p. 117-118.
TOCANTINS. Secretaria da Educação e Cultura do Estado (2007): Proposta
Curricular Ensino Médio. Tocantins.


DINÂMICAS


Direitos e deveres


        Já nos primeiros dias, estabelecer os famosos combinados pode evitar
problemas e garantir um bom relacionamento ao longo do ano. Comece
discutindo com a garotada o que espera do ano que se inicia e qual a melhor
maneira de trabalhar em grupo para alcançar esses objetivos. Formule com
todos    (e escreva no quadro) a continuação das seguintes frases: "Temos
direito a..." e "Somos todos responsáveis por...". Lembre-se de que a
declaração de direitos e deveres deve ser inspirada nas normas gerais da
escola - que os alunos precisam conhecer - e ser focada no que deve ser feito,
e não no que é proibido. A etapa seguinte é descobrir o que as outras turmas
da escola combinaram. A troca de informação, além de enriquecer os tratados
feitos por eles, promove a integração com colegas de outras classes. Ao
terminar, peça a cada um que copie os tratados e cole na agenda. Assim, o
texto estará sempre à mão. Além disso, os estudantes podem produzir dois
grandes cartazes em cartolina para pendurar na parede da classe.
O que vamos aprender


      Todo ano é a mesma coisa: o que esperar da série que se inicia? Uma
situação desconhecida sempre dá um friozinho na barriga. Para baixar a
ansiedade da meninada, registre no quadro algumas dúvidas e expectativas do
grupo sobre o trabalho na nova classe e convide alguns estudantes da série
seguinte para respondê-las. Deixe que falem livremente sobre as suas
impressões e vivências como ex-aluno da série. Esse intercâmbio, logo no
início, deixa a turma mais tranqüila e segura e valoriza a cooperação e a
interação entre diferentes classes.
GOVERNO DO ESTADO DO TOCANTINS
                                               SECRETARIA DE EDUCAÇÃO


PLANO DE AULA

DADOS DE IDENTIFICAÇÃO: MATEMÁTICA
COLÉGIO :

PROFESSOR:

SUPORTE PEDAGÓGICA:

MÊS:                                               DATA :
SÉRIE                 CONTEÚDOS/ SEMANAIS

1º ANO:               Competência



                      Habilidade:




                      Eixo Temático:



                      Metodologia:
2ºANO:                Competência



                      Habilidade:




                      Eixo Temático:



                      Metodologia:




3ºANO:                Competência



                      Habilidade:




                      Eixo Temático:



                      Metodologia:



MATERIAL PLANEJADO DA SEMANA
AGENDAMENTO            APOSTILA        LIVRO/PG   LISTA DE EXERCÍCIO   ATIVIDADES P/ CASA
DATA                   ASSINATURA        H/ CHEGADA   H/ SAÍDA                    ASSINATURA SUPORT.PEDG



AVALIAÇÃO:             DIA               TRABALHOS    RECUPERAÇÃO                 PROJETOS DESENVOLVIDOS




ANOTAÇÃO DO SUPORTE PEDAGÓGICO:



       Alexandre Costas Barros                             Claudia Alves Mota de Sousa
       Assessor de Currículo de Matemática                 Assessora de Currículo de Matemática



       Dionizio Pereira Neto                               Suely Maria de Castro Brandão
       Assessor de Currículo de Matemática                 Assessora de Currículo de Matemática

Mais conteúdo relacionado

Mais procurados

Texto de apresentação do PIP EF
Texto de apresentação do PIP EFTexto de apresentação do PIP EF
Texto de apresentação do PIP EFpedagogicosjdelrei
 
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...Miltão Ribeiro
 
Relatório de Atividades 2008
Relatório de Atividades 2008Relatório de Atividades 2008
Relatório de Atividades 2008lealtran
 
Pip E.E. Pedro Domingues
Pip   E.E. Pedro DominguesPip   E.E. Pedro Domingues
Pip E.E. Pedro DominguesÉdlon Marcus
 
Conheça nosso Plano de Ação
Conheça  nosso Plano de AçãoConheça  nosso Plano de Ação
Conheça nosso Plano de Açãoguest90f41f
 
Jornada pedagógica ii semestre pauta geral
Jornada pedagógica    ii semestre pauta geralJornada pedagógica    ii semestre pauta geral
Jornada pedagógica ii semestre pauta geralSimone Lucia
 
17 plano de acompanhamento pedagógico
17 plano de acompanhamento pedagógico17 plano de acompanhamento pedagógico
17 plano de acompanhamento pedagógicoCesé Bragança
 
Pip 2012 reunião de pais 05 dezem.pptx2 cópia
Pip 2012 reunião de pais 05 dezem.pptx2   cópiaPip 2012 reunião de pais 05 dezem.pptx2   cópia
Pip 2012 reunião de pais 05 dezem.pptx2 cópiaRosalva Aparecida Costa
 
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha finalCelia Leite
 
Projeto diario de classe ed. infantil uyara assunção - Timon
Projeto diario de classe ed. infantil   uyara assunção - TimonProjeto diario de classe ed. infantil   uyara assunção - Timon
Projeto diario de classe ed. infantil uyara assunção - TimonUyara Santana Assunção
 
Trabalho metodol matematica: brincando de mercadinho
Trabalho metodol matematica: brincando de mercadinhoTrabalho metodol matematica: brincando de mercadinho
Trabalho metodol matematica: brincando de mercadinhoJomari
 
Plano De IntervençãO PedagóGica[Sre]
Plano De IntervençãO PedagóGica[Sre]Plano De IntervençãO PedagóGica[Sre]
Plano De IntervençãO PedagóGica[Sre]Justiniano Fonseca
 
Semana pedagógica: 13 dicas valiosas
Semana pedagógica: 13 dicas valiosasSemana pedagógica: 13 dicas valiosas
Semana pedagógica: 13 dicas valiosasAugusto Bertotto
 
Encontro 26 de abril cláudia e fabiana 2 - PNAIC 2014
Encontro 26 de abril   cláudia e fabiana 2 - PNAIC 2014Encontro 26 de abril   cláudia e fabiana 2 - PNAIC 2014
Encontro 26 de abril cláudia e fabiana 2 - PNAIC 2014Fabiana Esteves
 
Sequencia didática 6º ao 9º sem. diagnóstica
Sequencia didática  6º ao 9º sem. diagnósticaSequencia didática  6º ao 9º sem. diagnóstica
Sequencia didática 6º ao 9º sem. diagnósticajosivaldopassos
 
Matemática matriz curricular
Matemática matriz curricularMatemática matriz curricular
Matemática matriz curricularNero Cachorro
 
Resultados das avaliações externas
Resultados das avaliações externasResultados das avaliações externas
Resultados das avaliações externasEM Higino Guerra
 

Mais procurados (20)

Texto de apresentação do PIP EF
Texto de apresentação do PIP EFTexto de apresentação do PIP EF
Texto de apresentação do PIP EF
 
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...
Temperatura do Universo: uma proposta de conteúdo para estudantes do nível fu...
 
Relatório de Atividades 2008
Relatório de Atividades 2008Relatório de Atividades 2008
Relatório de Atividades 2008
 
Pip E.E. Pedro Domingues
Pip   E.E. Pedro DominguesPip   E.E. Pedro Domingues
Pip E.E. Pedro Domingues
 
Conheça nosso Plano de Ação
Conheça  nosso Plano de AçãoConheça  nosso Plano de Ação
Conheça nosso Plano de Ação
 
Jornada pedagógica ii semestre pauta geral
Jornada pedagógica    ii semestre pauta geralJornada pedagógica    ii semestre pauta geral
Jornada pedagógica ii semestre pauta geral
 
17 plano de acompanhamento pedagógico
17 plano de acompanhamento pedagógico17 plano de acompanhamento pedagógico
17 plano de acompanhamento pedagógico
 
Pip 2012 reunião de pais 05 dezem.pptx2 cópia
Pip 2012 reunião de pais 05 dezem.pptx2   cópiaPip 2012 reunião de pais 05 dezem.pptx2   cópia
Pip 2012 reunião de pais 05 dezem.pptx2 cópia
 
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final
{E1 cd6af7 e5ff-43ae-a5a3-ca40a6c67f29}-cartilha final
 
Projeto diario de classe ed. infantil uyara assunção - Timon
Projeto diario de classe ed. infantil   uyara assunção - TimonProjeto diario de classe ed. infantil   uyara assunção - Timon
Projeto diario de classe ed. infantil uyara assunção - Timon
 
Trabalho metodol matematica: brincando de mercadinho
Trabalho metodol matematica: brincando de mercadinhoTrabalho metodol matematica: brincando de mercadinho
Trabalho metodol matematica: brincando de mercadinho
 
Plano De IntervençãO PedagóGica[Sre]
Plano De IntervençãO PedagóGica[Sre]Plano De IntervençãO PedagóGica[Sre]
Plano De IntervençãO PedagóGica[Sre]
 
Semana pedagógica: 13 dicas valiosas
Semana pedagógica: 13 dicas valiosasSemana pedagógica: 13 dicas valiosas
Semana pedagógica: 13 dicas valiosas
 
Encontro 26 de abril cláudia e fabiana 2 - PNAIC 2014
Encontro 26 de abril   cláudia e fabiana 2 - PNAIC 2014Encontro 26 de abril   cláudia e fabiana 2 - PNAIC 2014
Encontro 26 de abril cláudia e fabiana 2 - PNAIC 2014
 
Cbc anos finais - ciências
Cbc   anos finais - ciênciasCbc   anos finais - ciências
Cbc anos finais - ciências
 
Sequencia didática 6º ao 9º sem. diagnóstica
Sequencia didática  6º ao 9º sem. diagnósticaSequencia didática  6º ao 9º sem. diagnóstica
Sequencia didática 6º ao 9º sem. diagnóstica
 
Matemática matriz curricular
Matemática matriz curricularMatemática matriz curricular
Matemática matriz curricular
 
Ap. plano de ação
Ap. plano de açãoAp. plano de ação
Ap. plano de ação
 
Resultados das avaliações externas
Resultados das avaliações externasResultados das avaliações externas
Resultados das avaliações externas
 
Pedagógico - Proposta de Intervenção Pedagógica - SEDUC/VHA/RO
Pedagógico - Proposta de Intervenção Pedagógica - SEDUC/VHA/ROPedagógico - Proposta de Intervenção Pedagógica - SEDUC/VHA/RO
Pedagógico - Proposta de Intervenção Pedagógica - SEDUC/VHA/RO
 

Semelhante a Orientações matemática para planejamento escolar de Matemática

9. as formas de planejar do professor
9. as formas de planejar do professor9. as formas de planejar do professor
9. as formas de planejar do professorClaudio Lima
 
PNAIC CADERNO 1 Organização do trabalho pedagógico
PNAIC CADERNO 1 Organização do trabalho pedagógicoPNAIC CADERNO 1 Organização do trabalho pedagógico
PNAIC CADERNO 1 Organização do trabalho pedagógicoAmanda Nolasco
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisrosefarias123
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisKellen Castro Almeida
 
Livro aprender mais matematica anos finais
Livro aprender mais matematica anos finaisLivro aprender mais matematica anos finais
Livro aprender mais matematica anos finaisrosefarias123
 
Trabalho de conclusão de curso pós coordenação pedagogica
Trabalho de conclusão de curso pós coordenação pedagogicaTrabalho de conclusão de curso pós coordenação pedagogica
Trabalho de conclusão de curso pós coordenação pedagogicaIslane Uefs
 
Projeto de ensino; operações matemáticas na cesta básica. 2010
Projeto de ensino; operações matemáticas na cesta básica. 2010Projeto de ensino; operações matemáticas na cesta básica. 2010
Projeto de ensino; operações matemáticas na cesta básica. 2010Abraão Matos
 
PNAIC - Matemática - Organização do Trabalho Pedagógico
PNAIC - Matemática - Organização do Trabalho PedagógicoPNAIC - Matemática - Organização do Trabalho Pedagógico
PNAIC - Matemática - Organização do Trabalho PedagógicoElieneDias
 
494 texto do artigo-1594-1-10-20190612
494 texto do artigo-1594-1-10-20190612494 texto do artigo-1594-1-10-20190612
494 texto do artigo-1594-1-10-20190612Dííh Garcia
 
Caderno plano e diário de classe arte
Caderno plano e diário de classe   arteCaderno plano e diário de classe   arte
Caderno plano e diário de classe arteSme Otacílio Costa
 
Atualizado formação continuada dos gestores na educação infantil
Atualizado  formação continuada dos gestores na educação infantilAtualizado  formação continuada dos gestores na educação infantil
Atualizado formação continuada dos gestores na educação infantilUAB -Polo de Primavera do Leste
 
artigo sobre intervenção pedagógica de matemática (1)
artigo sobre intervenção pedagógica de matemática (1)artigo sobre intervenção pedagógica de matemática (1)
artigo sobre intervenção pedagógica de matemática (1)HILDAGOMES1
 
05 pcagp documento orientador
05 pcagp   documento orientador05 pcagp   documento orientador
05 pcagp documento orientadorWilson Barbieri
 
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...Uma releitura dos indicadores da qualidade na educação no contexto de na esco...
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...aninhaw2
 
Heterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisHeterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisRosinara Azeredo
 
Heterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisHeterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisrenatalguterres
 
Ensinar e aprender na escola
Ensinar e aprender na escolaEnsinar e aprender na escola
Ensinar e aprender na escolacefaprodematupa
 
Formação continuada de professores.
Formação continuada de professores.Formação continuada de professores.
Formação continuada de professores.Magda Marques
 
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdf
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdfPLANO_DE_CURSO_2022_ANOS_FINAIS.pdf
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdfAntonio Burnat
 

Semelhante a Orientações matemática para planejamento escolar de Matemática (20)

9. as formas de planejar do professor
9. as formas de planejar do professor9. as formas de planejar do professor
9. as formas de planejar do professor
 
PNAIC CADERNO 1 Organização do trabalho pedagógico
PNAIC CADERNO 1 Organização do trabalho pedagógicoPNAIC CADERNO 1 Organização do trabalho pedagógico
PNAIC CADERNO 1 Organização do trabalho pedagógico
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finais
 
Livro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finaisLivro aprender mais_matematica_anos_finais
Livro aprender mais_matematica_anos_finais
 
Livro aprender mais matematica anos finais
Livro aprender mais matematica anos finaisLivro aprender mais matematica anos finais
Livro aprender mais matematica anos finais
 
Trabalho de conclusão de curso pós coordenação pedagogica
Trabalho de conclusão de curso pós coordenação pedagogicaTrabalho de conclusão de curso pós coordenação pedagogica
Trabalho de conclusão de curso pós coordenação pedagogica
 
Projeto de ensino; operações matemáticas na cesta básica. 2010
Projeto de ensino; operações matemáticas na cesta básica. 2010Projeto de ensino; operações matemáticas na cesta básica. 2010
Projeto de ensino; operações matemáticas na cesta básica. 2010
 
PNAIC - Matemática - Organização do Trabalho Pedagógico
PNAIC - Matemática - Organização do Trabalho PedagógicoPNAIC - Matemática - Organização do Trabalho Pedagógico
PNAIC - Matemática - Organização do Trabalho Pedagógico
 
494 texto do artigo-1594-1-10-20190612
494 texto do artigo-1594-1-10-20190612494 texto do artigo-1594-1-10-20190612
494 texto do artigo-1594-1-10-20190612
 
Caderno plano e diário de classe arte
Caderno plano e diário de classe   arteCaderno plano e diário de classe   arte
Caderno plano e diário de classe arte
 
Atualizado formação continuada dos gestores na educação infantil
Atualizado  formação continuada dos gestores na educação infantilAtualizado  formação continuada dos gestores na educação infantil
Atualizado formação continuada dos gestores na educação infantil
 
artigo sobre intervenção pedagógica de matemática (1)
artigo sobre intervenção pedagógica de matemática (1)artigo sobre intervenção pedagógica de matemática (1)
artigo sobre intervenção pedagógica de matemática (1)
 
05 pcagp documento orientador
05 pcagp   documento orientador05 pcagp   documento orientador
05 pcagp documento orientador
 
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...Uma releitura dos indicadores da qualidade na educação no contexto de na esco...
Uma releitura dos indicadores da qualidade na educação no contexto de na esco...
 
As formas de planejar do professor
As formas de planejar do professorAs formas de planejar do professor
As formas de planejar do professor
 
Heterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisHeterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciais
 
Heterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciaisHeterogeneidade nos anos iniciais
Heterogeneidade nos anos iniciais
 
Ensinar e aprender na escola
Ensinar e aprender na escolaEnsinar e aprender na escola
Ensinar e aprender na escola
 
Formação continuada de professores.
Formação continuada de professores.Formação continuada de professores.
Formação continuada de professores.
 
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdf
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdfPLANO_DE_CURSO_2022_ANOS_FINAIS.pdf
PLANO_DE_CURSO_2022_ANOS_FINAIS.pdf
 

Mais de SEDUC-TO

Responsabilidades Assessora de Currículo de Matemática SEDUC Cláudia
Responsabilidades Assessora de Currículo de Matemática SEDUC CláudiaResponsabilidades Assessora de Currículo de Matemática SEDUC Cláudia
Responsabilidades Assessora de Currículo de Matemática SEDUC CláudiaSEDUC-TO
 
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino Médio
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino MédioAlinhamento de Conteúdos Básicos Mínimos de Matemática Ensino Médio
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino MédioSEDUC-TO
 
Questões oficina
Questões  oficinaQuestões  oficina
Questões oficinaSEDUC-TO
 
Formação continuada para eja 2010
Formação continuada para eja 2010Formação continuada para eja 2010
Formação continuada para eja 2010SEDUC-TO
 
Apresentação Laboratório de Matemática
Apresentação Laboratório de MatemáticaApresentação Laboratório de Matemática
Apresentação Laboratório de MatemáticaSEDUC-TO
 
Apresentaçã ldm
Apresentaçã ldmApresentaçã ldm
Apresentaçã ldmSEDUC-TO
 

Mais de SEDUC-TO (7)

Humor to
Humor  toHumor  to
Humor to
 
Responsabilidades Assessora de Currículo de Matemática SEDUC Cláudia
Responsabilidades Assessora de Currículo de Matemática SEDUC CláudiaResponsabilidades Assessora de Currículo de Matemática SEDUC Cláudia
Responsabilidades Assessora de Currículo de Matemática SEDUC Cláudia
 
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino Médio
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino MédioAlinhamento de Conteúdos Básicos Mínimos de Matemática Ensino Médio
Alinhamento de Conteúdos Básicos Mínimos de Matemática Ensino Médio
 
Questões oficina
Questões  oficinaQuestões  oficina
Questões oficina
 
Formação continuada para eja 2010
Formação continuada para eja 2010Formação continuada para eja 2010
Formação continuada para eja 2010
 
Apresentação Laboratório de Matemática
Apresentação Laboratório de MatemáticaApresentação Laboratório de Matemática
Apresentação Laboratório de Matemática
 
Apresentaçã ldm
Apresentaçã ldmApresentaçã ldm
Apresentaçã ldm
 

Último

Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaAula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaaulasgege
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
Caixa jogo da onça. para imprimir e jogar
Caixa jogo da onça. para imprimir e jogarCaixa jogo da onça. para imprimir e jogar
Caixa jogo da onça. para imprimir e jogarIedaGoethe
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.keislayyovera123
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirIedaGoethe
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfIedaGoethe
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfmirandadudu08
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 

Último (20)

Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologiaAula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
Aula - 1º Ano - Émile Durkheim - Um dos clássicos da sociologia
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
Caixa jogo da onça. para imprimir e jogar
Caixa jogo da onça. para imprimir e jogarCaixa jogo da onça. para imprimir e jogar
Caixa jogo da onça. para imprimir e jogar
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimir
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdf
 
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 

Orientações matemática para planejamento escolar de Matemática

  • 1. GOVERNO DO ESTADO DO TOCANTINS SECRETARIA DA EDUCAÇÃO SUPERINTENDÊNCIA DE EDUCAÇÃO DIRETORIA DE ENSINO FUNDAMETNAL E MÉDIO COORDENADORIA DE CURRÍCULO DO ENSINO FUNDAMENTAL E MÉDIO ORIENTAÇÕES PARA O COORDENADOR (A): Mais um ano letivo começa e logo se apresenta um grande desafio: o planejamento. Garantir que esse momento possibilite trocas entre especialistas, gestores, coordenadores pedagógicos, professores e representantes da comunidade escolar é fundamental para que as ações previstas para o ano sejam implantadas com qualidade. Por isso, nesse processo é importante garantir que sejam seguidas três etapas: a elaboração, a execução e a avaliação. Na primeira, é necessário que o grupo explicite os ideais que norteiam suas ações. Qual realidade sonhamos vivenciar? Que tipo de pessoas formamos? Que Educação queremos para crianças e jovens? Conhecendo o desejado, é hora de analisar a realidade existente. Para que o planejamento seja realmente um instrumento de trabalho, é preciso colocá-lo em prática, ou seja, agir de acordo com o que foi imaginado. E só será possível perceber se o quadro encontrado no início do ano está sendo transformado na direção da realidade desejada se houver algum tipo de acompanhamento das ações. O planejamento de ensino é o instrumento que possibilita a disseminação das políticas públicas educacionais entre os gestores, coordenadores pedagógicos e professores. Quando realizar o planejamento ou formação em Matemática, por exemplo, agendar a atividade para o dia em que a maioria dos professores da disciplina estão fora de sala, para que haja maior aproveitamento do trabalho e possibilite uma socialização de conhecimento mais efetiva. É importante que no planejamento seja valorizada a realidade da escola e oferecidas condições para que as diretrizes sejam implementadas.
  • 2. Nesse contexto o papel do Suporte Pedagógico é muito importante, espera-se que os coordenadores desenvolvam as competências relacionadas a seguir: o Apropriar-se dos objetivos e metodologia do ensino de matemática, através do estudo das orientações gerais da disciplina e formação continuada, articulando o planejamento das aulas com: Referencial Curricular, Proposta Curricular, Projeto Estadual do Programa Gestar II, TPs e AAAs, Matriz do ENEM, Banco de dados da Olimpíada Brasileira de Matemática, Provas de Vestibulares da UFT, contextualização do programa de alimentação escolar (sugestões da equipe) e outras. o Acompanhar o professor em sala de aula consiste na realização do planejamento com o professor, no acompanhamento da execução em sala de aula, na verificação dos resultados, na busca de alternativas para sanar dificuldades no ensino e na aprendizagem. o Elaborar planejamento de aula para o desenvolvimento das habilidades previstas juntamente com o professor durante a hora atividade selecionando as atividades que correspondam à real necessidade dos alunos. o Interferir imediatamente quando identificado os baixos rendimentos. Analisar com o professor os resultados de desempenho dos alunos e a partir destes planejar novas formas de trabalhar o conteúdo. o Acompanhar o processo de avaliação e seus instrumentos para garantir a qualidade e a coerência entre o conteúdo trabalhado e as habilidades avaliadas, deixar clara a habilidade em cada avaliação. Orientar ao professor que toda atividade de sala de aula é avaliativa, seus resultados devem ser registrados e considerados como instrumento de monitoramento e acompanhamento do aluno. o Acompanhar a aprendizagem dos alunos no cotidiano da escola, da sala de aula, das avaliações mensais e dos resultados do SARE. Todo processo avaliativo deverá ter como referência o desenvolvimento das habilidades previstas para o bimestre.
  • 3. o Orientar as práticas do professor visando promover oportunidades de reflexão sobre as estratégias adotadas, redefinindo-as, em conjunto, quando necessário. Incentivar também a aprendizagem permanente, a troca de experiências e o crescimento profissional dos professores. o Interagir com os Assessores de Currículo que acompanham sua escola. o Orientar o trabalho dos professores para que eles atuem de acordo com o Referencial Curricular e Proposta Curricular, e desenvolvam planejamentos de qualidade, compreendam profundamente o processo ensino- aprendizagem e viabilizem o alcance das competências necessárias pelos alunos. o Estudar e orientar os professores para fazer estudo dos manuais do Laboratório de Matemática, bem como Laboratório de Informática e assim levá-los a fazer aulas práticas. EDUCAÇÃO MATEMÁTICA A MATEMÁTICA ESCOLAR COMO INSTRUMENTO DE EDUCAÇÃO Walderez Soares Melão-Mestre em Educação O fracasso escolar, as repetidas reprovações e desistências têm atingido um número bastante significativo de crianças no sistema educacional brasileiro. Resolver tal situação requisita das autoridades responsáveis uma atuação no sentido de fazer modificações de grande porte tanto no aparato institucional quanto na formação de professores e professoras. É esperado também que se tomem medidas para tentar reduzir o impacto dessas dificuldades na formação das crianças que estão atualmente na escola, enquanto as mudanças mais amplas e efetivas não acontecem cada professor ou professora em sua sala de aula é agente das intervenções necessárias para que se possa oferecer um ensino de melhor qualidade a essas crianças. A matemática escolar é responsável por uma parcela bastante significativa desse processo fracassado. Isto se deve ao fato de que uma visão tradicional
  • 4. de ensino tem prevalecido em muitas classes, com professores e professoras posicionados como transmissores de conhecimento, e alunos e alunas como meros receptores. Essa visão não leva em conta que trabalhar com a matemática escolar é trabalhar com educação, e que o objeto de trabalho da educação é o ser humano e não a ciência em si e por si. Acrescente-se aí que essa visão de ensino privilegia a idéia de que a matemática é ciência dura, que tem conteúdo fixo e definido, que não abre espaço para a criatividade, para a dúvida ou para a investigação. Em resumo, essa visão do ensino não oferece condições favoráveis para que as crianças aprendam, apreciem e valorizem a matemática. Com o firme objetivo de tornar possível para as crianças a aprendizagem, o gosto e a valorização da matemática, o trabalho em sala deve apoiar-se em uma perspectiva para o trabalho com a matemática escolar que apresente a matemática como ciência dinâmica, que se faz e se refaz continuamente, enquanto está sendo estudada, enquanto está sendo experimentada. Ela se torna objeto de investigação, passando a ser possível duvidar dela, questionar suas certezas, evidenciar os aspectos que ela não consegue apreender. Essa forma de conceber o trabalho com a matemática escolar será aqui denominada de educação matemática. Não é conhecida uma receita para fazer acontecer esse trabalho nas classes, mas é possível esboçar um elenco de condições que o favoreçam. A ordem em que estão expressas essas condições não representa intenção de valorizar algumas mais do que outras. 1) Para que possa ajudar seu aluno ou sua aluna a percorrer o caminho do conhecimento matemático, de forma intensa e prazerosa, é necessário que o professor ou professora tenha convicção de que estudar matemática, além de necessário, pode ser uma atividade agradável e desafiadora. De outro modo, não será tarefa fácil convencer as crianças da importância de estudar matemática, nem da possibilidade de se constituir em atividade que pode ser prazerosa. 2) É importante pensar na organização dos conteúdos de modo a privilegiar a integração entre eles. Isso quer dizer, por exemplo, lidar com a geometria ancorada na álgebra e, ao mesmo tempo, apoiando-a, permeando essa articulação com os conteúdos referentes às medidas e à aritmética. Um trabalho desarticulado torna-se mecânico e enfadonho, fadado ao insucesso.
  • 5. 3) Um modo privilegiado de fazer o trabalho articulado referido acima é estudar matemática a partir da resolução de problemas. Os problemas devem representar um ponto de partida na busca pelo conhecimento e não um fim, não apenas um recurso para aplicação de métodos e técnicas. É o problema que vai puxar o fio do conteúdo e, a partir do que a criança já sabe, vai possibilitar encontrar caminhos para a construção de novos conhecimentos. Esses novos conhecimentos passam a ser ferramentas para solução de outros problemas e assim por diante. Desse modo, há uma boa chance de os alunos e alunas construírem seus próprios significados para o fazer matemático. A escolha dos problemas a serem utilizados precisa ser cuidadosa: não deve ser algo muito simples, que não represente um desafio, nem tampouco deve ser difícil, a ponto de representar um impedimento. As crianças precisam sentir que, se fizerem um esforço possível, conseguirão chegar a uma solução. O estímulo do professor ou professora é decisivo para que a classe aceite resolver desafios e sinta-se gratificada nesse trabalho. 4) A organização da classe em pequenos grupos possibilita maior interação entre os alunos e alunas. Tal interação é fundamental na medida em que a proximidade física promove a curiosidade pelo trabalho do outro e estimula as discussões a respeito dos diferentes modos de solução dos problemas, possibilitando o treino da argumentação, tão necessária na comunicação das idéias. Esta organização é especialmente recomendada para as salas de apoio. Reunindo as crianças que apresentam dificuldades comuns, é possível planejar atividades diferentes para grupos com necessidades diferentes e dar explicações para cada grupo, reduzindo a quantidade de atendimentos necessários e possibilitando melhorar a observação do trabalho de cada um. 5) A exigência com a formalização do vocabulário e dos procedimentos matemáticos deve ser gradativa. No ensino fundamental, especialmente nas salas de apoio, a ênfase deve ser na organização dos registros escritos e/ou pictóricos dos raciocínios executados, com o objetivo de torná-los claros, para que a própria criança consiga entendê-los e explicá-los. Nas séries finais do ensino fundamental, pode - se investir um tanto nos aspectos mais formais desses registros, deixando ainda uma boa parcela para ser efetivada no ensino médio.
  • 6. 6) O desenvolvimento das atividades deve ser feito com ênfase nos conhecimentos que os alunos e alunas trazem das etapas anteriores de escolarização e também das suas vidas extra-escola, tanto nas classes regulares como e, especialmente, nas salas de apoio à aprendizagem. Se uma criança está sendo encaminhada para esse trabalho, o professor ou professora da sala de apoio deve recebê-la como alguém que está precisando de ajuda, para fazer ou completar aprendizagens que não conseguiu realizar anteriormente. Uma conversa franca com o professor ou professora regente de classe sobre os motivos que o fizeram recomendar a sala de apoio para aquela criança, pode ser de grande valia para definir exatamente a dificuldade apresentada por ela e orientar a escolha das atividades a serem realizadas. Além dos aspectos pontuados, é importante fazer algumas ponderações a respeito da avaliação da aprendizagem, que costuma ser, com muita freqüência, considerada uma tarefa difícil. Entender a avaliação como apenas dar notas ou como instrumento para classificar cada um dos aprendizes é reduzi-la a mero instrumento de punir, de desconfiar, de subtrair a auto-estima e a autoconfiança dos alunos e alunas. A avaliação, enquanto processo, precisa exercer o papel que lhe é devido: ser auxiliar privilegiado da aprendizagem. Acreditamos em uma forma de avaliar que possa servir como baliza para o trabalho da professora ou professor. No processo de avaliar, é fundamental: que se levem em conta as diferenças individuais, abandonando o caráter homogeneizante da avaliação seletiva. Isso será uma meta alcançável na medida em que a professora ou professor deixar de pautar-se pela comparação de seus alunos e alunas com um padrão ideal e passar a considerar o processo de aprendizagem de cada um, os avanços e conquistas que faz; que se considerem os erros como indicativos de correção de rotas no trabalho em sala de aula e não como resultado de um processo de aprendizagem fracassado. Desse modo, a importância dada ao erro alcança outro patamar, passando a apontar caminhos a serem trilhados, deixando de ser passível de punição; que se incluam no rol de instrumentos de avaliação a observação das atividades cotidianas, coletivas e individuais, tanto escritas como orais ou de construção, deixando de privilegiar apenas provas e testes. Nesse sentido, pode-se dizer que a matemática escolar é um instrumento de educação, pois quando os alunos têm a oportunidade de freqüentar uma sala
  • 7. de aula em que o professor ou professora os respeita enquanto indivíduos capazes e autônomos podem experimentar o prazer, a satisfação, o gosto bom de estudar para aprender, para descobrir mais, para conhecer. E isso é algo esperado no processo educativo. Quando a sala de aula de matemática passa a ser um lugar em que alunos e alunas podem desfrutar de muitas experiências de conhecimento, podem saborear desafios, aprendem a ter confiança em si como solucionadores de problemas, aprendem a comunicar suas idéias matemáticas, pode-se dizer que a matemática esteve a serviço da educação, que é o que se espera da matemática escolar. Primeiros dias de aulas Nesse primeiro momento, é importante que sejam promovidos momentos de integração, favorecendo o grupo a se tornar, aos poucos, uma turma de verdade. Aproveitar o primeiro dia de aula para apresentar a metodologia com a qual costuma trabalhar, a proposta e os objetivos de estudo. Nesta hora, ouvir e considerar os pontos de vista dos alunos pode ajudar bastante para manter um elo de comprometimento entre as partes. O importante é saber que, como em toda relação, no início, são sim estabelecidas algumas regras, que nem sempre são necessárias de serem ditas verbalmente, pois as atitudes e os comportamentos se fazem mais eficazes. Portanto, é indispensável que o professor assuma uma conduta de educador e não se preocupe em querer apenas agradar seus alunos, mas fazer o melhor para eles. Dicas: Para descontrair, no primeiro dia de aula, é adequado fazer algum tipo de brincadeira em que todos possam participar. A apresentação é importante, mas fica mais interessante se vai além da simples identificação dos nomes. Os primeiros dias de aula são favoráveis para que as regras da escola e de convivência sejam apresentadas ou estabelecidas. Falar sobre a importância dos estudos, da escola e da série serve como incentivo ao comprometimento dos alunos. Ouvir os alunos é indispensável e, no primeiro dia de aula, é uma bela oportunidade para isso.
  • 8. Os primeiros dias de aula são de grande importância para “quebrar” as possíveis resistências e começar a construção de uma relação de confiança. São, também, momentos propícios para, por exemplo, conhecer o grupo quanto às experiências escolares já vividas; as profissões que, atualmente, desempenham ou a forma como ganham a vida; as cidades de origem; os grupos familiares, as expectativas em relação ao futuro etc. Nessas conversas, vão sendo percebidos os “jeitos” de cada um - quem é muito falante, quem é mais tímido, quem está sempre risonho, quem desponta logo como uma liderança enfim, as características de cada um dos alunos. Estabelecendo as regras No primeiro dia de aula uma de nossas tarefas como professores é ler e explicar o regimento escolar aos alunos e durante o ano todo, quando alguma atitude dos alunos infringe essas regras elas estão lá à mão e podemos citá-las com toda a propriedade e portando responder por seus atos. Se a sua escola não tem esse procedimento, você pode providenciar pelo menos algumas ‘regras de convivência’ e deixá-las bem à vista, com letra bem legível, para que possam ser lidas pelos alunos ou citadas por você, se for o caso. Isso também deixa claro para os alunos que não haverá arbitrariedade, as regras não mudarão de acordo com as circunstâncias. Convém que as regras sejam claras e objetivas e que não sejam muitas, faça um exame de consciência e reduza-as ao mínimo indispensável para que sejam entendidas, lembradas e cumpridas. ATIVIDADE DIAGNOSTICA INICIAL A Atividade Diagnostica Inicial é um instrumento que permitirá ao professor observar e conhecer as características do pensamento dos alunos, ou seja, o que pensam o que sabem e o que precisam saber para aprender, a fim de desenvolver um trabalho diversificado e possibilitar o avanço da aprendizagem dos mesmos. Lembramos que essa atividade diagnostica deve abordar habilidades referentes ao ano anterior presentes no Referencial Curricular e na Proposta Curricular do Ensino Médio.
  • 9. A nossa intenção é contribuir para construção e re-significação de um olhar diferenciado para o processo de ensino e aprendizagem. Isto nos remete a repensar a prática avaliativa numa perspectiva da ação/reflexão/ação. Nesta direção, considera-se a Avaliação Inicial um instrumento de cunho diagnóstico que permitirá ao professor observar e conhecer as características do pensamento dos alunos, ou seja, o que pensam, o que sabem e o que precisam saber para aprender, a fim de desenvolver um trabalho diversificado e possibilitar o avanço da aprendizagem dos mesmos. Em outras palavras, conhecer a ZONA DE DESENVOLVIMENTO REAL (refere-se àquilo que o aluno já aprendeu e realiza com independência e compreensão sozinho), para que se possa fazer as intervenções na ZONA DE DESENVOLVIMENTO PROXIMAL (refere-se às capacidades que estão em processo de maturação, mas que poderão se tornar funções consolidadas com a mediação de pessoas mais experientes) e levar os alunos à ZONA DE DESENVOLVIMENTO POTENCIAL (refere-se à capacidade que o aluno vai ser capaz de realizar com independência após um aprendizado mediado por outras pessoas mais capazes). Os critérios de avaliação indicam as expectativas que se quer alcançar com a aprendizagem dos alunos, considerando as competências e habilidades propostas para cada área de conhecimento, de modo a refletir sobre os conteúdos conceituais, procedimentais e atitudinais, de forma que os critérios refiram-se ao que é essencial, fundamental e indispensável para que o aluno possa continuar aprendendo, lembrando “(...) que o período de escola é um período de desenvolvimento intelectual do aluno em que ele precisa se preparar para entender a linguagem em contexto, os mais diversos (...)”. (Moreto p.51- 2002) O professor, em sua prática pedagógica, deve ter consciência de que essas dimensões são objetos de aprendizagem, presentes em todas as atividades e contribuem para o desenvolvimento da capacidade dos alunos para uma participação ativa e transformadora. Sendo necessário, portanto, observar o tratamento, a seleção e a organização que são dados a esses componentes essenciais no processo avaliativo. A ação avaliativa oferece subsídios para os educadores refletirem sobre a prática pedagógica, no intuito de procurar identificar os conhecimentos prévios
  • 10. do aluno, auxiliando-o no seu processo de desenvolvimento e construção da sua autonomia. A prática da avaliação deverá ser coerente com a metodologia de ensino utilizada pelo professor. Ensinar e avaliar devem ter correspondências quanto aos níveis de complexidade adotados, ou seja, não ser simplista ao ensinar e complexo ao avaliar e vice versa. As quatro dimensões a seguir apresentam um sentido amplo mediante a necessidade de formação do educando; são interligadas e não podem ser dissociadas umas das outras.
  • 11. Dimensão Função Permite Verificar Diagnóstica Permite a verificação do -particularidades (aprender conhecimento prévio do aluno, (experiências, valores, a conhecer) favorecendo ao professor uma crenças, culturas, investigação quanto ao caminho necessidades e interesses) que se deve percorrer para dos alunos; promover a aprendizagem. - saberes que os alunos Normalmente, essa avaliação faz-se possuem; necessária para saber quem é esse - conhecimentos que aluno, o que ele sabe, suas precisam ser aprendidos; necessidades, hábitos e -competências e habilidades preferências, para depois adotar que deverão ser estratégias e intervenções desenvolvidas pedagógicas adequadas para cada um dos problemas detectados. Neste momento, esta avaliação oportuniza ao aluno conhecer seu grau de dificuldade e avanços em determinadas áreas do saber. Formativa Acontece de forma processual e - os avanços e as (aprender a contínua, auxiliando o processo dificuldades de fazer) ensino e aprendizagem, aprendizagem; possibilitando ao professor - a correção dos desvios, acompanhar a construção do intervenções imediatas; conhecimento do educando, - o processo pedagógico. intervindo de imediato no processo pedagógico, orientando a reelaboração do seu planejamento, isto quer dizer, o fazer na prática. Somativa -É a soma de um ou mais - o progresso adquirido pelo (aprender a resultados que acumulam os dados aluno no período letivo; viver junto) que vão permitir a ampliação das - parâmetros seguros para possibilidades de aprendizagem, qualificação da prática considerando cada aspecto pedagógica, assim como a progressivo na produção do qualificação do aluno ao conhecimento, procurando analisar final do período; e identificar as conquistas e - a prática educacional. dificuldades dos alunos, professores e toda a gestão pedagógica e administrativa, contribuindo para o desenvolvimento da prática educacional.
  • 12. Assim, podemos dizer que a avaliação do processo de ensino e aprendizagem é uma constante Ação Reflexão/ Reação Ação. A verdadeira avaliação deve ser essencialmente preventiva, uma vez que levanta o diagnóstico da situação cognitiva do educando para verificar o progresso adquirido, como também indicar as limitações a serem superadas. Mediante o exposto: O que avaliar durante a AVALIAÇÃO DIAGNÓSTICA INICIAL? As competências e as habilidades já construídas ou as que estão em processo de construção, tendo em vista objetivos e capacidades que se pretendem avaliar, em relação a determinado objeto de conhecimento. Para que avaliar? Para conhecer as experiências e conhecimentos que os alunos trazem para a escola, ou seja, seus conhecimentos prévios, seus conceitos espontâneos, detectando o que precisa ser construído, aprofundado, sistematizado e/ou socializado. Quando avaliar? Nas primeiras semanas de cada ano letivo. Como avaliar? Através de conversas informais, auto-avaliação, avaliações escritas, ficha de observação sistemática, dentre outros instrumentos, de acordo com as competências e habilidades que se quer avaliar em cada segmento de ensino. O que fazer com os resultados? Planejar situações didáticas que favoreçam o desenvolvimento das competências e habilidades que ainda não foram construídas ou que estão em processo de construção, permitindo ao professor realizar intervenções reais e significativas através de trabalhos diversificados. PROCEDIMENTOS PROFESSOR (A): Determine alguns dias para fazer o acolhimento dos novos e veteranos alunos e estabelecer vínculos entre professor-aluno, aluno-aluno e aluno conhecimento, assim como para fazer dinâmicas de integração do grupo utilizando música, jogos, brincadeiras, dentre outros.
  • 13. Sugerimos a aplicação da avaliação diagnóstica inicial na 1ª quinzena do ano letivo, com alternância das situações de aplicação das atividades, planejadas por você, o que contribuirá para evitar, por parte dos alunos, a idéia de uma avaliação exaustiva e estressante. Tem a finalidade de reconhecer os conhecimentos, saberes, experiências e conceitos espontâneos que os alunos que estão iniciando trazem para escola, assim como saber o que assimilaram durante os anos anteriores de escolarização. É importante frisar que para ensinar a ler, escrever e contar, é necessário que a professora reconheça e compreenda este conjunto de informações previamente, a fim de que possa transformá-las em recursos para planejar situações didáticas que atendam às reais necessidades de aprendizagem dos alunos, e não para categorizá-los como tendo imaturidade emocional ou dificuldades de aprendizagem, originárias das suas condições bio-psico sócioeconômico-cultural. SUGESTÃO DE AVALIAÇÃO DIAGNÓSTICA: AVALIAÇÃO DE ENTRADA DO GERTAR II, Matriz de Referência de Matemática - Saeb / Prova Brasil - Tópicos e Descritores, Provas do ENEM, Banco de dados da OBMEP, bem como link com maiores esclarecimentos sobre a referida Prova para que seja utilizada juntamente com o Referencial Curricular e Proposta Curricular EM durante o Planejamento nas Unidades Escolares objetivando melhorar o processo de ensino e aprendizagem. A avaliação é um ato preventivo, sendo para tanto, necessário que o professor conheça o nível de desempenho do aluno em cada etapa do processo educativo e compare essa informação com as competências e habilidade relevante a serem desenvolvidas, em relação aos conteúdos trabalhados e, finalmente, tome as decisões que possibilitem atingir os resultados esperados, pois seja a avaliação diagnóstica, formativa, emancipatória, somativa, ela deverá necessariamente contribuir para o desenvolvimento do educando, não limitando apenas como instrumento para formalizar e legitimar uma nota classificatória. DICAS PARA SE ELABORAR UMA SITUAÇÃO PROBLEMA • A situação problema a ser elaborada deve levar o aluno a:
  • 14.  Comparar seus resultados com os de outros alunos;  Validar seus procedimentos;  Elaborar um ou vários procedimentos de resolução (como, por exemplo, realizar simulações, fazer tentativas, formular hipóteses). • O que deve ser evitado: O problema certamente não é um exercício em que o aluno aplica, de forma quase mecânica, uma fórmula ou um processo operatório. Só há problema se o aluno for levado a interpretar o enunciado da questão que lhe é posta e a estruturar a situação que lhe é apresentada. • Comece trabalhando com problemas simples e, pouco a pouco, apresente problemas mais complexos. Isso fortalece a auto-estima e a autoconfiança do aluno. • Valorize o processo, a maneira como o aluno resolveu o problema e não apenas o resultado. • Estimule o aluno a fazer a verificação da solução, a revisão do que fez. • Deixe claro que é permitido errar. Aprendemos muito por tentativa e erro e não por tentativa e acerto. Quando está implícito que é proibido errar, o aluno não se arrisca não se aventura, não gera novas idéias, não explora caminhos novos e diferentes. Pesquisa é coisa séria. Antes de pedir uma pesquisa como tarefa de casa, é preciso ensinar os alunos a realizá-la. Muitos professores trocam os exercícios do livro didático por pesquisas, pensando estar propondo uma tarefa de casa melhor. Se esquecem, porém, de ensinar o aluno a executá-la. "A pesquisa é uma das melhores maneiras de se aprender", diz a escritora e orientadora educacional Ruth Rocha, autora do livro Pesquisar e Aprender (Scipione). Antes de pedir uma pesquisa, explica Ruth, o professor deve conhecer seus alunos e verificar o material de que dispõem. "Cheque o acervo das bibliotecas da escola e do bairro", recomenda. Só assim, você poderá indicar com precisão
  • 15. a bibliografia para a turma. Escolhido o tema, limite o seu alcance. Se o assunto for amplo, como Independência do Brasil, determine apenas um aspecto a ser desenvolvido. Os alunos têm dificuldade para fazer sínteses. Comece indicando pequenos capítulos de livros que falem sobre o tema em estudo e peça que o resumam em vinte linhas. Outro caminho é formular perguntas. "Respondendo com suas próprias palavras, o aluno irá ao centro da questão", diz Ruth. Em Pesquisar e Aprender, Ruth Rocha ensina como fazer uma boa pesquisa. Passe estas dicas a seus alunos: • Roteiro - Formule perguntas sobre o tema da pesquisa. • Cronograma - Estabeleça etapas de acordo com o prazo. • Caderno - Anote as informações em um caderno. Folhas soltas se perdem. • Plano de pesquisa - Relacione os nomes de pessoas a serem entrevistadas, além de dicionários, enciclopédias, atlas, livros didáticos, jornais e revistas que for utilizar. • Síntese - Em vez de copiar trechos dos livros, escreva um texto sintetizando o assunto. • Apresentação - Coloque título, nomes dos autores, índice, textos, fotos e bibliografia nos trabalhos escritos. Orientações importantes para o aluno • Procure pesquisar em fontes (livros, apostilas, enciclopédias e sites) confiáveis ou com indicação de seu professor. Lembre-se que, principalmente na Internet, existem informações corretas e incorretas. • Não transforme seu trabalho numa simples cópia de livros ou sites. Usando deste artifício, além de você não aprender nada, ainda corre o risco de tirar uma nota baixa. • Leia o material pesquisado, faça um resumo destacando as principais informações levantadas e escreva um texto com suas próprias palavras. • Um bom trabalho começa por uma boa capa. Coloque nela todas as informações necessárias, tais como: nome, número, série, nome do professor e da matéria, título do trabalho, data e outras informações solicitadas pelo
  • 16. professor. A estética ajuda muito e causa uma boa impressão, portanto, capriche na organização da capa. • Cuidado com a redação do trabalho. Faça sempre uma correção com o propósito de corrigir erros ortográficos e gramaticais. Peça ajuda os pais ou responsáveis. • Peça para algum amigo ou parente para ler seu trabalho. Para você o trabalho pode estar muito bom e claro, mas uma segundo opinião é sempre bem vinda. • Quando utilizar imagens procure sempre colocar legenda. As fotos e figuras não servem somente para ilustrar o trabalho, mas também são ótimas referências e fontes de informação. • Caso o trabalho seja digitado, procure utilizar fonte arial ou times new roman (tamanho 12). Os títulos e subtítulos podem ser em tamanho 14 e negrito. Caso seja pedido por escrito. Divida seu trabalho em partes: Todo trabalho de pesquisa deverá ter quatro itens indispensáveis e os anexos como opcional: Introdução, Desenvolvimento, Conclusão, Bibliografia e Anexos (opcional). É claro que estamos falando de uma pesquisa escolar que seja realizada ou proposta para alunos de 9 a 14 anos aproximadamente, ou seja, do 4º ao 9º ano. Também pode ser trabalhado com as séries do ensino médio. 1- Introdução: deve apresentar a idéia geral do trabalho: o que se pretende abordar, quais serão as partes principais, como será a organização, quais os objetivos. 2- Desenvolvimento: é a parte nuclear do trabalho, daí muitos autores denominá-lo “corpo do trabalho”. É a parte mais extensa da redação, pois dever conter a descrição e análise do assunto além da argumentação pertinente, ou seja, a validade das idéias descritas. Muita atenção agora. Esse é o momento mais importante de uma pesquisa. Em linguagem pessoal e comunicativa, ordene suas anotações de maneira lógica, seguindo o roteiro. A partir do roteiro, tente alinhavar todas as anotações feitas anteriormente, reescrevendo-as com suas palavras e encaixando-as nos itens que você se propõe a desenvolver. Lembre-se: em um trabalho bem-feito, os textos são bem encadeados e os conteúdos, relacionados. Não perca tempo escrevendo coisas
  • 17. que estão além do que foi proposto – aquilo que chamamos "fugir do tema". Depois de tudo escrito, faça um balanço do material, verificando se a redação final está compreensível e bem encadeada, se você já escreveu tudo o que sabe e acha importante sobre o tema ou se ainda falta alguma coisa. Se mencionar frases ou trechos de algum livro, não se esqueça de fazê-lo entre aspas, indicando a fonte (nome do autor, título do livro, número da edição, editora, local, data da publicação, volume e número da página). 3- Conclusão: não admite nenhuma idéia, nenhum fato ou argumento novo, pois é a síntese interpretativa do desenvolvimento. Por ser síntese ou resumo, deve ser breve, exata, concisa. 4- Bibliografia: A bibliografia é fundamental e não pode faltar em nenhum trabalho de pesquisa. A bibliografia deve incluir os dados sobre todo o material que você utilizou para desenvolver a pesquisa, incluindo endereços dos sites consultados na internet. Ela deve ter os seguintes dados, seguindo a ordem em que serão citados: autor, título da obra, edição, local da publicação, editora e ano da publicação. Ao todo, normalmente, são 3 itens na bibliografia. •-Livros: comece citando o título da obra, siga com o nome do autor ou autores, identifique a editora que a publicou e a data de publicação. EXEMPLOS: 1. CARNEIRO LEÃO, Emmanuel. Aprendendo a pensar. 2ª ed. Petrópolis: Vozes, 1989. 268p. •-Artigos de revistas e jornais: escreva os títulos dos artigos (como os capítulos dos livros), os nomes das publicações, números das edições e as datas de publicação. EXEMPLO: FREITAS, Juarez. Diálogo com o pensamento jurídico de Norberto Bobbio. Ventas, Porto Alegre, v. 36, n. 141, p. 63-78, mar/mai. 1991. • Páginas da Internet - Em primeiro escrever o título da página e após a palavra "em" o endereço completo em letras destacadas. PARA O PLANEJAMENTO O planejamento é um processo de racionalização, organização e coordenação da ação docente, articulando a atividade escolar e a problemática do contexto social.
  • 18. A ação de planejar, portanto não se reduz ao simples preenchimento de formulário para controle pedagógico; deve ser uma atividade consciente de previsão das ações docentes, fundamentadas em opções político-pedagógicas, e tendo como referência permanente as situações didáticas concretas (ou seja, problemática social, econômica, política e cultural que envolve a comunidade escolar que interagem no processo de ensino). Funções do Planejamento - Assegurar a racionalização, organização e coordenação do trabalho docente, permitindo ao professor e escola um ensino de qualidade, evitando a improvisação e a rotina; - Explicitar princípios, diretrizes e procedimentos do trabalho docente que assegurem a articulação entre as tarefas da escola e as exigências do contexto social e do processo de participação democrática. - Expressar os vínculos entre o posicionamento filosófico, político-pedagógico e profissional e as ações efetivas que o professor irá realizar na sala de aula, através de objetivos, conteúdos, métodos e formas organizativas do ensino; -Assegurar a unidade e a coerência do trabalho docente, inter-relacionando: os objetivos (para que ensinar), os conteúdos (o que ensinar), os alunos (a quem ensinar), os métodos e técnicas (como ensinar) e a avaliação. - Atualizar o conteúdo do plano, aperfeiçoando-o em relação aos progressos feito no campo de conhecimentos e a experiência cotidiana; - Facilitar a preparação das aulas: selecionar o material didático em tempo hábil, saber o que professor e aluno devem executar, replanejar o trabalho frente a novas situações que parecem no decorrer das aulas. Para que os planos sejam efetivamente instrumentos para ação, devem: - ser um guia de orientação; - apresentar uma ordem seqüencial;
  • 19. - ter objetividade; - ter coerência; - apresentar flexibilidade; Tipos de planos: Plano da instituição: é um documento mais global que expressa as ligações entre o projeto pedagógico da escola com os planos de ensino propriamente dito; Plano da disciplina (em algumas escolas, chamado plano de unidades): é um documento elaborado para um ano ou semestre, dividido por unidades seqüenciais, no qual aparecem objetivos específicos, conteúdos e encaminhamento metodológico. Plano de aula: é a previsão do desenvolvimento do conteúdo para uma aula ou conjunto de aulas e tem um caráter específico. Recomendações: - Os planos precisam estar vinculados à prática, por isso muitas vezes precisam ser revistos e refeitos. - O professor precisa ir criando e recriando sua própria didática, enriquecendo sua prática profissional e ganhando mais segurança. - O planejamento deve ser encarado também como uma oportunidade de reflexão e avaliação da sua prática. PLANEJAMENTO DE AULA: A aula é a forma predominante de organização didática do processo de ensino. É na aula que organizamos ou criamos as situações docentes, isto é, as condições e meios necessários para que os alunos assimilem ativamente conhecimentos, habilidades e desenvolvam suas capacidades cognoscitivas. O plano de aula é o detalhamento do plano de ensino. As unidades didáticas e
  • 20. subunidades (tópicos) que foram previstas em linhas gerais são agora especificadas e sistematizadas para uma situação didática real. A preparação da aula é uma tarefa indispensável e, assim como o plano de ensino, deve resultar num documento escrito que servirá não só para orientar as ações do professor como também para possibilitar constantes revisões e aprimoramentos de ano para ano. Em todas as profissões o aprimoramento profissional depende da acumulação de experiências conjugando a prática e a reflexão criteriosa sobre a ação e na ação, tendo em vista uma prática constantemente transformadora para melhor. Na elaboração do plano de aula, deve-se levar em consideração, em primeiro lugar, que a aula é um período de tempo variável. Dificilmente completamos numa só aula o desenvolvimento de uma unidade didática ou tópico de unidade, pois o processo de ensino e aprendizagem se compõe de uma seqüência articulada de fases. A IMPORTÂNCIA DOS JOGOS MATEMÁTICOS COMO ALTERNATIVA DIDÁTICA PARA O DESENVOLVIMENTO DAS HABILIDADES NÃO DESENVOLVIDAS Ensinar matemática é desenvolver o raciocínio lógico, estimular o pensamento independente, a criatividade e a capacidade de resolver problemas. Nós como educadores matemáticos, devemos procurar alternativas para aumentar a motivação para a aprendizagem, desenvolver a autoconfiança, a organização, concentração, atenção, raciocínio lógico-dedutivo e o senso cooperativo, desenvolvendo a socialização e aumentando as interações do indivíduo com outras pessoas. Os jogos, se convenientemente planejados, são um recurso pedagógico eficaz para a construção do conhecimento matemático. Referimo-nos àqueles que implicam conhecimentos matemáticos. O uso de jogos e curiosidades no ensino da Matemática tem o objetivo de fazer com que os adolescentes gostem de aprender essa disciplina, mudando a rotina da classe e despertando o interesse do aluno envolvido. A aprendizagem através de jogos, como dominó, palavras cruzadas, memória e outros permite que o aluno faça da aprendizagem um processo interessante e até divertido. Para isso, eles devem ser utilizados ocasionalmente para sanar as lacunas que
  • 21. se produzem na atividade escolar diária. Neste sentido verificamos que há três aspectos que por si só justificam a incorporação do jogo nas aulas. São estes: o caráter lúdico, o desenvolvimento de técnicas intelectuais e a formação de relações sociais. Jogar não é estudar nem trabalhar, porque jogando, a aluno aprende, sobretudo, a conhecer e compreender o mundo social que o rodeia. Os jogos são educativos, sendo assim, requerem um plano de ação que permita a aprendizagem de conceitos matemáticos e culturais de uma maneira geral. Já que os jogos em sala de aula são importantes, devemos ocupar um horário dentro de nosso planejamento, de modo a permitir que o professor possa explorar todo o potencial dos jogos, processos de solução, registros e discussões sobre possíveis caminhos que poderão surgir. Os jogos podem ser utilizados pra introduzir, amadurecer conteúdos e preparar o aluno para aprofundar os itens já trabalhados. Devem ser escolhidos e preparados com cuidado para levar o estudante a adquirir conceitos matemáticos de importância. Devemos utilizá-los não como instrumentos recreativos na aprendizagem, mas como facilitadores, colaborando para trabalhar os bloqueios que os alunos apresentam em relação a alguns conteúdos matemáticos. Devemos escolher jogos que estimulem a resolução de problemas, principalmente quando o conteúdo a ser estudado for abstrato, difícil e desvinculado da prática diária, não nos esquecendo de respeitar as condições de cada comunidade e o querer de cada aluno. Essas atividades não devem ser muito fáceis nem muito difíceis e ser testadas antes de sua aplicação, a fim de enriquecer as experiências através de propostas de novas atividades, propiciando mais de uma situação. Os jogos trabalhados em sala de aula devem ter regras, esses são classificados em três tipos: • jogos estratégicos, onde são trabalhadas as habilidades que compõem o raciocínio lógico. Com eles, os alunos lêem as regras e buscam caminhos para atingirem o objetivo final, utilizando estratégias para isso. O fator sorte não interfere no resultado;
  • 22. jogos de treinamento, os quais são utilizados quando o professor percebe que alguns alunos precisam de reforço num determinado conteúdo e quer substituir as cansativas listas de exercícios. Neles, quase sempre o fator sorte exerce um papel preponderante e interfere nos resultados finais, o que pode frustrar as idéias anteriormente colocadas; • jogos geométricos, que têm como objetivo desenvolver a habilidade de observação e o pensamento lógico. Com eles conseguimos trabalhar figuras geométricas, semelhança de figuras, ângulos e polígonos. Os jogos com regras são importantes para o desenvolvimento do pensamento lógico, pois a aplicação sistemática das mesmas encaminha a deduções. São mais adequados para o desenvolvimento de habilidades de pensamento do que para o trabalho com algum conteúdo específico. As regras e os procedimentos devem ser apresentados aos jogadores antes da partida e preestabelecer os limites e possibilidades de ação de cada jogador. A responsabilidade de cumprir normas e zelar pelo seu cumprimento encoraja o desenvolvimento da iniciativa, da mente alerta e da confiança em dizer honestamente o que pensa. Os jogos estão em correspondência direta com o pensamento matemático. Em ambos temos regras, instruções, operações, definições, deduções, desenvolvimento, utilização de normas e novos conhecimentos (resultados). O Laboratótio de Matemática Brink Mobil Uma vez que muitas escolas da rede Pública de Ensino do Estado do Tocantins contam com um Laboratótio de Matemática Brink Mobil, os Professores têm a oportunidade de aprimorar seus conhecimentos profissionais de modo a oferecerem uma aula de qualidade, por meio da proposição e desenvolvimento de atividades que instiguem a curiosidade dos alunos. • O Laboratótio de Matemática Brink Mobil se constitui de um espaço onde reúnem-se recursos didáticos como jogos educativos (tangran, dominós com operações, Torre de Hanói, entre outros), instrumentos didáticos (ábaco, material dourado, sorobã, entre outros), recursos áudio-visuais e tecnológicos (vídeos, documentários, calculadoras científicas, softwares educativos, entre outros), bem como bibliografia de pesquisa e prática do ensino da Matemática. De acordo com o manual do Professor (Laboratório Didático da Matemática Brink Mobil, sd, p. 2), “o Laboratótio de Matemática Brink Mobil é um espaço
  • 23. aberto para investigações de diversas correntes metodológicas e concepções de ensino.” Nele constam sugestões para elaboração de atividades enfatizando: a) necessidade do planejamento; b) o mapeamento dos conceitos a serem trabalhados; c) a seleção de jogos para desenvolver os conceitos; d) a seleção de situações-problema com os conceitos a serem trabalhados; e) o registro do desenvolvimento das atividades e os resultados obtidos; f) a importância do trabalho em equipe e compartilhamento das experiências com Assessores da própria escola. (id ibidem) Esse manual é de suma importância que o Professor conheça e faça estudo, pois, além de apresentar uma série de sugestões e indicar os materiais disponíveis, possibilita autonomia no processo de ensino, por meio da proposição de atividades por eles pensadas, elaboradas e sistematizadas. O ESTUDO DA TABUADA COMO FACILITADOR PARA RESOLUÇÃO DE SITUAÇÃO PROBLEMA ENVOLVENDO AS QUATRO OPERAÇÕES A palavra tabuada vem da Idade Média, quando surgiram as tábuas com resultados de somas de parcelas iguais. Virou pesadelo de crianças durante muito tempo, obrigadas a decorar as multiplicações para não sofrerem punições nas escolas. A decoreba da tabuada era freqüente no modelo de educação tradicional, em que primeiro se aprendia o conteúdo, depois se descobria para o que ele servia. A tabuada continua do mesmo jeito. E as crianças continuam precisando saber quanto é 2x3, 7x8, 9x4. Mas não se usa mais o verbo decorar nas escolas. A educação atual fala em memorizar a tabuada, mas com a condição de que ela seja compreendida antes. Professores inventam todo tipo de jogos, brincadeiras e materiais para fazer os alunos entenderem o conceito da multiplicação e seu uso no cotidiano.
  • 24. ANEXOS: SUGESTÕES: Sugestão de Plano de Aula Competência Ser capaz de ver que a geometria, contribui para aprendizagem dos números e medidas, estimulando a observação, a percepção de semelhanças e diferenças, a construção, a aplicação de propriedades e a transformação de figuras. Eixo Espaço e forma Habilidades Ampliar e reduzir figuras, bem como reconhecer as características de figuras semelhantes. Descritor 7/Matriz do Saeb Reconhecer semelhança de figuras Conteúdo Semelhança Transposição didática:Semelhança, atividade do TP3, página 102. Atividade da prova Brasil 2009. Ampliando o triângulo ABC, obtém-se um novo triângulo A’B’C’, em que cada lado é o dobro do seu correspondente em ABC.
  • 25. Em figuras ampliadas ou reduzidas, os elementos que conservam a mesma medida são (A) as áreas. (B) os perímetros. (C) os lados. (D) os ângulos. Análise O trabalho de ampliação e redução de figuras traz ao aluno a noção de semelhança de figuras planas (homotetia). Esse tipo de atividade contribui para a observação de que é a manutenção dos ângulos dos vértices o que permite às formas ser correspondentes. Orientações O uso de diferentes malhas (quadriculada, retangular etc.) ajuda a compreender que quando se alteram os ângulos de uma figura há uma distorção na que é obtida e elas deixam de ser semelhantes. Complemente o trabalho nessa área com instrumentos geométricos com a utilização de softwares de geometria dinâmica. Um exemplo é o Geogebra (com download gratuito). A vantagem desse recurso está na rapidez da construção e na possibilidade de alteração de uma determinada figura e a verificação, quase imediata, da consequência sobre a que foi construída. Paradidático: Para que serve a matemática? Semelhança, de Imenis, Jakubo e Lelis. Neste livro a noção de semelhança é desenvolvida por meio de recursos visuais: ampliação e redução de fotos, miniaturas de carros e naves espaciais, zoom em monitor de computador, adaptação de filmes de cinema para telas de
  • 26. televisão, projeção de slides, efeitos especiais com câmaras de vídeo, formatos de folha de papel. Utilizar atividades dos cadernos Atividades de Apoio ao Aluno( AAA). AAA3 – Aula 6 e 7 AAA5 – Aula 8 Utilizar o banco de questões da Olimpíada Brasileira das Escolas Públicas -OBMEP que estão relacionados a habilidades trabalhadas no planejamento. Apropriar-se do manual e utilizar o Laboratório de Matemática caso sua escola já possui. Usar atividades do livro didático utilizado na escola. Avaliação Provas, debates, trabalhos em classe e extraclasse, trabalhos em grupos, avaliando a participação ativa nas atividades propostas, o poder matemático do aluno, a resolução de problemas, a comunicação e o raciocínio do aluno, a compreensão dos conceitos, procedimento matemático, e, principalmente, o desenvolvimento do alunos servirá como diagnóstico do processo ensino aprendizagem, que irá nortear os novos rumos do trabalho e será um suporte pára verificação da necessidade de uma nova metodologia ou de um processo de recuperação. ATIVIDADE CONSTRUINDO A TABUADA Professor: Alexandre Costa Barros Uma das maiores dificuldades no ensino da tabuada é que o aluno entenda que a multiplicação é a soma de uma mesma parcela varias vezes e essa atividade pretende facilitar esse entendimento. REGRAS: • Terá que ser trabalhado com os alunos sobre o posicionamento do que são linhas e colunas. • Para saber o resultado da multiplicação o aluno terá que localizar o ponto de encontro da linha com a coluna e contar quantos retângulos temos naquela região.
  • 27. X 1 2 3 4 5 6 7 8 9 1 ( ( ( ( ( ( ( ( ( 0 C C C C C C C C C ( ) ) ) ) ) ) ) ) ) C ) 1 ( L ) 2 ( L ) 3 ( L ) 4 ( L ) 5 ( L ) 6 ( L ) 7 ( L ) 8 (
  • 28. L ) 9 ( L ) 1 0 ( L ) Assim ele deve montar a tabuada de multiplicação casa por casa. 4x1 = 4 (4 é o número de retângulos da região de encontro entre a linha 4 e a coluna 1) X 1 2 3 4 5 6 7 8 9 1 ( ( ( ( ( ( ( ( ( 0 C C C C C C C C C ( ) ) ) ) ) ) ) ) ) C ) 1 ( L ) 2 ( L ) 3 ( L ) 4 ( L )
  • 29. 5 ( L ) 6 ( L ) 7 ( L ) 8 ( L ) 9 ( L ) 1 0 ( L ) 4x2 = 8 (8 é o número de retângulos da região de encontro entre a linha 4 e a coluna 2) 4x3 = 4x4 = 4x5 = 4x6 = 4x7 = 4x8 = 4x9=
  • 30. 4x10 = O objetivo principal é que quando ele não se lembrar do resultado de uma multiplicação ele tenha recursos de encontrar esse valor sem ter que olhar em uma tabuada ou utilizar uma calculadora. Exemplo: Se eu não sei o resultado de uma multiplicação tento lembrar o resultado de multiplicações anteriores a essa para encontrar o resultado desejado. 9x5 = 45 9x6 = ? 9x7 = ? Fazendo o uso dessa atividade esperamos que o aluno possa ter o seguinte raciocínio. 9x5 = 45 9x6 = 45 + 9 = 54 9x7 = 54 + 9 = 63 REFERENCIAS BIBLIOGRAFICAS BRASIL. MEC. – Parâmetros Curriculares Nacionais 6° a 9° anos. 1997. Matemática. GROENWALD, Claudia Lisete Oliveira e TIMM, Ursula Tatiana . Utilizando curiosidades e jogos matemáticos em sala de aula. Disponível em: www.somatematica.com.br. Acessado em: 17 de dezembro de 2009 as 17:00h. SOUZA, José Maria de Jesus, CHAQUIAM, Miguel e SÁ, Pedro Franco. O Domínio das quatro operações na visão de professores do PARÁ. Paginas 69 a 76. Disponível em: www.nead.unama.br/site/bibdigital/pdf/artigos_revistas/272.pdf. Acessado em: 17 de dezembro de 2009 as 17:12h. TOCANTINS, Secretaria de Estado da Educação e Cultura, Referencial Curricular do Ensino Fundamental. Palmas, dezembro de 2009. http://www.dominiopublico.gov.br/download/texto/me4552.pdfhttp://paixaodeedu car.blig.ig.com.br/
  • 31. http://www.bernerartes.com.br/ideiasedicas/dinamicas/index.htm http://64.233.169.104/search? q=cache:Ghb1AnXUoisJ:www.analuciapsicologa.com/Dinamicas.pdf+ %22dinamicas%22+primeiro+dia+de+aula&hl=pt- BR&ct=clnk&cd=21&gl=br&lr=lang www.teofilorezende.com.br/mural/artigos/pesquisa.doc http://festadosaber4serie.blogspot.com/2008/05/como-fazer-uma-pesquisa- escolar.html http://portal.mec.gov.br/seb/arquivos/pd… BORDENAVE, Juan Díaz; PEREIRA, Adair Martins. Estratégias de ensino- aprendizagem. 11 ed. Petrópolis: Vozes, 1989. p. 117-118. TOCANTINS. Secretaria da Educação e Cultura do Estado (2007): Proposta Curricular Ensino Médio. Tocantins. DINÂMICAS Direitos e deveres Já nos primeiros dias, estabelecer os famosos combinados pode evitar problemas e garantir um bom relacionamento ao longo do ano. Comece discutindo com a garotada o que espera do ano que se inicia e qual a melhor maneira de trabalhar em grupo para alcançar esses objetivos. Formule com todos (e escreva no quadro) a continuação das seguintes frases: "Temos direito a..." e "Somos todos responsáveis por...". Lembre-se de que a declaração de direitos e deveres deve ser inspirada nas normas gerais da escola - que os alunos precisam conhecer - e ser focada no que deve ser feito, e não no que é proibido. A etapa seguinte é descobrir o que as outras turmas da escola combinaram. A troca de informação, além de enriquecer os tratados feitos por eles, promove a integração com colegas de outras classes. Ao terminar, peça a cada um que copie os tratados e cole na agenda. Assim, o texto estará sempre à mão. Além disso, os estudantes podem produzir dois grandes cartazes em cartolina para pendurar na parede da classe.
  • 32. O que vamos aprender Todo ano é a mesma coisa: o que esperar da série que se inicia? Uma situação desconhecida sempre dá um friozinho na barriga. Para baixar a ansiedade da meninada, registre no quadro algumas dúvidas e expectativas do grupo sobre o trabalho na nova classe e convide alguns estudantes da série seguinte para respondê-las. Deixe que falem livremente sobre as suas impressões e vivências como ex-aluno da série. Esse intercâmbio, logo no início, deixa a turma mais tranqüila e segura e valoriza a cooperação e a interação entre diferentes classes.
  • 33. GOVERNO DO ESTADO DO TOCANTINS SECRETARIA DE EDUCAÇÃO PLANO DE AULA DADOS DE IDENTIFICAÇÃO: MATEMÁTICA COLÉGIO : PROFESSOR: SUPORTE PEDAGÓGICA: MÊS: DATA : SÉRIE CONTEÚDOS/ SEMANAIS 1º ANO: Competência Habilidade: Eixo Temático: Metodologia:
  • 34. 2ºANO: Competência Habilidade: Eixo Temático: Metodologia: 3ºANO: Competência Habilidade: Eixo Temático: Metodologia: MATERIAL PLANEJADO DA SEMANA AGENDAMENTO APOSTILA LIVRO/PG LISTA DE EXERCÍCIO ATIVIDADES P/ CASA
  • 35. DATA ASSINATURA H/ CHEGADA H/ SAÍDA ASSINATURA SUPORT.PEDG AVALIAÇÃO: DIA TRABALHOS RECUPERAÇÃO PROJETOS DESENVOLVIDOS ANOTAÇÃO DO SUPORTE PEDAGÓGICO: Alexandre Costas Barros Claudia Alves Mota de Sousa Assessor de Currículo de Matemática Assessora de Currículo de Matemática Dionizio Pereira Neto Suely Maria de Castro Brandão Assessor de Currículo de Matemática Assessora de Currículo de Matemática