O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Expresiones algebraicas y factorizacion.pptx

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 12 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Mais recentes (20)

Anúncio

Expresiones algebraicas y factorizacion.pptx

  1. 1. Carlos Camacaro 12850973 Sección: 173
  2. 2. EXPRESIONES ALGEBRAICAS Llamamos expresiones algebraicas aquellas expresiones donde encontramos variables denotados generalmente por letras, esto es, la parte literal, como también coeficientes (números, aunque también pueden representarse por letras) y una serie de operaciones matemáticas combinadas como la suma, resta, multiplicación división, potenciación y radicación donde se incluyen también signos de agrupación. Monomios: Son aquellas expresiones matemáticas donde solo existe como únicos operadores a la potenciación, multiplicación entre variables (parte literal) y coeficientes, tal que los exponentes de las variables sean números naturales, es decir, aquellos números que sirven para contar. Polinomio: Un polinomio es una expresión algebraica de sumas, restas y multiplicaciones ordenadas hecha de variables, constantes y exponentes. En álgebra, un polinomio puede tener más de una variable (x, y, z), constantes (números enteros o fracciones) y exponentes (que solo pueden ser números positivos enteros).
  3. 3. Para sumar expresiones algebraicas, hay que tener en cuenta dos cosas, la suma de dos términos semejantes se pueden reducir a un solo término, si tales términos son diferentes ante una suma, simplemente el resultado se deja expresada tal cual es sin cambiar los signos de los términos, cuando realizamos sumas entre polinomios, donde encontramos signos de agrupación y el operador suma ( + ), los signos de agrupación se pueden ignorar sin afectar los signos operacionales de cada término del polinomio encerrado entre los signos de agrupación. Pero con la resta o diferencia algebraica, debemos tener en cuenta que restar dos términos semejantes resulta un único termino semejante, para dos términos no semejantes, el resultado se deja tal cual es. Si bien, la suma algebraica no afecta a los sinos operacionales de los términos entre paréntesis, la resta si afecta a cada termino, esto es, cambia los signos operacionales de cada termino luego de eliminar los paréntesis. Suma y Resta de Expresiones Algebraicas Ejercicios:
  4. 4. Cuando en una expresión algebraica sustituimos las letras por los valores que nos dan y luego resolvemos las operaciones, el resultado que se obtiene se llama valor numérico de una expresión algebraica. Valor Numérico de Expresiones Algebraicas Ejercicios:
  5. 5. Multiplicación de Expresiones algebraicas Para multiplicar expresiones algebraicas se deben seguir las propiedades de las potencias. Para ello, multiplicamos los coeficientes, y si se multiplican dos incógnitas, se suman los exponentes de cada una. En otras palabras, es una operación matemática que consiste en obtener un resultado llamado producto a partir de dos factores algebraicos llamada multiplicando y multiplicador. Ejercicios:
  6. 6. División de Expresiones Algebraicas En el caso de la división de las expresiones algebraicas, debemos seguir las reglas de las potencias. Pero en este caso, al contrario que en la multiplicación, para dividir monomios se realiza el cociente de los coeficientes y se restan los exponentes de las incógnitas. Ejercicios:
  7. 7. Producto Notable de Expresiones Algebraicas Los productos notables son expresiones algebraicas que vienen de un producto que conocemos porque sigue reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, sin verificar la multiplicación. Estas operaciones son fáciles de recordar sin necesidad de efectuar la multiplicación correspondiente Cuadrado de un Binomio Binomio Conjugado Cubo de un Binomio
  8. 8. Es una técnica que consiste en la descomposición en factores de una expresión algebraica (que puede ser un número, una suma o resta, una matriz, un polinomio, etc.) en forma de producto Factorización 3.141592653 3. Trinomio Cuadrado Perfecto 1. Cuadrado de un Binomio 2. Factor común por agrupación de términos
  9. 9. 4. Diferencia de Cuadrados Perfecto V 5 Five X 10 Ten L 50 Fifty Factorización Continuación 5. Trinomio Cuadrado Perfecto por adición o sustracción
  10. 10. Factorización Continuación 6. Trinomio de la Forma x2+bx+c 7. Trinomio de la Forma dx2+bx+c 8. Cubo perfecto de binomios
  11. 11. 9. Suma o Diferencia de Cubo perfecto Factorización Continuación 10. Factorización por el método de Ruffini
  12. 12. ●LOS 10 CASOS DE FACTORIZACION ⏱ En 10 minutos ... ●https://www.youtube.com/watch?v=k52NIxnz-E8 Bibliografía Matemáticas profe Alex @MatematicasprofeAlex https://www.youtube.com/c/MatematicasprofeAlex?app=desktop https://www.youtube.com/watch?v=vvIYwabU1lw&list=PLeySRPnY35dGSJYCR n7tD1mVatw3MrdIm https://www.youtube.com/watch?v=pUfQ1kCuRjY&list=PLeySRPnY35dGr2fnx zvPDqcbfQ6xrPFt3 https://www.youtube.com/watch?v=SA0VNwx21m8&list=PLeySRPnY35dFO o9gAJFVzz8akDwUfgqlb https://www.youtube.com/watch?v=WoHBPvFC4Cs&list=PLeySRPnY35dE FxJelhtAW18BCcJ_7p3OJ https://www.youtube.com/watch?v=cWIMQGvy9fg&list=PLeySRPnY35dEZfK TSyNNXOr-lw7oNEc3C https://www.youtube.com/watch?v=G- ym95yl3Es&list=PLeySRPnY35dG4W2Peocr_lrp0TP_0SkYe https://www.youtube.com/watch?v=sSfO1CsKJ4g&list=PLeySRPnY35dGY6GX7xO_lr uvCIS6NkfR- APRENDE ÁLGEBRA DESDE CERO. Curso completo https://www.youtube.com/watch?v=FboTr4foiJE

×