ppt

B
CS 446:  Machine Learning Gerald DeJong [email_address] 3-0491 3320 SC Recent approval for a TA to be named later
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Please answer these and hand in now ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Approx. Course Overview / Topics ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What to Learn ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
What to Learn?  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Supervised  Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example and Hypothesis Spaces X H X: Example Space – set of all well-formed inputs [w/a distribution] H: Hypothesis Space – set of all well-formed outputs - - + + + - - - +
Supervised  Learning: Examples ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
y  =  f  (x 1 , x 2 , x 3 , x 4 ) Unknown function x 1 x 2 x 3 x 4 A  Learning Problem X H ? ? (Boolean: x1, x2, x3, x4,  f )
y  =  f  (x 1 , x 2 , x 3 , x 4 ) Unknown function x 1 x 2 x 3 x 4 Training Set Example  x 1   x 2   x 3   x 4  y 1   0  0  1  0  0 3   0  0  1  1  1 4  1  0  0  1  1 5   0  1  1  0  0 6  1  1  0  0  0 7  0  1  0  1  0 2   0  1  0  0  0
Hypothesis Space ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Example  x 1   x 2   x 3   x 4  y 1  1  1  1  ? 0  0  0  0  ? 1  0  0  0  ? 1  0  1  1  ? 1  1  0  0  0 1  1  0  1  ? 1  0  1  0  ? 1  0  0  1  1 0  1  0  0  0 0  1  0  1  0 0  1  1  0  0 0  1  1  1  ? 0  0  1  1  1 0  0  1  0  0 0  0  0  1  ? 1  1  1  0  ?
Another Hypothesis Space ,[object Object],[object Object],[object Object],1   0  0  1  0  0 3   0  0  1  1  1 4  1  0  0  1  1 5   0  1  1  0  0 6  1  1  0  0  0 7  0  1  0  1  0 2   0  1  0  0  0 y =c  x 1  1100  0 x 2  0100  0 x 3  0110  0 x 4  0101  1 x 1     x 2   1100  0 x 1     x 3  0011  1 x 1     x 4  0011  1 Rule  Counterexample x 2     x 3  0011  1 x 2     x 4  0011  1 x 3     x 4  1001  1 x 1     x 2     x 3  0011 1 x 1     x 2     x 4  0011 1 x 1     x 3     x 4  0011 1 x 2     x 3     x 4  0011 1 x 1     x 2     x 3     x 4  0011 1 Rule  Counterexample
Third Hypothesis Space ,[object Object],[object Object],[object Object],[object Object],1   0  0  1  0  0 3   0  0  1  1  1 4  1  0  0  1  1 5   0  1  1  0  0 6  1  1  0  0  0 7  0  1  0  1  0 2   0  1  0  0  0  x 1    3  -  -  -  x 2    2  -  -  -  x 3    1  -  -  -  x 4    7  -  -  -  x 1, x 2    2  3  -  -  x 1,  x 3    1  3  -  -  x 1,  x 4    6  3  -  -  x 2, x 3    2  3  -  - variables  1 -of  2 -of  3 -of  4 -of  x 2,  x 4    2  3  -  -   x 3,  x 4    4  4  -  -  x 1, x 2,  x 3    1  3  3  -  x 1, x 2,  x 4    2  3  3  -  x 1, x 3, x 4    1           3  -  x 2,  x 3, x 4    1  5  3  -  x 1,  x 2,  x 3, x 4    1  5  3  3 variables  1 -of  2 -of  3 -of  4 -of
Views of Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
General strategy for Machine Learning   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Terminology ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Key Issues in Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Key Issues in Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example: Generalization vs Overfitting ,[object Object],[object Object],[object Object],[object Object],[object Object]
Self-organize into Groups of 4 or 5 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Linear Discriminators ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Learning Protocol? Supervised? Unsupervised?
What’s Good?  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Exclusive-OR  (XOR) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],x 1 x 2
Sometimes Functions Can be Made Linear ,[object Object],[object Object],[object Object],[object Object],y 3   Ç  y 4   Ç  y 7   New discriminator is functionally simpler Weather Whether
[object Object],[object Object],Feature Space x
Blown Up Feature Space ,[object Object],x x 2 Key issue: what features to use.  Computationally, can be done implicitly  (kernels)
A General Framework for Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Simply: # of mistakes […] is a indicator function
A General Framework for Learning (II) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning as an Optimization Problem ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],A continuous convex  loss function also allows  a conceptually simple  optimization algorithm. f(x) –y
How to Learn?  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Linear Separators (LTU)  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],w 
Expressivity  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Probabilistic Classifiers as well
Canonical Representation ,[object Object],[object Object],[object Object],[object Object],[object Object]
LMS: An online, local search algorithm ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],w 
LMS: An online, local search algorithm ,[object Object],[object Object],[object Object],[object Object],(i  (subscript) – vector component;  j  (superscript) -  time; d – example #) Assumption:  x  2  R n ;  u  2  R n  is the target weight vector; the target (label) is  t d  = u  ¢  x  Noise has been added; so, possibly, no weight vector is consistent with the data.
Gradient Descent ,[object Object],[object Object],[object Object],E(w) w w 4  w 3  w 2  w 1
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Gradient Descent
[object Object],[object Object],Gradient Descent: LMS
Gradient Descent: LMS ,[object Object]
Gradient Descent: LMS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Gradient Descent: LMS
[object Object],Incremental Gradient Descent: LMS
Incremental Gradient Descent - LMS  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Rates and Convergence ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Computational Issues Assume the data is linearly separable. Sample complexity: Suppose we want to ensure that our LTU has an error rate  (on new examples) of less than    with high probability(at least (1-  )) How large must m (the number of examples) be in order to  achieve this? It can be shown that for  n  dimensional problems m = O(1/    [ln(1/   ) + (n+1) ln(1/   ) ]. Computational complexity: What can be said? It can be shown that there exists a polynomial time algorithm for  finding  consistent LTU (by reduction from linear programming).  (On-line algorithms have inverse quadratic dependence on the margin)
Other methods for LTUs ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Summary of LMS algorithms for LTUs Local search:  Begins with initial weight vector. Modifies iteratively to minimize and error function. The error function is  loosely  related to the goal of  minimizing the number of classification errors.  Memory:  The classifier is constructed from the training examples.  The examples can then be discarded. Online or Batch: Both online and batch variants of the algorithms can be used.
Fisher Linear Discriminant ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fisher Linear Discriminant ,[object Object],[object Object],[object Object],[object Object],[object Object],(all vectors are column vectors)
Finding a Good Direction ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Want large difference
Finding a Good Direction (2) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
J as an explicit function of w (1) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
J as an explicit function of w (2) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
J as an explicit function of w (3) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fisher Linear Discriminant - Summary ,[object Object],[object Object],[object Object],[object Object]
Introduction - Summary ,[object Object],[object Object],[object Object],[object Object]
1 de 57

Recomendados

03 intelligent systems-predicate_logic por
03 intelligent systems-predicate_logic03 intelligent systems-predicate_logic
03 intelligent systems-predicate_logicSTI Innsbruck
50 visualizações52 slides
Machine learning Lecture 1 por
Machine learning Lecture 1Machine learning Lecture 1
Machine learning Lecture 1Srinivasan R
25.2K visualizações77 slides
Machine Learning for NLP por
Machine Learning for NLPMachine Learning for NLP
Machine Learning for NLPbutest
3.8K visualizações89 slides
My7class por
My7classMy7class
My7classketan533
510 visualizações160 slides
Machine learning por
Machine learningMachine learning
Machine learningDigvijay Singh
731 visualizações31 slides
04 intelligent systems-reasoning por
04 intelligent systems-reasoning04 intelligent systems-reasoning
04 intelligent systems-reasoningSTI Innsbruck
43 visualizações82 slides

Mais conteúdo relacionado

Mais procurados

Lecture 3b: Decision Trees (1 part) por
Lecture 3b: Decision Trees (1 part)Lecture 3b: Decision Trees (1 part)
Lecture 3b: Decision Trees (1 part) Marina Santini
7.7K visualizações22 slides
Cs229 notes4 por
Cs229 notes4Cs229 notes4
Cs229 notes4VuTran231
32 visualizações11 slides
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof... por
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof..."Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...
"Let us talk about output features! by Florence d’Alché-Buc, LTCI & Full Prof...Paris Women in Machine Learning and Data Science
216 visualizações28 slides
.ppt por
.ppt.ppt
.pptbutest
326 visualizações15 slides
02 intelligent systems-propositional_logic por
02 intelligent systems-propositional_logic02 intelligent systems-propositional_logic
02 intelligent systems-propositional_logicSTI Innsbruck
82 visualizações73 slides
Langrange Interpolation Polynomials por
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation PolynomialsSohaib H. Khan
1K visualizações29 slides

Mais procurados(20)

Lecture 3b: Decision Trees (1 part) por Marina Santini
Lecture 3b: Decision Trees (1 part)Lecture 3b: Decision Trees (1 part)
Lecture 3b: Decision Trees (1 part)
Marina Santini7.7K visualizações
Cs229 notes4 por VuTran231
Cs229 notes4Cs229 notes4
Cs229 notes4
VuTran23132 visualizações
.ppt por butest
.ppt.ppt
.ppt
butest326 visualizações
02 intelligent systems-propositional_logic por STI Innsbruck
02 intelligent systems-propositional_logic02 intelligent systems-propositional_logic
02 intelligent systems-propositional_logic
STI Innsbruck82 visualizações
Langrange Interpolation Polynomials por Sohaib H. Khan
Langrange Interpolation PolynomialsLangrange Interpolation Polynomials
Langrange Interpolation Polynomials
Sohaib H. Khan1K visualizações
Learning por butest
LearningLearning
Learning
butest1.1K visualizações
Numerical Analysis and Epistemology of Information por Marco Benini
Numerical Analysis and Epistemology of InformationNumerical Analysis and Epistemology of Information
Numerical Analysis and Epistemology of Information
Marco Benini747 visualizações
IN ORDER TO IMPLEMENT A SET OF RULES / TUTORIALOUTLET DOT COM por jorge0050
IN ORDER TO IMPLEMENT A SET OF RULES / TUTORIALOUTLET DOT COMIN ORDER TO IMPLEMENT A SET OF RULES / TUTORIALOUTLET DOT COM
IN ORDER TO IMPLEMENT A SET OF RULES / TUTORIALOUTLET DOT COM
jorge0050313 visualizações
04 intelligent systems-reasoning por STI Innsbruck
04 intelligent systems-reasoning04 intelligent systems-reasoning
04 intelligent systems-reasoning
STI Innsbruck40 visualizações
Using binary classifiers por butest
Using binary classifiersUsing binary classifiers
Using binary classifiers
butest469 visualizações
Foil por lothomas
FoilFoil
Foil
lothomas661 visualizações
Course Design Best Practices por Keitaro Matsuoka
Course Design Best PracticesCourse Design Best Practices
Course Design Best Practices
Keitaro Matsuoka290 visualizações
3_learning.ppt por butest
3_learning.ppt3_learning.ppt
3_learning.ppt
butest673 visualizações
Lesson 1: Functions por Matthew Leingang
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
Matthew Leingang959 visualizações
Math Reviewer - Word Problems in Algebra por Gilbert Joseph Abueg
Math Reviewer - Word Problems in AlgebraMath Reviewer - Word Problems in Algebra
Math Reviewer - Word Problems in Algebra
Gilbert Joseph Abueg2.5K visualizações
Permutations and Combinations IIT JEE+Olympiad Lecture 1 por Parth Nandedkar
Permutations and Combinations IIT JEE+Olympiad Lecture 1 Permutations and Combinations IIT JEE+Olympiad Lecture 1
Permutations and Combinations IIT JEE+Olympiad Lecture 1
Parth Nandedkar187 visualizações
First meeting por butest
First meetingFirst meeting
First meeting
butest291 visualizações

Destaque

Introduction por
IntroductionIntroduction
Introductionbutest
243 visualizações36 slides
PPT por
PPTPPT
PPTbutest
849 visualizações38 slides
10-228 por
10-22810-228
10-228butest
194 visualizações427 slides
Leikir sem kennsluaðferð por
Leikir sem kennsluaðferðLeikir sem kennsluaðferð
Leikir sem kennsluaðferðbutest
394 visualizações32 slides
MikroBasic por
MikroBasicMikroBasic
MikroBasicbutest
516 visualizações160 slides
Dil.7.1.13.doc por
Dil.7.1.13.docDil.7.1.13.doc
Dil.7.1.13.docbutest
291 visualizações24 slides

Destaque(9)

Introduction por butest
IntroductionIntroduction
Introduction
butest243 visualizações
PPT por butest
PPTPPT
PPT
butest849 visualizações
10-228 por butest
10-22810-228
10-228
butest194 visualizações
Leikir sem kennsluaðferð por butest
Leikir sem kennsluaðferðLeikir sem kennsluaðferð
Leikir sem kennsluaðferð
butest394 visualizações
MikroBasic por butest
MikroBasicMikroBasic
MikroBasic
butest516 visualizações
Dil.7.1.13.doc por butest
Dil.7.1.13.docDil.7.1.13.doc
Dil.7.1.13.doc
butest291 visualizações
Clustering por butest
ClusteringClustering
Clustering
butest845 visualizações
(ppt) por butest
(ppt)(ppt)
(ppt)
butest454 visualizações
lec21.ppt por butest
lec21.pptlec21.ppt
lec21.ppt
butest209 visualizações

Similar a ppt

Machine Learning and Inductive Inference por
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inferencebutest
2.3K visualizações122 slides
MachineLearning.ppt por
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
18.4K visualizações123 slides
MachineLearning.ppt por
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
487 visualizações123 slides
MachineLearning.ppt por
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
1.3K visualizações123 slides
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ... por
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...Codiax
561 visualizações15 slides
02.03 Artificial Intelligence: Search by Optimization por
02.03 Artificial Intelligence: Search by Optimization02.03 Artificial Intelligence: Search by Optimization
02.03 Artificial Intelligence: Search by OptimizationAndres Mendez-Vazquez
1.3K visualizações119 slides

Similar a ppt(20)

Machine Learning and Inductive Inference por butest
Machine Learning and Inductive InferenceMachine Learning and Inductive Inference
Machine Learning and Inductive Inference
butest2.3K visualizações
MachineLearning.ppt por butest
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest18.4K visualizações
MachineLearning.ppt por butest
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest487 visualizações
MachineLearning.ppt por butest
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest1.3K visualizações
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ... por Codiax
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Sean Holden (University of Cambridge) - Proving Theorems_ Still A Major Test ...
Codiax561 visualizações
02.03 Artificial Intelligence: Search by Optimization por Andres Mendez-Vazquez
02.03 Artificial Intelligence: Search by Optimization02.03 Artificial Intelligence: Search by Optimization
02.03 Artificial Intelligence: Search by Optimization
Andres Mendez-Vazquez1.3K visualizações
ppt por butest
pptppt
ppt
butest1.8K visualizações
20130928 automated theorem_proving_harrison por Computer Science Club
20130928 automated theorem_proving_harrison20130928 automated theorem_proving_harrison
20130928 automated theorem_proving_harrison
Computer Science Club3.1K visualizações
Introduction to Machine Learning. por butest
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.
butest501 visualizações
Machine Learning: Foundations Course Number 0368403401 por butest
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401
butest506 visualizações
artficial intelligence por Phanindra Mortha
artficial intelligenceartficial intelligence
artficial intelligence
Phanindra Mortha260 visualizações
Stochastic Processes Homework Help por Excel Homework Help
Stochastic Processes Homework HelpStochastic Processes Homework Help
Stochastic Processes Homework Help
Excel Homework Help31 visualizações
S10 por butest
S10S10
S10
butest185 visualizações
S10 por butest
S10S10
S10
butest232 visualizações
Poggi analytics - ebl - 1 por Gaston Liberman
Poggi   analytics - ebl - 1Poggi   analytics - ebl - 1
Poggi analytics - ebl - 1
Gaston Liberman142 visualizações
Problem space por harman_sekhon
Problem spaceProblem space
Problem space
harman_sekhon580 visualizações
Problem space por harman_sekhon
Problem spaceProblem space
Problem space
harman_sekhon850 visualizações
Problem space por harman_sekhon
Problem spaceProblem space
Problem space
harman_sekhon7.9K visualizações
Applications of Multivariable Calculus.ppt por saiprashanth973626
Applications of Multivariable Calculus.pptApplications of Multivariable Calculus.ppt
Applications of Multivariable Calculus.ppt
saiprashanth97362613 visualizações
Evolutionary deep learning: computer vision. por Olivier Teytaud
Evolutionary deep learning: computer vision.Evolutionary deep learning: computer vision.
Evolutionary deep learning: computer vision.
Olivier Teytaud147 visualizações

Mais de butest

EL MODELO DE NEGOCIO DE YOUTUBE por
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
9K visualizações23 slides
1. MPEG I.B.P frame之不同 por
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
5K visualizações3 slides
LESSONS FROM THE MICHAEL JACKSON TRIAL por
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
2.4K visualizações3 slides
Timeline: The Life of Michael Jackson por
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
3.7K visualizações10 slides
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ... por
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
2.1K visualizações6 slides
LESSONS FROM THE MICHAEL JACKSON TRIAL por
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
2.4K visualizações6 slides

Mais de butest(20)

EL MODELO DE NEGOCIO DE YOUTUBE por butest
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
butest9K visualizações
1. MPEG I.B.P frame之不同 por butest
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
butest5K visualizações
LESSONS FROM THE MICHAEL JACKSON TRIAL por butest
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest2.4K visualizações
Timeline: The Life of Michael Jackson por butest
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
butest3.7K visualizações
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ... por butest
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
butest2.1K visualizações
LESSONS FROM THE MICHAEL JACKSON TRIAL por butest
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
butest2.4K visualizações
Com 380, Summer II por butest
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
butest1.7K visualizações
PPT por butest
PPTPPT
PPT
butest2K visualizações
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz por butest
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
butest1.4K visualizações
MICHAEL JACKSON.doc por butest
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
butest1.5K visualizações
Social Networks: Twitter Facebook SL - Slide 1 por butest
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
butest1.4K visualizações
Facebook por butest
Facebook Facebook
Facebook
butest1.1K visualizações
Executive Summary Hare Chevrolet is a General Motors dealership ... por butest
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
butest6.9K visualizações
Welcome to the Dougherty County Public Library's Facebook and ... por butest
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
butest1.1K visualizações
NEWS ANNOUNCEMENT por butest
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
butest910 visualizações
C-2100 Ultra Zoom.doc por butest
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
butest1K visualizações
MAC Printing on ITS Printers.doc.doc por butest
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
butest1.2K visualizações
Mac OS X Guide.doc por butest
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
butest1.6K visualizações
hier por butest
hierhier
hier
butest2.4K visualizações
WEB DESIGN! por butest
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
butest1.5K visualizações

ppt

  • 1. CS 446: Machine Learning Gerald DeJong [email_address] 3-0491 3320 SC Recent approval for a TA to be named later
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8. Example and Hypothesis Spaces X H X: Example Space – set of all well-formed inputs [w/a distribution] H: Hypothesis Space – set of all well-formed outputs - - + + + - - - +
  • 9.
  • 10. y = f (x 1 , x 2 , x 3 , x 4 ) Unknown function x 1 x 2 x 3 x 4 A Learning Problem X H ? ? (Boolean: x1, x2, x3, x4, f )
  • 11. y = f (x 1 , x 2 , x 3 , x 4 ) Unknown function x 1 x 2 x 3 x 4 Training Set Example x 1 x 2 x 3 x 4 y 1 0 0 1 0 0 3 0 0 1 1 1 4 1 0 0 1 1 5 0 1 1 0 0 6 1 1 0 0 0 7 0 1 0 1 0 2 0 1 0 0 0
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46. Computational Issues Assume the data is linearly separable. Sample complexity: Suppose we want to ensure that our LTU has an error rate (on new examples) of less than  with high probability(at least (1-  )) How large must m (the number of examples) be in order to achieve this? It can be shown that for n dimensional problems m = O(1/  [ln(1/  ) + (n+1) ln(1/  ) ]. Computational complexity: What can be said? It can be shown that there exists a polynomial time algorithm for finding consistent LTU (by reduction from linear programming). (On-line algorithms have inverse quadratic dependence on the margin)
  • 47.
  • 48. Summary of LMS algorithms for LTUs Local search: Begins with initial weight vector. Modifies iteratively to minimize and error function. The error function is loosely related to the goal of minimizing the number of classification errors. Memory: The classifier is constructed from the training examples. The examples can then be discarded. Online or Batch: Both online and batch variants of the algorithms can be used.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.

Notas do Editor

  1. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  2. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  3. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  4. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  5. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  6. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  7. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  8. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  9. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  10. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  11. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  12. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  13. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  14. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  15. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  16. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  17. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  18. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  19. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  20. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  21. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  22. As we said, this is the game we are playing; in NLP, it has always been clear, that the raw information In a sentence is not sufficient, as is to represent a good predictor. Better functions of the input were Generated, and learning was done in these terms.
  23. Good treatment in Bishop, Chp 3 Classic Weiner filtering solution; text omits 0.5 factor; In any case we use the gradient and eta (text) or R (these notes) to modulate the step size
  24. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  25. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  26. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  27. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  28. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  29. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  30. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  31. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.
  32. Badges game Don’t give me the answer Start thinking about how to write a program that will figure out whether my name has + or – next to it.