SlideShare a Scribd company logo
Enviar pesquisa
Carregar
quantization
Denunciar
Compartilhar
aniruddh Tyagi
Sr.Executive-Compression(Ericsson) em Bharti Airtel Limited
Seguir
•
20 gostaram
•
21,528 visualizações
1
de
33
quantization
•
20 gostaram
•
21,528 visualizações
Denunciar
Compartilhar
Baixar agora
Baixar para ler offline
Tecnologia
Diversão e humor
aniruddh Tyagi
Sr.Executive-Compression(Ericsson) em Bharti Airtel Limited
Seguir
Recomendados
Digital communication por
Digital communication
meashi
7.6K visualizações
•
141 slides
Quantization por
Quantization
wtyru1989
5.2K visualizações
•
34 slides
Quantization por
Quantization
Maj. Sanjaya Prasad
4.3K visualizações
•
9 slides
Power delay profile,delay spread and doppler spread por
Power delay profile,delay spread and doppler spread
Manish Srivastava
44.8K visualizações
•
23 slides
Multirate DSP por
Multirate DSP
@zenafaris91
16.6K visualizações
•
36 slides
Differential pulse code modulation por
Differential pulse code modulation
Ramraj Bhadu
10K visualizações
•
11 slides
Mais conteúdo relacionado
Mais procurados
Pulse modulation por
Pulse modulation
stk_gpg
53.6K visualizações
•
38 slides
DPCM por
DPCM
suryateja swamy
28.2K visualizações
•
23 slides
M ary psk modulation por
M ary psk modulation
Ahmed Diaa
37.7K visualizações
•
12 slides
M ary psk and m ary qam ppt por
M ary psk and m ary qam ppt
DANISHAMIN950
7.4K visualizações
•
33 slides
Loop Antennas por
Loop Antennas
Roma Rico Flores
10.7K visualizações
•
18 slides
Sampling theorem por
Sampling theorem
Shanu Bhuvana
35.6K visualizações
•
16 slides
Mais procurados
(20)
Pulse modulation por stk_gpg
Pulse modulation
stk_gpg
•
53.6K visualizações
DPCM por suryateja swamy
DPCM
suryateja swamy
•
28.2K visualizações
M ary psk modulation por Ahmed Diaa
M ary psk modulation
Ahmed Diaa
•
37.7K visualizações
M ary psk and m ary qam ppt por DANISHAMIN950
M ary psk and m ary qam ppt
DANISHAMIN950
•
7.4K visualizações
Loop Antennas por Roma Rico Flores
Loop Antennas
Roma Rico Flores
•
10.7K visualizações
Sampling theorem por Shanu Bhuvana
Sampling theorem
Shanu Bhuvana
•
35.6K visualizações
Precoding por Khalid Hussain
Precoding
Khalid Hussain
•
8.6K visualizações
Matched filter por srkrishna341
Matched filter
srkrishna341
•
28.9K visualizações
Overlap Add, Overlap Save(digital signal processing) por Gourab Ghosh
Overlap Add, Overlap Save(digital signal processing)
Gourab Ghosh
•
50.7K visualizações
Design of Filters PPT por Imtiyaz Rashed
Design of Filters PPT
Imtiyaz Rashed
•
11.9K visualizações
Coherent and Non-coherent detection of ASK, FSK AND QASK por naimish12
Coherent and Non-coherent detection of ASK, FSK AND QASK
naimish12
•
67.3K visualizações
Modulation techniques por Sathish Kumar
Modulation techniques
Sathish Kumar
•
13.9K visualizações
Digital Communication Unit 1 por Anjuman College of Engg. & Tech.
Digital Communication Unit 1
Anjuman College of Engg. & Tech.
•
4.9K visualizações
DIGITAL SIGNAL PROCESSING por Snehal Hedau
DIGITAL SIGNAL PROCESSING
Snehal Hedau
•
46.5K visualizações
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL por karan sati
SAMPLING & RECONSTRUCTION OF DISCRETE TIME SIGNAL
karan sati
•
1.5K visualizações
Sampling por Muhammad Uzair Rasheed
Sampling
Muhammad Uzair Rasheed
•
13.3K visualizações
Diversity Techniques in Wireless Communication por Sahar Foroughi
Diversity Techniques in Wireless Communication
Sahar Foroughi
•
46.2K visualizações
Application of DSP por KUNAL RANA
Application of DSP
KUNAL RANA
•
2.7K visualizações
Companding & Pulse Code Modulation por Yeshudas Muttu
Companding & Pulse Code Modulation
Yeshudas Muttu
•
3.2K visualizações
Delta modulation por mpsrekha83
Delta modulation
mpsrekha83
•
1.3K visualizações
Similar a quantization
Quantifying the call blending balance in two way communication retrial queues... por
Quantifying the call blending balance in two way communication retrial queues...
wrogiest
260 visualizações
•
22 slides
Quadrature amplitude modulation qam transmitter por
Quadrature amplitude modulation qam transmitter
Asaad Drake
7.4K visualizações
•
16 slides
Cosmological Perturbations and Numerical Simulations por
Cosmological Perturbations and Numerical Simulations
Ian Huston
529 visualizações
•
37 slides
An automated and user-friendly optical tweezers for biomolecular investigat... por
An automated and user-friendly optical tweezers for biomolecular investigat...
Dr. Pranav Rathi
1.2K visualizações
•
63 slides
Finite automata examples por
Finite automata examples
ankitamakin
17.5K visualizações
•
68 slides
Finite automata examples por
Finite automata examples
ankitamakin
774 visualizações
•
68 slides
Similar a quantization
(20)
Quantifying the call blending balance in two way communication retrial queues... por wrogiest
Quantifying the call blending balance in two way communication retrial queues...
wrogiest
•
260 visualizações
Quadrature amplitude modulation qam transmitter por Asaad Drake
Quadrature amplitude modulation qam transmitter
Asaad Drake
•
7.4K visualizações
Cosmological Perturbations and Numerical Simulations por Ian Huston
Cosmological Perturbations and Numerical Simulations
Ian Huston
•
529 visualizações
An automated and user-friendly optical tweezers for biomolecular investigat... por Dr. Pranav Rathi
An automated and user-friendly optical tweezers for biomolecular investigat...
Dr. Pranav Rathi
•
1.2K visualizações
Finite automata examples por ankitamakin
Finite automata examples
ankitamakin
•
17.5K visualizações
Finite automata examples por ankitamakin
Finite automata examples
ankitamakin
•
774 visualizações
Ee443 phase locked loop - presentation - schwappach and brandy por Loren Schwappach
Ee443 phase locked loop - presentation - schwappach and brandy
Loren Schwappach
•
5.5K visualizações
EC8553 Discrete time signal processing por ssuser2797e4
EC8553 Discrete time signal processing
ssuser2797e4
•
403 visualizações
Sparsity and Compressed Sensing por Gabriel Peyré
Sparsity and Compressed Sensing
Gabriel Peyré
•
2K visualizações
Fourier transform por Naveen Sihag
Fourier transform
Naveen Sihag
•
25K visualizações
Chapter 5 por Imran Abdullah
Chapter 5
Imran Abdullah
•
6.2K visualizações
Aquifer Parameter Estimation por C. P. Kumar
Aquifer Parameter Estimation
C. P. Kumar
•
29K visualizações
SOCG: Linear-Size Approximations to the Vietoris-Rips Filtration por Don Sheehy
SOCG: Linear-Size Approximations to the Vietoris-Rips Filtration
Don Sheehy
•
476 visualizações
Ultrasound Modular Architecture por Jose Miguel Moreno
Ultrasound Modular Architecture
Jose Miguel Moreno
•
303 visualizações
Short-time homomorphic wavelet estimation por UT Technology
Short-time homomorphic wavelet estimation
UT Technology
•
820 visualizações
Signal Processing Course : Sparse Regularization of Inverse Problems por Gabriel Peyré
Signal Processing Course : Sparse Regularization of Inverse Problems
Gabriel Peyré
•
3.9K visualizações
Dissertation Slides por Sanghui Ahn
Dissertation Slides
Sanghui Ahn
•
726 visualizações
Tuto cvpr part1 por zukun
Tuto cvpr part1
zukun
•
693 visualizações
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S... por zukun
CVPR2010: Sparse Coding and Dictionary Learning for Image Analysis: Part 1: S...
zukun
•
2.6K visualizações
IGARSS2011 FR3.T08.3 BenDavid.pdf por grssieee
IGARSS2011 FR3.T08.3 BenDavid.pdf
grssieee
•
243 visualizações
Mais de aniruddh Tyagi
whitepaper_mpeg-if_understanding_mpeg4 por
whitepaper_mpeg-if_understanding_mpeg4
aniruddh Tyagi
229 visualizações
•
51 slides
BUC BLOCK UP CONVERTER por
BUC BLOCK UP CONVERTER
aniruddh Tyagi
14 visualizações
•
149 slides
digital_set_top_box2 por
digital_set_top_box2
aniruddh Tyagi
10 visualizações
•
10 slides
Discrete cosine transform por
Discrete cosine transform
aniruddh Tyagi
65 visualizações
•
29 slides
DCT por
DCT
aniruddh Tyagi
8 visualizações
•
17 slides
EBU_DVB_S2 READY TO LIFT OFF por
EBU_DVB_S2 READY TO LIFT OFF
aniruddh Tyagi
10 visualizações
•
10 slides
Mais de aniruddh Tyagi
(20)
whitepaper_mpeg-if_understanding_mpeg4 por aniruddh Tyagi
whitepaper_mpeg-if_understanding_mpeg4
aniruddh Tyagi
•
229 visualizações
BUC BLOCK UP CONVERTER por aniruddh Tyagi
BUC BLOCK UP CONVERTER
aniruddh Tyagi
•
14 visualizações
digital_set_top_box2 por aniruddh Tyagi
digital_set_top_box2
aniruddh Tyagi
•
10 visualizações
Discrete cosine transform por aniruddh Tyagi
Discrete cosine transform
aniruddh Tyagi
•
65 visualizações
DCT por aniruddh Tyagi
DCT
aniruddh Tyagi
•
8 visualizações
EBU_DVB_S2 READY TO LIFT OFF por aniruddh Tyagi
EBU_DVB_S2 READY TO LIFT OFF
aniruddh Tyagi
•
10 visualizações
ADVANCED DVB-C,DVB-S STB DEMOD por aniruddh Tyagi
ADVANCED DVB-C,DVB-S STB DEMOD
aniruddh Tyagi
•
5 visualizações
DVB_Arch por aniruddh Tyagi
DVB_Arch
aniruddh Tyagi
•
25 visualizações
haffman coding DCT transform por aniruddh Tyagi
haffman coding DCT transform
aniruddh Tyagi
•
8 visualizações
Classification por aniruddh Tyagi
Classification
aniruddh Tyagi
•
6 visualizações
tyagi 's doc por aniruddh Tyagi
tyagi 's doc
aniruddh Tyagi
•
4 visualizações
quantization_PCM por aniruddh Tyagi
quantization_PCM
aniruddh Tyagi
•
6 visualizações
ECMG & EMMG protocol por aniruddh Tyagi
ECMG & EMMG protocol
aniruddh Tyagi
•
5 visualizações
7015567A por aniruddh Tyagi
7015567A
aniruddh Tyagi
•
2 visualizações
Basic of BISS por aniruddh Tyagi
Basic of BISS
aniruddh Tyagi
•
14 visualizações
euler theorm por aniruddh Tyagi
euler theorm
aniruddh Tyagi
•
20 visualizações
fundamentals_satellite_communication_part_1 por aniruddh Tyagi
fundamentals_satellite_communication_part_1
aniruddh Tyagi
•
28 visualizações
quantization por aniruddh Tyagi
quantization
aniruddh Tyagi
•
22 visualizações
art_sklar7_reed-solomon por aniruddh Tyagi
art_sklar7_reed-solomon
aniruddh Tyagi
•
3 visualizações
DVBSimulcrypt2 por aniruddh Tyagi
DVBSimulcrypt2
aniruddh Tyagi
•
3 visualizações
Último
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... por
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker
33 visualizações
•
69 slides
SAP Automation Using Bar Code and FIORI.pdf por
SAP Automation Using Bar Code and FIORI.pdf
Virendra Rai, PMP
22 visualizações
•
38 slides
Data-centric AI and the convergence of data and model engineering:opportunit... por
Data-centric AI and the convergence of data and model engineering:opportunit...
Paolo Missier
39 visualizações
•
40 slides
Spesifikasi Lengkap ASUS Vivobook Go 14 por
Spesifikasi Lengkap ASUS Vivobook Go 14
Dot Semarang
37 visualizações
•
1 slide
DALI Basics Course 2023 por
DALI Basics Course 2023
Ivory Egg
16 visualizações
•
12 slides
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... por
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson
66 visualizações
•
32 slides
Último
(20)
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... por Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker
•
33 visualizações
SAP Automation Using Bar Code and FIORI.pdf por Virendra Rai, PMP
SAP Automation Using Bar Code and FIORI.pdf
Virendra Rai, PMP
•
22 visualizações
Data-centric AI and the convergence of data and model engineering:opportunit... por Paolo Missier
Data-centric AI and the convergence of data and model engineering:opportunit...
Paolo Missier
•
39 visualizações
Spesifikasi Lengkap ASUS Vivobook Go 14 por Dot Semarang
Spesifikasi Lengkap ASUS Vivobook Go 14
Dot Semarang
•
37 visualizações
DALI Basics Course 2023 por Ivory Egg
DALI Basics Course 2023
Ivory Egg
•
16 visualizações
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... por James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson
•
66 visualizações
Igniting Next Level Productivity with AI-Infused Data Integration Workflows por Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software
•
257 visualizações
AMAZON PRODUCT RESEARCH.pdf por JerikkLaureta
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta
•
19 visualizações
The details of description: Techniques, tips, and tangents on alternative tex... por BookNet Canada
The details of description: Techniques, tips, and tangents on alternative tex...
BookNet Canada
•
126 visualizações
Case Study Copenhagen Energy and Business Central.pdf por Aitana
Case Study Copenhagen Energy and Business Central.pdf
Aitana
•
16 visualizações
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive por Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Network Automation Forum
•
30 visualizações
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ... por Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
•
25 visualizações
The Research Portal of Catalonia: Growing more (information) & more (services) por CSUC - Consorci de Serveis Universitaris de Catalunya
The Research Portal of Catalonia: Growing more (information) & more (services)
CSUC - Consorci de Serveis Universitaris de Catalunya
•
79 visualizações
Voice Logger - Telephony Integration Solution at Aegis por Nirmal Sharma
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma
•
31 visualizações
Perth MeetUp November 2023 por Michael Price
Perth MeetUp November 2023
Michael Price
•
19 visualizações
Empathic Computing: Delivering the Potential of the Metaverse por Mark Billinghurst
Empathic Computing: Delivering the Potential of the Metaverse
Mark Billinghurst
•
476 visualizações
Scaling Knowledge Graph Architectures with AI por Enterprise Knowledge
Scaling Knowledge Graph Architectures with AI
Enterprise Knowledge
•
28 visualizações
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors por sugiuralab
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab
•
19 visualizações
Microsoft Power Platform.pptx por Uni Systems S.M.S.A.
Microsoft Power Platform.pptx
Uni Systems S.M.S.A.
•
52 visualizações
Attacking IoT Devices from a Web Perspective - Linux Day por Simone Onofri
Attacking IoT Devices from a Web Perspective - Linux Day
Simone Onofri
•
15 visualizações
quantization
1.
Quantization
Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao
2.
Outline • Review the
three process of A to D conversion • Quantization – Uniform – Non-uniform • Mu-law – Demo on quantization of audio signals – Sample Matlab codes • Binary encoding – Bit rate of digital signals • Advantage of digital representation ©Yao Wang, 2006 EE3414:Quantization 2
3.
Three Processes in
A/D Conversion Sampling Quanti- Binary zation Encoding xc(t) x[n] = xc(nT) x[n] c[n] Sampling Quantization Binary Period Interval codebook T Q • Sampling: take samples at time nT – T: sampling period; – fs = 1/T: sampling frequency • Quantization: map amplitude values into a set of discrete values kQ – Q: quantization interval or stepsize • Binary Encoding – Convert each quantized value into a binary codeword ©Yao Wang, 2006 EE3414:Quantization 3
4.
Analog to Digital
Conversion 1 T=0.1 Q=0.25 0.5 0 -0.5 A2D_plot.m -1 0 0.2 0.4 0.6 0.8 1 ©Yao Wang, 2006 EE3414:Quantization 4
5.
How to determine
T and Q? • T (or fs) depends on the signal frequency range – A fast varying signal should be sampled more frequently! – Theoretically governed by the Nyquist sampling theorem • fs > 2 fm (fm is the maximum signal frequency) • For speech: fs >= 8 KHz; For music: fs >= 44 KHz; • Q depends on the dynamic range of the signal amplitude and perceptual sensitivity – Q and the signal range D determine bits/sample R • 2R=D/Q • For speech: R = 8 bits; For music: R =16 bits; • One can trade off T (or fs) and Q (or R) – lower R -> higher fs; higher R -> lower fs • We considered sampling in last lecture, we discuss quantization in this lecture ©Yao Wang, 2006 EE3414:Quantization 5
6.
Uniform Quantization • Applicable
when the signal is in a finite range (fmin, fmax) • The entire data range is divided into L equal intervals of length Q (known as quantization interval or quantization step-size) Q=(fmax-fmin)/L • Interval i is mapped to the middle value of this interval • We store/send only the index of f − f min quantized value Index of quantized value = Qi ( f ) = Q Quantized value = Q ( f ) = Qi ( f )Q + Q / 2 + f min ©Yao Wang, 2006 EE3414:Quantization 6
7.
Special Case I:
Signal range is symmetric • (a) L=even, mid-rise Q(f)=floor(f/q)*q+q/2 L = even, Mid - Riser L = odd, Mid - Tread f Q f Qi ( f ) = floor ( ), Q ( f ) = Qi ( f ) * Q + Qi ( f ) = round ( ), Q( f ) = Qi ( f ) * Q Q 2 Q ©Yao Wang, 2006 EE3414:Quantization 7
8.
Special Case II:
Signal range starts at 0 f min = 0, B = f max , q = f max / L f Qi ( f ) = floor ( ) Q Q Q( f ) = Qi ( f ) * Q + 2 ©Yao Wang, 2006 EE3414:Quantization 8
9.
Example •
For the following sequence {1.2,-0.2,-0.5,0.4,0.89,1.3…}, Quantize it using a uniform quantizer in the range of (-1.5,1.5) with 4 levels, and write the quantized sequence. • Solution: Q=3/4=0.75. Quantizer is illustrated below. -1.125 -0.375 0.375 1.125 -1.5 -0.75 0 0.75 1.5 Yellow dots indicate the partition levels (boundaries between separate quantization intervals) Red dots indicate the reconstruction levels (middle of each interval) 1.2 fall between 0.75 and 1.5, and hence is quantized to 1.125 • Quantized sequence: {1.125,-0.375,-0.375,0.375,1.125,1.125} ©Yao Wang, 2006 EE3414:Quantization 9
10.
Effect of Quantization
Stepsize Q=0.25 Q=0.5 1.5 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 0 0.2 0.4 0 0.2 0.4 demo_sampling_quant.m ©Yao Wang, 2006 EE3414:Quantization 10
11.
Demo: Audio Quantization
0.02 original at 16 bit Original 0.015 quantized at 4 bit Mozart.wav 0.01 0.005 Quantized Mozart_q16.wav 0 -0.005 -0.01 2 2.002 2.004 2.006 2.008 2.01 2.012 2.014 2.016 2.018 2.02 4 x 10 ©Yao Wang, 2006 EE3414:Quantization 11
12.
Demo: Audio Quantization
(II) 0.02 0.02 original at 16 bit quantized at 6 bit original at 16 bit 0.015 quantized at 4 bit 0.015 0.01 0.01 0.005 0.005 0 0 -0.005 -0.005 -0.01 -0.01 2 2.002 2.004 2.006 2.008 2.01 2.012 2.014 2.016 2.018 2.02 2 2.002 2.004 2.006 2.008 2.01 2.012 2.014 2.016 2.018 2.02 4 4 x 10 x 10 Quantized Quantized Mozart_q16.wav Mozart_q64.wav ©Yao Wang, 2006 EE3414:Quantization 12
13.
Non-Uniform Quantization • Problems
with uniform quantization – Only optimal for uniformly distributed signal – Real audio signals (speech and music) are more concentrated near zeros – Human ear is more sensitive to quantization errors at small values • Solution – Using non-uniform quantization • quantization interval is smaller near zero ©Yao Wang, 2006 EE3414:Quantization 13
14.
Quantization: General Description
Quantization levels : L Partition values : bl Partition regions : Bl = [bl −1 , bl ) Reconstruction values : g l Quantized Index : Qi ( f ) = l , if f ∈ Bl Quantizer value : Q( f ) = g l , if f ∈ Bl ©Yao Wang, 2006 EE3414:Quantization 14
15.
Function Representation
Q ( f ) = gl , if f ∈ Bl ©Yao Wang, 2006 EE3414:Quantization 15
16.
Design of Non-Uniform
Quantizer • Directly design the partition and reconstruction levels • Non-linear mapping+uniform quantization µ-law quantization ©Yao Wang, 2006 EE3414:Quantization 16
17.
µ-Law Quantization
y =F [ x ] |x| log 1+µ X max .sign[ x] = X max log[1 + µ ] ©Yao Wang, 2006 EE3414:Quantization 17
18.
Implementation of µ-Law
Quantization (Direct Method) – Transform the signal using µ-law: x->y y =F [ x ] |x| log 1+µ X max = X max .sign[ x] log[1 + µ ] – Quantize the transformed value using a uniform quantizer: y->y^ – Transform the quantized value back using inverse µ-law: y^->x^ x =F −1[ y ] X log(1+ µ ) y = max 10 X max − 1 sign(y) µ ©Yao Wang, 2006 EE3414:Quantization 18
19.
Implementation of µ-Law
Quantization (Indirect Method) • Indirect Method: – Instead of applying the above computation to each sample, one can pre-design a quantization table (storing the partition and reconstruction levels) using the above procedure. The actual quantization process can then be done by a simple table look-up. – Applicable both for uniform and non-uniform quantizers – How to find the partition and reconstruction levels for mu-law quantizer • Apply inverse mu-law mapping to the partition and reconstruction levels of the uniform quantizer for y. • Note that the mu-law formula is designed so that if x ranges from (-x_max, x_max), then y also has the same range. ©Yao Wang, 2006 EE3414:Quantization 19
20.
Example •
For the following sequence {1.2,-0.2,-0.5,0.4,0.89,1.3…}, Quantize it using a mu-law quantizer in the range of (-1.5,1.5) with 4 levels, and write the quantized sequence. • Solution (indirect method): – apply the inverse formula to the partition and reconstruction levels found for the previous uniform quantizer example. Because the mu-law mapping is symmetric, we only need to find the inverse values for y=0.375,0.75,1.125 µ=9, x_max=1.5, 0.375->0.1297, 0.75->0.3604, 1.125->0.7706 – Then quantize each sample using the above partition and reconstruction levels. ©Yao Wang, 2006 EE3414:Quantization 20
21.
Example (cntd)
-1.125 -0.375 0.375 1.125 -1.5 -0.75 0 0.75 1.5 x =F −1[ y ] Inverse µ-law X log(1+ µ ) y = max 10 X max − 1 sign(y) µ -0.77 -0.13 0.13 0.77 -1.5 -0.36 0 0.36 1.5 • Original sequence: {1.2,-0.2,-0.5,0.4,0.89,1.3…} • Quantized sequence – {0.77,-0.13,-0.77,0.77,0.77,0.77} ©Yao Wang, 2006 EE3414:Quantization 21
22.
Uniform vs. µ-Law
Quantization Uniform: Q=0.5 µ-law: Q=0.5,µ=16 1.5 1.5 1 1 0.5 0.5 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 0 0.2 0.4 0 0.2 0.4 With µ-law, small values are represented more accurately, but large values are represented more coarsely. ©Yao Wang, 2006 EE3414:Quantization 22
23.
Uniform vs. µ-Law
for Audio 0.02 0.02 q32 q64 0.01 0.01 0 0 Mozart_q32.wav Mozart_q64.wav -0.01 -0.01 2 2.01 2.02 2 2.01 2.02 4 4 x 10 x 10 0.02 0.02 q32µ4 q32µ16 0.01 0.01 0 Mozart_q32_m4.wav 0 Mozart_q32_m16.wav -0.01 -0.01 2 2.01 2.02 2 2.01 2.02 4 4 x 10 x 10
24.
Evaluation of Quantizer
Performance • Ideally we want to measure the performance by how close is the quantized sound to the original sound to our ears -- Perceptual Quality • But it is very hard to come up with a objective measure that correlates very well with the perceptual quality • Frequently used objective measure – mean square error (MSE) between original and quantized samples or signal to noise ratio (SNR) 1 MSE : σ q = 2 N ∑ ( x(n) − x(n)) n ˆ 2 ( SNR(dB) : SNR = 10 log10 σ x / σ q 2 2 ) where N is the number of samples in the sequence. 1 σ x is the variance of the original signal, σ z2 = ∑ ( x(n)) 2 2 N n ©Yao Wang, 2006 EE3414:Quantization 24
25.
Sample Matlab Code Go
through “quant_uniform.m”, “quant_mulaw.m” ©Yao Wang, 2006 EE3414:Quantization 25
26.
Binary Encoding • Convert
each quantized level index into a codeword consisting of binary bits • Ex: natural binary encoding for 8 levels: – 000,001,010,011,100,101,110,111 • More sophisticated encoding (variable length coding) – Assign a short codeword to a more frequent symbol to reduce average bit rate – To be covered later ©Yao Wang, 2006 EE3414:Quantization 26
27.
Example 1: uniform
quantizer • For the following sequence {1.2,-0.2,-0.5,0.4,0.89,1.3…}, Quantize it using a uniform quantizer in the range of (-1.5,1.5) with 4 levels, and write the quantized sequence and the corresponding binary bitstream. • Solution: Q=3/4=0.75. Quantizer is illustrated below. • Codewords: 4 levels can be represented by 2 bits, 00, 01, 10, 11 codewords 00 01 10 11 Quantized values -1.125 -0.375 0.375 1.125 -1.5 -0.75 0 0.75 1.5 • Quantized value sequence: {1.125,-0.375,-0.375,0.375,1.125,1.125} • Bitstream representing quantized sequence: {11, 01, 01, 10, 11, 11} ©Yao Wang, 2006 EE3414:Quantization 27
28.
Example 2: mu-law
quantizer codewords 00 01 10 11 -1.125 -0.375 0.375 1.125 -1.5 -0.75 0 0.75 1.5 x =F −1[ y ] Inverse µ-law X log(1+ µ ) y = max 10 X max − 1 sign(y) codewords 00 01 10 11 µ -0.77 -0.13 0.13 0.77 -1.5 -0.36 0 0.36 1.5 • Original sequence: {1.2,-0.2,-0.5,0.4,0.89,1.3…} • Quantized sequence: {0.77,-0.13,-0.77,0.77,0.77,0.77} • Bitstream: {11,01,00,11,11,11} ©Yao Wang, 2006 EE3414:Quantization 28
29.
Bit Rate of
a Digital Sequence • Sampling rate: f_s sample/sec • Quantization resolution: B bit/sample, B=[log2(L)] • Bit rate: R=f_s B bit/sec • Ex: speech signal sampled at 8 KHz, quantized to 8 bit/sample, R=8*8 = 64 Kbps • Ex: music signal sampled at 44 KHz, quantized to 16 bit/sample, R=44*16=704 Kbps • Ex: stereo music with each channel at 704 Kbps: R=2*704=1.4 Mbps • Required bandwidth for transmitting a digital signal depends on the modulation technique. – To be covered later. • Data rate of a multimedia signal can be reduced significantly through lossy compression w/o affecting the perceptual quality. – To be covered later. ©Yao Wang, 2006 EE3414:Quantization 29
30.
Advantages of Digital
Representation (I) 1.5 More immune to noise added in original signal channel and/or received signal storage 1 The receiver applies a threshold to the received signal: 0.5 0 if x < 0.5 x= ˆ 1 if x ≥ 0.5 0 -0.5 0 10 20 30 40 50 60 ©Yao Wang, 2006 EE3414:Quantization 30
31.
Advantages of Digital
Representation (II) • Can correct erroneous bits and/or recover missing bits using “forward error correction” (FEC) technique – By adding “parity bits” after information bits, corrupted bits can be detected and corrected – Ex: adding a “check-sum” to the end of a digital sequence (“0” if sum=even, “1” if sum=odd). By computing check-sum after receiving the signal, one can detect single errors (in fact, any odd number of bit errors). – Used in CDs, DVDs, Internet, wireless phones, etc. ©Yao Wang, 2006 EE3414:Quantization 31
32.
What Should You
Know • Understand the general concept of quantization • Can perform uniform quantization on a given signal • Understand the principle of non-uniform quantization, and can perform mu-law quantization • Can perform uniform and mu-law quantization on a given sequence, generate the resulting quantized sequence and its binary representation • Can calculate bit rate given sampling rate and quantization levels • Know advantages of digital representation • Understand sample matlab codes for performing quantization (uniform and mu-law) ©Yao Wang, 2006 EE3414:Quantization 32
33.
References • Y. Wang,
Lab Manual for Multimedia Lab, Experiment on Speech and Audio Compression. Sec. 1-2.1. (copies provided). ©Yao Wang, 2006 EE3414:Quantization 33