SlideShare uma empresa Scribd logo
1 de 4
Números Inteiros - Operações e Propriedades
Neste material será feita uma revisão dos aspectos mais importantes sobre as operações de adição,
subtração, multiplicação e divisão com números inteiros.
Adição
Os termos da adição são chamadas parcelas e o resultado da operação de adição é denominado
soma ou total.
1º parcela + 2º parcela = soma ou total
A ordem das parcelas nunca altera o resultado de uma adição: a + b = b + a
O zero é elemento neutro da adição: 0 + a = a + 0
Subtração
O primeiro termo de uma subtração é chamado minuendo, o segundo, subtraendo e o resultado da
operação de subtração é denominado resto ou diferença.
minuendo - subtraendo = resto ou diferença
A ordem dos termos pode alterar o resultado de uma subtração: a - b ≠ b - a (sempre que a ≠ b)
Se adicionarmos uma constante k ao minuendo, o resto será adicionado de k.
Se adicionarmos uma constante k ao subtraendo, o resto será subtraído de k.
A subtração é a operação inversa da adição:
M-S=R↔R+S=M

A soma do minuendo com o subtraendo e o resto é sempre igual ao dobro do minuendo.
M+S+R=2×M

Valor absoluto
O Valor absoluto de um número inteiro indica a distância deste número até o zero quando
consideramos a representação dele na reta numérica.
Atenção: O valor absoluto de um número nunca é negativo, pois representa uma distância.
A representação do valor absoluto de um número n é | n |. (Lê-se "valor absoluto de n" ou "módulo
de n".)
Números simétricos
Dois números a e b são ditos simétricos ou opostos quando: a + b = 0
Exemplos:
-3 e 3 são simétricos (ou opostos) pois (-3) + (3) = 0.
4 e -4 são simétricos (ou opostos) pois (4) + (-4) = 0.
O oposto de 5 é -5.
O simétrico de 6 é -6.
O oposto de zero é o próprio zero.
Dois números simétricos sempres têm o mesmo módulo.
Exemplo: |-3| = 3 e |3| = 3

Operações com números inteiros (Z)
Qualquer adição, subtração ou multiplicação de dois números inteiros sempre resulta também um
número inteiro. Dizemos então que estas três operações estão bem definidas em Z ou,
equivalentemente, que o conjunto Z é fechado para qualquer uma destas três operações.
As divisõs, as potenciações e as radiciações entre dois números inteiros nem sempre têm resultado
inteiro. Assim, dizemos que estas três operações não estão bem definidas no conjunto Z ou,
equivalentemente, que Z não é fechado para qualquer uma destas três operações.
Adições e subtrações com números inteiros
Existe um processo que simplifica o cálculo de adições e subtrações com números inteiros. Observe
os exemplos seguintes:
Exemplo1:
Calcular o valor da seguinte expressão:
10 - 7 - 9 + 15 - 3 + 4
Solução:
Faremos duas somas separadas
uma só com os números positivos: 10 + 15 + 4 = +29
outra só com os números negativos: (-7) + (-9) + (-3) = -19
Agora calcularemos a diferença entre os dois totais encontrados: +29 - 19 = +10
Atenção: É preciso dar sermpre ao resultado o sinal do número que tiver o maior valor absoluto!
Exemplo2:
Calcular o valor da seguinte expressão: -10 + 4 - 7 - 8 + 3 - 2
1º passo: Achar os totais (+) e (-):
(+): +4 + 3 = +7
(-): -10 - 7 - 8 - 2 = -27
2º passo: Calcular a diferença dando a ela o sinal do total que tiver o maior módulo:
-27 + 7 = - 20
Multiplicação
Os termos de uma multiplicação são chamados fatores e o resultado da operação de multiplicação é
donominadoproduto.
1º fator x 2º fator = produto
O primeiro fator também pode ser chamado multiplicando enquanto o segundo fator pode
ser chamado multiplicador.
A ordem dos fatores nunca altera o resultado de uma multiplicação: a x b = b x a
O número 1 é o elemento neutro da multiplicação: 1 x a = a x 1 = a
Se adicionarmos uma constante k a um dos fatores, o produto será adicionado de k vezes o
outro fator: a x b = c ↔ (a + k) x b = c + (k x b)
Se multiplicarmos um dos fatores por uma constante k, o produto será multiplicado por k:
a × b = c ↔ (a × k) × b = k × c
Podemos distribuir um fator pelos termos de uma adição ou subtração qualquer: a × (b ± c)
= (a × b) ± (a × c)

Divisão inteira
Na divisão inteira de N por D ≠ 0, existirá um único par de inteiros, Q e R, tais que:
Q × D + R = N e 0 ≤ R < R < |D| (onde |D| é o valor absoluto de D)
A segunda condição significa que R (o resto) nunca pode ser negativo.
Os quatro números envolvidos na divisão inteira são assim denominados:
N é o dividendo; D é o divisor (sempre diferente de zero);
Q é o quociente; R é o resto (nunca negativo).
Exemplos:
1) Na divisão inteira de 60 por 7 o dividendo é 60, o divisor é7, o quociente é 8 e o resto é 4.
8 × 7 + 4 = 60 e 0 ≤ 4 < |7|
2) Na divisão inteira de -60 por 7 o dividendo é -60, o divisor é 7, o quociente é -9 e o resto é 3.
-9 × 7 + 3 = -60 e 0 ≤ 3 < |7|
Quando ocorrer R = 0 na divisão de N por D, teremos Q × D = N e diremos que a divisão é
exata indicando-a como N ÷ D = Q.
Quando a divisão de N por D for exata diremos que N é divisível por D e D é divisor de N
ou, equivalentemente, que N é múltiplo de D e D é fator de N.
O zero é divisível por qualquer número não nulo: D ≠ 0 → 0 ÷ D = 0.
Todo número inteiro é divisível por 1: N ÷ 1 = N.
Se multiplicarmos o dividendo (N) e o divisor (D) de uma divisão por uma constante k ≠ 0,
o quociente (Q) não será alterado mas o resto (R) ficará multiplicado por k, se R × k <
D, ou será igual ao resto da divisão de R × k por D, se R × k ≥ D.
Multiplicação e divisões com números inteiros
Nas multiplicações e divisões de dois números inteiros é preciso observar os sinais dos dois termos
da operação:
Exemplos:
Sinais iguais (+)

Sinais opostos (-)

(+) × (+) = +

(+) × (-) = -

(-) × (-) = +

(-) × (+) = -

(+) ÷ (+) = +

(+) ÷ (-) = -

(-) ÷ (-) = +

(-) ÷ (+) = -

Mais conteúdo relacionado

Mais procurados

Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemáticaEdiclei Oliveira
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoAngela Costa
 
Multiplicação e divisão de frações
Multiplicação e divisão de fraçõesMultiplicação e divisão de frações
Multiplicação e divisão de fraçõesJoão Pedro Ferreira
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equaçõesjtturmina
 
Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricasleilamaluf
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grauestrelaeia
 
Atividades e jogos referentes aos números inteiros 7 ° ano
Atividades e jogos referentes aos números inteiros  7 ° anoAtividades e jogos referentes aos números inteiros  7 ° ano
Atividades e jogos referentes aos números inteiros 7 ° anoSENHORINHA GOI
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grauleilamaluf
 
MéDia AritméTica
MéDia AritméTicaMéDia AritméTica
MéDia AritméTicaestrelaeia
 
Equações Irracionais do 2º grau.
Equações Irracionais do 2º grau.Equações Irracionais do 2º grau.
Equações Irracionais do 2º grau.hld13
 
Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Leonardo Bagagi
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasrosilenedalmolin
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grauleilamaluf
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericosearana
 

Mais procurados (20)

Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemática
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Multiplicação e divisão de frações
Multiplicação e divisão de fraçõesMultiplicação e divisão de frações
Multiplicação e divisão de frações
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
 
Expressões algébricas
Expressões algébricasExpressões algébricas
Expressões algébricas
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Atividades e jogos referentes aos números inteiros 7 ° ano
Atividades e jogos referentes aos números inteiros  7 ° anoAtividades e jogos referentes aos números inteiros  7 ° ano
Atividades e jogos referentes aos números inteiros 7 ° ano
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
 
MéDia AritméTica
MéDia AritméTicaMéDia AritméTica
MéDia AritméTica
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Equações Irracionais do 2º grau.
Equações Irracionais do 2º grau.Equações Irracionais do 2º grau.
Equações Irracionais do 2º grau.
 
Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
 
TEORIA DE CONJUNTOS
TEORIA DE CONJUNTOS TEORIA DE CONJUNTOS
TEORIA DE CONJUNTOS
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Equação de 1º grau
Equação de 1º grauEquação de 1º grau
Equação de 1º grau
 
Raizes Quadradas
Raizes QuadradasRaizes Quadradas
Raizes Quadradas
 
Conjuntos númericos
Conjuntos númericosConjuntos númericos
Conjuntos númericos
 

Destaque

Be _matematica___alciane-6310-513876391823f
Be  _matematica___alciane-6310-513876391823fBe  _matematica___alciane-6310-513876391823f
Be _matematica___alciane-6310-513876391823fBruno César Física
 
Lista (6) de exercícios de multiplicação e divisão
Lista (6) de exercícios de multiplicação e divisãoLista (6) de exercícios de multiplicação e divisão
Lista (6) de exercícios de multiplicação e divisãoOlicio Silva
 
Exercício de aprofundamento lista extra para a terceira prova
Exercício de aprofundamento   lista extra para a terceira provaExercício de aprofundamento   lista extra para a terceira prova
Exercício de aprofundamento lista extra para a terceira provamarina_cordova
 
Exercicios numeros inteiros
Exercicios numeros inteirosExercicios numeros inteiros
Exercicios numeros inteirosPT
 
Lógica Matemática: Proposição I
Lógica Matemática: Proposição ILógica Matemática: Proposição I
Lógica Matemática: Proposição Iqieducacao
 
Lista (3) de exercícios números inteiros
Lista (3) de exercícios números inteirosLista (3) de exercícios números inteiros
Lista (3) de exercícios números inteirosOlicio Silva
 
1ª lista de exercicios e lista de revisão 2ºbim 7º ano
1ª lista de exercicios e lista de revisão 2ºbim 7º ano1ª lista de exercicios e lista de revisão 2ºbim 7º ano
1ª lista de exercicios e lista de revisão 2ºbim 7º anoSENAI/FATEC - MT
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...Camila Rodrigues
 
Atividade números inteiros operações
Atividade números inteiros    operaçõesAtividade números inteiros    operações
Atividade números inteiros operaçõesCLEAN LOURENÇO
 
Lógica Matemática
Lógica MatemáticaLógica Matemática
Lógica MatemáticaGomes Gomes
 
Operações com números positivos e negativos. adição e subtração.
Operações com números positivos e negativos. adição e subtração.Operações com números positivos e negativos. adição e subtração.
Operações com números positivos e negativos. adição e subtração.Adriano Augusto
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Olicio Silva
 
Exercício de aprofundamento lista extra para a segunda prova
Exercício de aprofundamento   lista extra para a segunda provaExercício de aprofundamento   lista extra para a segunda prova
Exercício de aprofundamento lista extra para a segunda provamarina_cordova
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreRafael Marques
 
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoJorge Basílio
 

Destaque (20)

Be _matematica___alciane-6310-513876391823f
Be  _matematica___alciane-6310-513876391823fBe  _matematica___alciane-6310-513876391823f
Be _matematica___alciane-6310-513876391823f
 
Apostila pascal
Apostila pascal Apostila pascal
Apostila pascal
 
Lista (6) de exercícios de multiplicação e divisão
Lista (6) de exercícios de multiplicação e divisãoLista (6) de exercícios de multiplicação e divisão
Lista (6) de exercícios de multiplicação e divisão
 
Exercício de aprofundamento lista extra para a terceira prova
Exercício de aprofundamento   lista extra para a terceira provaExercício de aprofundamento   lista extra para a terceira prova
Exercício de aprofundamento lista extra para a terceira prova
 
Exercicios numeros inteiros
Exercicios numeros inteirosExercicios numeros inteiros
Exercicios numeros inteiros
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
Numeros inteiros i
Numeros inteiros iNumeros inteiros i
Numeros inteiros i
 
Edwaldo Bianchini
Edwaldo BianchiniEdwaldo Bianchini
Edwaldo Bianchini
 
Lógica Matemática: Proposição I
Lógica Matemática: Proposição ILógica Matemática: Proposição I
Lógica Matemática: Proposição I
 
Lista (3) de exercícios números inteiros
Lista (3) de exercícios números inteirosLista (3) de exercícios números inteiros
Lista (3) de exercícios números inteiros
 
1ª lista de exercicios e lista de revisão 2ºbim 7º ano
1ª lista de exercicios e lista de revisão 2ºbim 7º ano1ª lista de exercicios e lista de revisão 2ºbim 7º ano
1ª lista de exercicios e lista de revisão 2ºbim 7º ano
 
Números racionais representação fracionária e decimal - operações e proprie...
Números racionais   representação fracionária e decimal - operações e proprie...Números racionais   representação fracionária e decimal - operações e proprie...
Números racionais representação fracionária e decimal - operações e proprie...
 
Atividade números inteiros operações
Atividade números inteiros    operaçõesAtividade números inteiros    operações
Atividade números inteiros operações
 
Lógica Matemática
Lógica MatemáticaLógica Matemática
Lógica Matemática
 
Operações com números positivos e negativos. adição e subtração.
Operações com números positivos e negativos. adição e subtração.Operações com números positivos e negativos. adição e subtração.
Operações com números positivos e negativos. adição e subtração.
 
Prova SME - Matemática - 7º ano
Prova SME - Matemática -  7º anoProva SME - Matemática -  7º ano
Prova SME - Matemática - 7º ano
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)
 
Exercício de aprofundamento lista extra para a segunda prova
Exercício de aprofundamento   lista extra para a segunda provaExercício de aprofundamento   lista extra para a segunda prova
Exercício de aprofundamento lista extra para a segunda prova
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
 
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-ano
 

Semelhante a +Números inteiros operações e propriedades

Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematicaJ M
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematicaJ M
 
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...Iracema Vasconcellos
 
Matematica (petro)
Matematica (petro)Matematica (petro)
Matematica (petro)dudaso
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamentalAna Almeida
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalmanuelsilva309
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalFabricio Marcelino
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamentalClebson Silva
 
Apostila de-matemática-ester-parte-i
Apostila de-matemática-ester-parte-iApostila de-matemática-ester-parte-i
Apostila de-matemática-ester-parte-iClaudia Sá de Moura
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptxEdinaldaSalgueiro
 
Resumo de Raciocínio Lógico para TCM-RJ 2016
Resumo de Raciocínio Lógico para TCM-RJ 2016Resumo de Raciocínio Lógico para TCM-RJ 2016
Resumo de Raciocínio Lógico para TCM-RJ 2016Estratégia Concursos
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaAntonio Carneiro
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grauguest47023a
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaAntonio Carneiro
 
Números negativos
Números negativosNúmeros negativos
Números negativosleilamaluf
 
Números negativos
Números negativosNúmeros negativos
Números negativosleilamaluf
 
Números negativos
Números negativosNúmeros negativos
Números negativosleilamaluf
 

Semelhante a +Números inteiros operações e propriedades (20)

Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematica
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...
 
Matematica (petro)
Matematica (petro)Matematica (petro)
Matematica (petro)
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamental
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamental
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
 
Apostila de-matemática-ester-parte-i
Apostila de-matemática-ester-parte-iApostila de-matemática-ester-parte-i
Apostila de-matemática-ester-parte-i
 
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
1685986254_Aula-6-7o-MAT-Conjunto-Numeros-inteiros.pptx
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Resumo de Raciocínio Lógico para TCM-RJ 2016
Resumo de Raciocínio Lógico para TCM-RJ 2016Resumo de Raciocínio Lógico para TCM-RJ 2016
Resumo de Raciocínio Lógico para TCM-RJ 2016
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Matemática
MatemáticaMatemática
Matemática
 
Números negativos
Números negativosNúmeros negativos
Números negativos
 
Números negativos
Números negativosNúmeros negativos
Números negativos
 
Números negativos
Números negativosNúmeros negativos
Números negativos
 

Mais de Camila Rodrigues (20)

Tipologia textual
Tipologia textualTipologia textual
Tipologia textual
 
Texto verbal e não verbal
Texto verbal e não verbalTexto verbal e não verbal
Texto verbal e não verbal
 
Tempo e modo verbal
Tempo e modo verbalTempo e modo verbal
Tempo e modo verbal
 
Sintaxe da oração e do período
Sintaxe da oração e do períodoSintaxe da oração e do período
Sintaxe da oração e do período
 
Significação contextual e literal de palavras
Significação contextual e literal de palavrasSignificação contextual e literal de palavras
Significação contextual e literal de palavras
 
Sequência lógica de frases
Sequência lógica de frasesSequência lógica de frases
Sequência lógica de frases
 
Regras de acentuação gráfica
Regras de acentuação gráficaRegras de acentuação gráfica
Regras de acentuação gráfica
 
Regência verbal e nominal
Regência verbal e nominalRegência verbal e nominal
Regência verbal e nominal
 
Pontuação
PontuaçãoPontuação
Pontuação
 
Emprego do z
Emprego do zEmprego do z
Emprego do z
 
Emprego do x
Emprego do xEmprego do x
Emprego do x
 
Emprego do ss
Emprego do ssEmprego do ss
Emprego do ss
 
Emprego do s
Emprego do sEmprego do s
Emprego do s
 
Emprego do j
Emprego do jEmprego do j
Emprego do j
 
Emprego do g
Emprego do gEmprego do g
Emprego do g
 
Emprego do ch
Emprego do chEmprego do ch
Emprego do ch
 
Emprego do ç
Emprego do çEmprego do ç
Emprego do ç
 
Crase (à)
Crase (à)Crase (à)
Crase (à)
 
Concordância nominal e verbal regras gerais
Concordância nominal e verbal   regras geraisConcordância nominal e verbal   regras gerais
Concordância nominal e verbal regras gerais
 
Coesão e coerência
Coesão e coerênciaCoesão e coerência
Coesão e coerência
 

+Números inteiros operações e propriedades

  • 1. Números Inteiros - Operações e Propriedades Neste material será feita uma revisão dos aspectos mais importantes sobre as operações de adição, subtração, multiplicação e divisão com números inteiros. Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é denominado soma ou total. 1º parcela + 2º parcela = soma ou total A ordem das parcelas nunca altera o resultado de uma adição: a + b = b + a O zero é elemento neutro da adição: 0 + a = a + 0 Subtração O primeiro termo de uma subtração é chamado minuendo, o segundo, subtraendo e o resultado da operação de subtração é denominado resto ou diferença. minuendo - subtraendo = resto ou diferença A ordem dos termos pode alterar o resultado de uma subtração: a - b ≠ b - a (sempre que a ≠ b) Se adicionarmos uma constante k ao minuendo, o resto será adicionado de k. Se adicionarmos uma constante k ao subtraendo, o resto será subtraído de k. A subtração é a operação inversa da adição: M-S=R↔R+S=M A soma do minuendo com o subtraendo e o resto é sempre igual ao dobro do minuendo. M+S+R=2×M Valor absoluto O Valor absoluto de um número inteiro indica a distância deste número até o zero quando consideramos a representação dele na reta numérica. Atenção: O valor absoluto de um número nunca é negativo, pois representa uma distância. A representação do valor absoluto de um número n é | n |. (Lê-se "valor absoluto de n" ou "módulo de n".) Números simétricos Dois números a e b são ditos simétricos ou opostos quando: a + b = 0
  • 2. Exemplos: -3 e 3 são simétricos (ou opostos) pois (-3) + (3) = 0. 4 e -4 são simétricos (ou opostos) pois (4) + (-4) = 0. O oposto de 5 é -5. O simétrico de 6 é -6. O oposto de zero é o próprio zero. Dois números simétricos sempres têm o mesmo módulo. Exemplo: |-3| = 3 e |3| = 3 Operações com números inteiros (Z) Qualquer adição, subtração ou multiplicação de dois números inteiros sempre resulta também um número inteiro. Dizemos então que estas três operações estão bem definidas em Z ou, equivalentemente, que o conjunto Z é fechado para qualquer uma destas três operações. As divisõs, as potenciações e as radiciações entre dois números inteiros nem sempre têm resultado inteiro. Assim, dizemos que estas três operações não estão bem definidas no conjunto Z ou, equivalentemente, que Z não é fechado para qualquer uma destas três operações. Adições e subtrações com números inteiros Existe um processo que simplifica o cálculo de adições e subtrações com números inteiros. Observe os exemplos seguintes: Exemplo1: Calcular o valor da seguinte expressão: 10 - 7 - 9 + 15 - 3 + 4 Solução: Faremos duas somas separadas uma só com os números positivos: 10 + 15 + 4 = +29 outra só com os números negativos: (-7) + (-9) + (-3) = -19 Agora calcularemos a diferença entre os dois totais encontrados: +29 - 19 = +10 Atenção: É preciso dar sermpre ao resultado o sinal do número que tiver o maior valor absoluto! Exemplo2: Calcular o valor da seguinte expressão: -10 + 4 - 7 - 8 + 3 - 2 1º passo: Achar os totais (+) e (-): (+): +4 + 3 = +7 (-): -10 - 7 - 8 - 2 = -27 2º passo: Calcular a diferença dando a ela o sinal do total que tiver o maior módulo: -27 + 7 = - 20 Multiplicação Os termos de uma multiplicação são chamados fatores e o resultado da operação de multiplicação é
  • 3. donominadoproduto. 1º fator x 2º fator = produto O primeiro fator também pode ser chamado multiplicando enquanto o segundo fator pode ser chamado multiplicador. A ordem dos fatores nunca altera o resultado de uma multiplicação: a x b = b x a O número 1 é o elemento neutro da multiplicação: 1 x a = a x 1 = a Se adicionarmos uma constante k a um dos fatores, o produto será adicionado de k vezes o outro fator: a x b = c ↔ (a + k) x b = c + (k x b) Se multiplicarmos um dos fatores por uma constante k, o produto será multiplicado por k: a × b = c ↔ (a × k) × b = k × c Podemos distribuir um fator pelos termos de uma adição ou subtração qualquer: a × (b ± c) = (a × b) ± (a × c) Divisão inteira Na divisão inteira de N por D ≠ 0, existirá um único par de inteiros, Q e R, tais que: Q × D + R = N e 0 ≤ R < R < |D| (onde |D| é o valor absoluto de D) A segunda condição significa que R (o resto) nunca pode ser negativo. Os quatro números envolvidos na divisão inteira são assim denominados: N é o dividendo; D é o divisor (sempre diferente de zero); Q é o quociente; R é o resto (nunca negativo). Exemplos: 1) Na divisão inteira de 60 por 7 o dividendo é 60, o divisor é7, o quociente é 8 e o resto é 4. 8 × 7 + 4 = 60 e 0 ≤ 4 < |7| 2) Na divisão inteira de -60 por 7 o dividendo é -60, o divisor é 7, o quociente é -9 e o resto é 3. -9 × 7 + 3 = -60 e 0 ≤ 3 < |7| Quando ocorrer R = 0 na divisão de N por D, teremos Q × D = N e diremos que a divisão é exata indicando-a como N ÷ D = Q. Quando a divisão de N por D for exata diremos que N é divisível por D e D é divisor de N ou, equivalentemente, que N é múltiplo de D e D é fator de N. O zero é divisível por qualquer número não nulo: D ≠ 0 → 0 ÷ D = 0. Todo número inteiro é divisível por 1: N ÷ 1 = N. Se multiplicarmos o dividendo (N) e o divisor (D) de uma divisão por uma constante k ≠ 0, o quociente (Q) não será alterado mas o resto (R) ficará multiplicado por k, se R × k < D, ou será igual ao resto da divisão de R × k por D, se R × k ≥ D. Multiplicação e divisões com números inteiros Nas multiplicações e divisões de dois números inteiros é preciso observar os sinais dos dois termos da operação: Exemplos:
  • 4. Sinais iguais (+) Sinais opostos (-) (+) × (+) = + (+) × (-) = - (-) × (-) = + (-) × (+) = - (+) ÷ (+) = + (+) ÷ (-) = - (-) ÷ (-) = + (-) ÷ (+) = -