+Números inteiros operações e propriedades

4.047 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
4.047
No SlideShare
0
A partir de incorporações
0
Número de incorporações
2
Ações
Compartilhamentos
0
Downloads
40
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

+Números inteiros operações e propriedades

  1. 1. Números Inteiros - Operações e Propriedades Neste material será feita uma revisão dos aspectos mais importantes sobre as operações de adição, subtração, multiplicação e divisão com números inteiros. Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é denominado soma ou total. 1º parcela + 2º parcela = soma ou total A ordem das parcelas nunca altera o resultado de uma adição: a + b = b + a O zero é elemento neutro da adição: 0 + a = a + 0 Subtração O primeiro termo de uma subtração é chamado minuendo, o segundo, subtraendo e o resultado da operação de subtração é denominado resto ou diferença. minuendo - subtraendo = resto ou diferença A ordem dos termos pode alterar o resultado de uma subtração: a - b ≠ b - a (sempre que a ≠ b) Se adicionarmos uma constante k ao minuendo, o resto será adicionado de k. Se adicionarmos uma constante k ao subtraendo, o resto será subtraído de k. A subtração é a operação inversa da adição: M-S=R↔R+S=M A soma do minuendo com o subtraendo e o resto é sempre igual ao dobro do minuendo. M+S+R=2×M Valor absoluto O Valor absoluto de um número inteiro indica a distância deste número até o zero quando consideramos a representação dele na reta numérica. Atenção: O valor absoluto de um número nunca é negativo, pois representa uma distância. A representação do valor absoluto de um número n é | n |. (Lê-se "valor absoluto de n" ou "módulo de n".) Números simétricos Dois números a e b são ditos simétricos ou opostos quando: a + b = 0
  2. 2. Exemplos: -3 e 3 são simétricos (ou opostos) pois (-3) + (3) = 0. 4 e -4 são simétricos (ou opostos) pois (4) + (-4) = 0. O oposto de 5 é -5. O simétrico de 6 é -6. O oposto de zero é o próprio zero. Dois números simétricos sempres têm o mesmo módulo. Exemplo: |-3| = 3 e |3| = 3 Operações com números inteiros (Z) Qualquer adição, subtração ou multiplicação de dois números inteiros sempre resulta também um número inteiro. Dizemos então que estas três operações estão bem definidas em Z ou, equivalentemente, que o conjunto Z é fechado para qualquer uma destas três operações. As divisõs, as potenciações e as radiciações entre dois números inteiros nem sempre têm resultado inteiro. Assim, dizemos que estas três operações não estão bem definidas no conjunto Z ou, equivalentemente, que Z não é fechado para qualquer uma destas três operações. Adições e subtrações com números inteiros Existe um processo que simplifica o cálculo de adições e subtrações com números inteiros. Observe os exemplos seguintes: Exemplo1: Calcular o valor da seguinte expressão: 10 - 7 - 9 + 15 - 3 + 4 Solução: Faremos duas somas separadas uma só com os números positivos: 10 + 15 + 4 = +29 outra só com os números negativos: (-7) + (-9) + (-3) = -19 Agora calcularemos a diferença entre os dois totais encontrados: +29 - 19 = +10 Atenção: É preciso dar sermpre ao resultado o sinal do número que tiver o maior valor absoluto! Exemplo2: Calcular o valor da seguinte expressão: -10 + 4 - 7 - 8 + 3 - 2 1º passo: Achar os totais (+) e (-): (+): +4 + 3 = +7 (-): -10 - 7 - 8 - 2 = -27 2º passo: Calcular a diferença dando a ela o sinal do total que tiver o maior módulo: -27 + 7 = - 20 Multiplicação Os termos de uma multiplicação são chamados fatores e o resultado da operação de multiplicação é
  3. 3. donominadoproduto. 1º fator x 2º fator = produto O primeiro fator também pode ser chamado multiplicando enquanto o segundo fator pode ser chamado multiplicador. A ordem dos fatores nunca altera o resultado de uma multiplicação: a x b = b x a O número 1 é o elemento neutro da multiplicação: 1 x a = a x 1 = a Se adicionarmos uma constante k a um dos fatores, o produto será adicionado de k vezes o outro fator: a x b = c ↔ (a + k) x b = c + (k x b) Se multiplicarmos um dos fatores por uma constante k, o produto será multiplicado por k: a × b = c ↔ (a × k) × b = k × c Podemos distribuir um fator pelos termos de uma adição ou subtração qualquer: a × (b ± c) = (a × b) ± (a × c) Divisão inteira Na divisão inteira de N por D ≠ 0, existirá um único par de inteiros, Q e R, tais que: Q × D + R = N e 0 ≤ R < R < |D| (onde |D| é o valor absoluto de D) A segunda condição significa que R (o resto) nunca pode ser negativo. Os quatro números envolvidos na divisão inteira são assim denominados: N é o dividendo; D é o divisor (sempre diferente de zero); Q é o quociente; R é o resto (nunca negativo). Exemplos: 1) Na divisão inteira de 60 por 7 o dividendo é 60, o divisor é7, o quociente é 8 e o resto é 4. 8 × 7 + 4 = 60 e 0 ≤ 4 < |7| 2) Na divisão inteira de -60 por 7 o dividendo é -60, o divisor é 7, o quociente é -9 e o resto é 3. -9 × 7 + 3 = -60 e 0 ≤ 3 < |7| Quando ocorrer R = 0 na divisão de N por D, teremos Q × D = N e diremos que a divisão é exata indicando-a como N ÷ D = Q. Quando a divisão de N por D for exata diremos que N é divisível por D e D é divisor de N ou, equivalentemente, que N é múltiplo de D e D é fator de N. O zero é divisível por qualquer número não nulo: D ≠ 0 → 0 ÷ D = 0. Todo número inteiro é divisível por 1: N ÷ 1 = N. Se multiplicarmos o dividendo (N) e o divisor (D) de uma divisão por uma constante k ≠ 0, o quociente (Q) não será alterado mas o resto (R) ficará multiplicado por k, se R × k < D, ou será igual ao resto da divisão de R × k por D, se R × k ≥ D. Multiplicação e divisões com números inteiros Nas multiplicações e divisões de dois números inteiros é preciso observar os sinais dos dois termos da operação: Exemplos:
  4. 4. Sinais iguais (+) Sinais opostos (-) (+) × (+) = + (+) × (-) = - (-) × (-) = + (-) × (+) = - (+) ÷ (+) = + (+) ÷ (-) = - (-) ÷ (-) = + (-) ÷ (+) = -

×