SlideShare uma empresa Scribd logo
1 de 73
Bayesian Logic Programs Kristian Kersting, Luc De Raedt Albert-Ludwigs University Freiburg, Germany Summer School on Relational Data Mining  17 and 18 August 2002, Helsinki, Finland
Context Real-world applications uncertainty complex, structured domains logic objects, relations,functors probability theory discrete, continuous Bayesian networks Logic Programming (Prolog) + Bayesian logic programs
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Bayesian Logic Programs ,[object Object],[object Object],[object Object],[object Object],[object Object],
Bayesian Networks ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Stud farm (Jensen ´96) ,[object Object],[object Object],[object Object],
Bayesian networks  [Pearl ´88] bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john Based on the stud farm example  [Jensen ´96] 
Bayesian networks  [Pearl ´88] bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john Based on the stud farm example  [Jensen ´96] (Conditional) Probability distribution  P(bt_cecily=aA|bt_john=aA)=0.1499  P(bt_john=AA|bt_ann=aA)=0.6906 P(bt_john=AA)=0.9909 (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
Bayesian networks (contd.) ,[object Object],[object Object],
From Bayesian Networks to Bayesian Logic Programs bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john 
From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy bt_eric bt_gwenn bt_unknown2. bt_unknown1. bt_fred bt_henry bt_irene bt_john 
From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann,  bt_brian.  bt_eric| bt_brian,  bt_cecily. bt_gwenn | bt_ann,  bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry bt_irene bt_john 
From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann,  bt_brian.  bt_eric| bt_brian,  bt_cecily. bt_gwenn | bt_ann,  bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry | bt_fred,  bt_dorothy. bt_irene | bt_eric,  bt_gwenn. bt_john 
From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann,  bt_brian.  bt_eric| bt_brian,  bt_cecily. bt_gwenn | bt_ann,  bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry | bt_fred,  bt_dorothy. bt_irene | bt_eric,  bt_gwenn. bt_john | bt_henry ,bt_irene.  (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
From Bayesian Networks to Bayesian Logic Programs %  apriori nodes bt_ann.  bt_brian.  bt_cecily. bt_unknown1. bt_unknown1. %  aposteriori nodes bt_henry  | bt_fred, bt_dorothy. bt_irene  | bt_eric, bt_gwenn. bt_fred  | bt_unknown1, bt_ann. bt_dorothy| bt_brian, bt_ann. bt_eric  | bt_brian, bt_cecily. bt_gwenn  | bt_unknown2, bt_ann. bt_john  | bt_henry, bt_irene.  D omain e.g. finite, discrete, continuous (conditional) probability distribution (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
From Bayesian Networks to Bayesian Logic Programs %  apriori nodes bt(ann).  bt(brian).  bt(cecily). bt(unknown1). bt(unknown1). %  aposteriori nodes bt(henry)  | bt(fred), bt(dorothy). bt(irene)  | bt(eric), bt(gwenn). bt(fred)  | bt(unknown1), bt(ann). bt(dorothy)| bt(brian), bt(ann). bt(eric)  | bt(brian), bt(cecily). bt(gwenn)  | bt(unknown2), bt(ann). bt(john)  | bt(henry), bt(irene).  (conditional) probability distribution (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt(irene) bt(henry) P (bt(john)) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
From Bayesian Networks to Bayesian Logic Programs  %  ground facts /  apriori  bt(ann).  bt(brian).  bt(cecily). bt(unkown1).  bt(unkown1). father(unkown1,fred).  mother(ann,fred).  father(brian,dorothy). mother(ann, dorothy).  father(brian,eric).  mother(cecily,eric).  father(unkown2,gwenn). mother(ann,gwenn).  father(fred,henry).  mother(dorothy,henry).  father(eric,irene).  mother(gwenn,irene).  father(henry,john).  mother(irene,john).  %  rules   /  aposteriori  bt(X) | father(F,X), bt(F), mother(M,X), bt(M). (conditional)  probability distribution AA Aa bt(F) false true father(F,X) (0.33,0.33,0.33) ... (1.0,0.0,0.0) P (bt(X)) false bt(M) mother(M,X) AA aa true
Dependency graph   = Bayesian network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john  Dependency graph   = Bayesian network
Bayesian Logic Programs - a first definition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Bayesian Logic Programs - Examples %  apriori nodes nat(0).  %  aposteriori nodes nat(s(X)) | nat(X). ... MC %  apriori nodes state(0).  %  aposteriori nodes state(s(Time)) | state(Time). output(Time)  | state(Time) HMM %  apriori nodes n1(0).  %  aposteriori nodes n1(s(TimeSlice) | n2(TimeSlice). n2(TimeSlice)  | n1(TimeSlice). n3(TimeSlice)  | n1(TimeSlice), n2(TimeSlice). DBN  pure Prolog nat(0) nat(s(0)) nat(s(s(0)) state(0) output(0) state(s(0)) output(s(0)) ... n1(0) n2(0) n3(0) n1(s(0)) n2(s(0)) n3(s(0)) ...
[object Object],Associated CPDs  Multiple ground instances of clauses having the same head atom? AA Aa bt(F) false true father(F,X) (0.33,0.33,0.33) ... (1.0,0.0,0.0) P (bt(X)) false bt(M) mother(M,X) AA aa true 
Combining Rules  ,[object Object],%  ground facts as before %  rules  bt(X) | father(F,X), bt(F). bt(X) | mother(M,X), bt(M).  cpd(bt(john)|father(henry,john), bt(henry)) and cpd(bt(john)|mother(henry,john), bt(irene)) cpd(bt(john)|father(henry,john),bt(henry),mother(irene,john),bt(irene)) But we need !!!
C ombining  R ules (contd.) P (A|B,C) P (A|B) and  P (A|C) CR ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Bayesian Logic Programs - a definition ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Discrete-Time Stochastic Process ,[object Object], ,[object Object]
Theorem of Kolmogorov   Existence and uniqueness of  probability measure ,[object Object],[object Object],[object Object],[object Object]
Consistency Conditions ,[object Object],[object Object], ,[object Object]
Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
Support network ,[object Object],[object Object],[object Object],
Queries using And/Or trees ,[object Object],[object Object],[object Object],[object Object],[object Object], ,[object Object],[object Object],bt(brian) bt(cecily) father(brian,eric),bt(brian), mother(cecily,eric),bt(cecily) father(brian,eric) mother(cecily,eric) bt(eric) cpd bt(brian) bt(cecily) father(brian,eric) mother(cecily,eric) bt(eric) combined cpd
Consistency Condition (contd.) ,[object Object],[object Object], well-defined Bayesian logic program Projective family  exists if
Relational Character % ground facts bt(ann).  bt(brian).  bt(cecily).  bt(unknown1).  bt(unknown1). father(unknown1,fred).  mother(ann,fred).  father(brian,dorothy).  mother(ann, dorothy).  father(brian,eric).  mother(cecily,eric).  father(unknown2,gwenn). mother(ann,gwenn).  father(fred,henry).  mother(dorothy,henry).  father(eric,irene).  mother(gwenn,irene).  father(henry,john).  mother(irene,john).  %  rules  bt(X) | father(F,X), bt(F), mother(M,X), bt(M).  AA Aa bt(F) false true father(X,F) (0.33,0.33,0.33) ... (1.0,0.0,0.0) P (bt(X)) false bt(M) mother(X,M) AA aa true % ground facts bt(susanne).  bt(ralf).  bt(peter).  bt(uta).  father(ralf,luca).  mother(susanne,luca).  ... % ground facts bt(petra).  bt(bsilvester).  bt(anne).  bt(wilhelm).  bt(beate). father(silvester,claudien).  mother(beate,claudien).  father(wilhelm,marta).  mother(anne, marthe).  ...
Bayesian Logic Programs - Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Applications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Other frameworks ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Learning  Bayesian Logic Programs Data  +  Background Knowledge  learning algorithm .9 .1 e b e .7 .3 .01 .99 .8 .2 b e b b e E P (A) A | E, B. B
Why Learning  Bayesian Logic Programs ? ,[object Object],[object Object], Inductive Logic Programming Learning within Bayesian Logic Programs Learning within Bayesian network
What is the data about ?  A data case  is a partially observed  joint state of a finite, nonempty subset
Learning Task  ,[object Object],[object Object],[object Object],[object Object],[object Object],
Parameter Estimation (contd.) ,[object Object],[object Object],[object Object],
Parameter Estimation (contd.) ,[object Object],[object Object],
Parameter Estimation (contd.)  is an ordinary BN marginal of  marginal of
Parameter Estimation (contd.) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Decomposable CRs ,[object Object], Single ground instance of a Bayesian clause Multiple ground instance of the same Bayesian clause CPD for Combining Rule ... ... ... ...
Gradient Ascent  Goal : Computation of
Gradient Ascent  Bayesian ground clause Bayesian  clause
Gradient Ascent  Bayesian Network Inference Engine
Algorithm 
Expectation-Maximization ,[object Object],[object Object],[object Object],[object Object],
Experimental Evidence ,[object Object],[object Object],[object Object],[object Object], ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],N(165,s) false false N(165,s) true false  N(165,s) false true N(0.5*h(M)+0.5*h(F),s) true true pdf (c)(h(X)|h(M),h(F)) f(F,X) m(M,X)
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Structural Learning ,[object Object], ,[object Object],[object Object],[object Object]
Idea - CLAUDIEN ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object], probabilistic extension all data cases are partially  observed joint  states of Herbrand  intepretations all hypotheses have to be  (logically) true in all data cases
What is the data about ? ... 
[object Object],[object Object],[object Object],[object Object],[object Object],Claudien - Learning From Interpretations  probabilistic solution  iff  is (logically) valid and  the Bayesian network induced by B on  is acyclic
Learning Task ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],
Algorithm 
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program {m(ann,john)=true, pc(ann)=a, mc(ann)=?, f(eric,john)=true, pc(eric)=b, mc(eric)=a, mc(john)=ab, pc(john)=a, bt(john) = ? } ... Data cases
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis
Example  mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric)
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),mc(X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),pc(X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement
Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) ... mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),pc(X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X).  pc(X) | f(F,X).  bt(X) | mc(X), pc(X). Refinement
Properties ,[object Object],[object Object],[object Object],[object Object],[object Object],
Example Experiments  mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Data:  sampling from 2 families, each 1000 samples Score:  LogLikelihood Goal:  learn the definition of bt CLAUDIEN mc(X) | m(M,X). pc(X) | f(F,X). Bloodtype mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). highest score
Conclusion ,[object Object],[object Object],[object Object],[object Object]
 Thanks !

Mais conteúdo relacionado

Semelhante a BLPs

Cornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsCornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsMark Gerstein
 
original
originaloriginal
originalbutest
 
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)Temple University
 
Slides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometrySlides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometryFrank Nielsen
 
Bayesian Networks - A Brief Introduction
Bayesian Networks - A Brief IntroductionBayesian Networks - A Brief Introduction
Bayesian Networks - A Brief IntroductionAdnan Masood
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapterChristian Robert
 
Introduction to Bayesian Phylogenetics
Introduction to Bayesian PhylogeneticsIntroduction to Bayesian Phylogenetics
Introduction to Bayesian PhylogeneticsTracy Heath
 
"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...Christian Robert
 
Bayesian Divergence Time Estimation
Bayesian Divergence Time Estimation Bayesian Divergence Time Estimation
Bayesian Divergence Time Estimation Tracy Heath
 
Likelihood free computational statistics
Likelihood free computational statisticsLikelihood free computational statistics
Likelihood free computational statisticsPierre Pudlo
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Advanced-Concepts-Team
 
SPIE Conference V3.0
SPIE Conference V3.0SPIE Conference V3.0
SPIE Conference V3.0Robert Fry
 
Probabilistic information retrieval models & systems
Probabilistic information retrieval models & systemsProbabilistic information retrieval models & systems
Probabilistic information retrieval models & systemsSelman Bozkır
 
On the vexing dilemma of hypothesis testing and the predicted demise of the B...
On the vexing dilemma of hypothesis testing and the predicted demise of the B...On the vexing dilemma of hypothesis testing and the predicted demise of the B...
On the vexing dilemma of hypothesis testing and the predicted demise of the B...Christian Robert
 

Semelhante a BLPs (20)

Fol
FolFol
Fol
 
Cornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 NetsCornell Pbsb 20090126 Nets
Cornell Pbsb 20090126 Nets
 
original
originaloriginal
original
 
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)
Oral presentation at Protein Folding Consortium Workshop in Berkeley (2017)
 
Unit 6: All
Unit 6: AllUnit 6: All
Unit 6: All
 
Slides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometrySlides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometry
 
Bayesian Networks - A Brief Introduction
Bayesian Networks - A Brief IntroductionBayesian Networks - A Brief Introduction
Bayesian Networks - A Brief Introduction
 
Bayes Belief Networks
Bayes Belief NetworksBayes Belief Networks
Bayes Belief Networks
 
Basen Network
Basen NetworkBasen Network
Basen Network
 
ABC short course: model choice chapter
ABC short course: model choice chapterABC short course: model choice chapter
ABC short course: model choice chapter
 
Introduction to Bayesian Phylogenetics
Introduction to Bayesian PhylogeneticsIntroduction to Bayesian Phylogenetics
Introduction to Bayesian Phylogenetics
 
Logic 2
Logic 2Logic 2
Logic 2
 
"reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli..."reflections on the probability space induced by moment conditions with impli...
"reflections on the probability space induced by moment conditions with impli...
 
Bayesian Divergence Time Estimation
Bayesian Divergence Time Estimation Bayesian Divergence Time Estimation
Bayesian Divergence Time Estimation
 
Likelihood free computational statistics
Likelihood free computational statisticsLikelihood free computational statistics
Likelihood free computational statistics
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...
 
SPIE Conference V3.0
SPIE Conference V3.0SPIE Conference V3.0
SPIE Conference V3.0
 
Probabilistic information retrieval models & systems
Probabilistic information retrieval models & systemsProbabilistic information retrieval models & systems
Probabilistic information retrieval models & systems
 
On the vexing dilemma of hypothesis testing and the predicted demise of the B...
On the vexing dilemma of hypothesis testing and the predicted demise of the B...On the vexing dilemma of hypothesis testing and the predicted demise of the B...
On the vexing dilemma of hypothesis testing and the predicted demise of the B...
 
BAYSM'14, Wien, Austria
BAYSM'14, Wien, AustriaBAYSM'14, Wien, Austria
BAYSM'14, Wien, Austria
 

Mais de butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer IIbutest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazzbutest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.docbutest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1butest
 
Facebook
Facebook Facebook
Facebook butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTbutest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docbutest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docbutest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.docbutest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!butest
 

Mais de butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

BLPs

  • 1. Bayesian Logic Programs Kristian Kersting, Luc De Raedt Albert-Ludwigs University Freiburg, Germany Summer School on Relational Data Mining 17 and 18 August 2002, Helsinki, Finland
  • 2. Context Real-world applications uncertainty complex, structured domains logic objects, relations,functors probability theory discrete, continuous Bayesian networks Logic Programming (Prolog) + Bayesian logic programs
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. Bayesian networks [Pearl ´88] bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john Based on the stud farm example [Jensen ´96] 
  • 8. Bayesian networks [Pearl ´88] bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john Based on the stud farm example [Jensen ´96] (Conditional) Probability distribution  P(bt_cecily=aA|bt_john=aA)=0.1499 P(bt_john=AA|bt_ann=aA)=0.6906 P(bt_john=AA)=0.9909 (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
  • 9.
  • 10. From Bayesian Networks to Bayesian Logic Programs bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john 
  • 11. From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy bt_eric bt_gwenn bt_unknown2. bt_unknown1. bt_fred bt_henry bt_irene bt_john 
  • 12. From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann, bt_brian. bt_eric| bt_brian, bt_cecily. bt_gwenn | bt_ann, bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry bt_irene bt_john 
  • 13. From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann, bt_brian. bt_eric| bt_brian, bt_cecily. bt_gwenn | bt_ann, bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry | bt_fred, bt_dorothy. bt_irene | bt_eric, bt_gwenn. bt_john 
  • 14. From Bayesian Networks to Bayesian Logic Programs bt_ann. bt_brian. bt_cecily. bt_dorothy | bt_ann, bt_brian. bt_eric| bt_brian, bt_cecily. bt_gwenn | bt_ann, bt_unknown2. bt_unknown2. bt_unknown1. bt_fred | bt_unknown1, bt_ann. bt_henry | bt_fred, bt_dorothy. bt_irene | bt_eric, bt_gwenn. bt_john | bt_henry ,bt_irene.  (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
  • 15. From Bayesian Networks to Bayesian Logic Programs % apriori nodes bt_ann. bt_brian. bt_cecily. bt_unknown1. bt_unknown1. % aposteriori nodes bt_henry | bt_fred, bt_dorothy. bt_irene | bt_eric, bt_gwenn. bt_fred | bt_unknown1, bt_ann. bt_dorothy| bt_brian, bt_ann. bt_eric | bt_brian, bt_cecily. bt_gwenn | bt_unknown2, bt_ann. bt_john | bt_henry, bt_irene.  D omain e.g. finite, discrete, continuous (conditional) probability distribution (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt_irene bt_henry P (bt_john) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
  • 16. From Bayesian Networks to Bayesian Logic Programs % apriori nodes bt(ann). bt(brian). bt(cecily). bt(unknown1). bt(unknown1). % aposteriori nodes bt(henry) | bt(fred), bt(dorothy). bt(irene) | bt(eric), bt(gwenn). bt(fred) | bt(unknown1), bt(ann). bt(dorothy)| bt(brian), bt(ann). bt(eric) | bt(brian), bt(cecily). bt(gwenn) | bt(unknown2), bt(ann). bt(john) | bt(henry), bt(irene).  (conditional) probability distribution (0.33,0.33,0.33) ... (0.0,1.0,0.0) (0.5,0.5,0.0) bt(irene) bt(henry) P (bt(john)) AA AA AA aa aA aa aa aa (1.0,0.0,0.0)
  • 17. From Bayesian Networks to Bayesian Logic Programs  % ground facts / apriori bt(ann). bt(brian). bt(cecily). bt(unkown1). bt(unkown1). father(unkown1,fred). mother(ann,fred). father(brian,dorothy). mother(ann, dorothy). father(brian,eric). mother(cecily,eric). father(unkown2,gwenn). mother(ann,gwenn). father(fred,henry). mother(dorothy,henry). father(eric,irene). mother(gwenn,irene). father(henry,john). mother(irene,john). % rules / aposteriori bt(X) | father(F,X), bt(F), mother(M,X), bt(M). (conditional) probability distribution AA Aa bt(F) false true father(F,X) (0.33,0.33,0.33) ... (1.0,0.0,0.0) P (bt(X)) false bt(M) mother(M,X) AA aa true
  • 18. Dependency graph = Bayesian network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
  • 19. bt_ann bt_brian bt_cecily bt_dorothy bt_eric bt_gwenn bt_unknown2 bt_unknown1 bt_fred bt_henry bt_irene bt_john  Dependency graph = Bayesian network
  • 20.
  • 21. Bayesian Logic Programs - Examples % apriori nodes nat(0). % aposteriori nodes nat(s(X)) | nat(X). ... MC % apriori nodes state(0). % aposteriori nodes state(s(Time)) | state(Time). output(Time) | state(Time) HMM % apriori nodes n1(0). % aposteriori nodes n1(s(TimeSlice) | n2(TimeSlice). n2(TimeSlice) | n1(TimeSlice). n3(TimeSlice) | n1(TimeSlice), n2(TimeSlice). DBN  pure Prolog nat(0) nat(s(0)) nat(s(s(0)) state(0) output(0) state(s(0)) output(s(0)) ... n1(0) n2(0) n3(0) n1(s(0)) n2(s(0)) n3(s(0)) ...
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30. Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
  • 31. Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
  • 32. Support network bt(ann) bt(brian) bt(cecily) bt(dorothy) mother(ann,dorothy) father(brian,dorothy) bt(eric) father(brian,eric) mother(cecily,eric) bt(gwenn) mother(ann,gwenn) bt(unknown2) bt(unknown1) bt(fred) mother(ann,fred) father(unknown1,fred) bt(henry) bt(irene) mother(dorothy,henry) mother(gwenn,irene) father(eric,irene) father(fred,henry) bt(john) father(henry,john) mother(irene,john) father(unknown2,eric) 
  • 33.
  • 34.
  • 35.
  • 36. Relational Character % ground facts bt(ann). bt(brian). bt(cecily). bt(unknown1). bt(unknown1). father(unknown1,fred). mother(ann,fred). father(brian,dorothy). mother(ann, dorothy). father(brian,eric). mother(cecily,eric). father(unknown2,gwenn). mother(ann,gwenn). father(fred,henry). mother(dorothy,henry). father(eric,irene). mother(gwenn,irene). father(henry,john). mother(irene,john). % rules bt(X) | father(F,X), bt(F), mother(M,X), bt(M).  AA Aa bt(F) false true father(X,F) (0.33,0.33,0.33) ... (1.0,0.0,0.0) P (bt(X)) false bt(M) mother(X,M) AA aa true % ground facts bt(susanne). bt(ralf). bt(peter). bt(uta). father(ralf,luca). mother(susanne,luca). ... % ground facts bt(petra). bt(bsilvester). bt(anne). bt(wilhelm). bt(beate). father(silvester,claudien). mother(beate,claudien). father(wilhelm,marta). mother(anne, marthe). ...
  • 37.
  • 38.
  • 39.
  • 40.
  • 41. Learning Bayesian Logic Programs Data + Background Knowledge  learning algorithm .9 .1 e b e .7 .3 .01 .99 .8 .2 b e b b e E P (A) A | E, B. B
  • 42.
  • 43. What is the data about ?  A data case is a partially observed joint state of a finite, nonempty subset
  • 44.
  • 45.
  • 46.
  • 47. Parameter Estimation (contd.)  is an ordinary BN marginal of marginal of
  • 48.
  • 49.
  • 50. Gradient Ascent  Goal : Computation of
  • 51. Gradient Ascent  Bayesian ground clause Bayesian clause
  • 52. Gradient Ascent  Bayesian Network Inference Engine
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59. What is the data about ? ... 
  • 60.
  • 61.
  • 63. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program {m(ann,john)=true, pc(ann)=a, mc(ann)=?, f(eric,john)=true, pc(eric)=b, mc(eric)=a, mc(john)=ab, pc(john)=a, bt(john) = ? } ... Data cases
  • 64. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis
  • 65. Example  mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric)
  • 66. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis
  • 67. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),mc(X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement
  • 68. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),pc(X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement
  • 69. Example  mc(john) pc(john) bc(john) m(ann,john) f(eric,john) pc(ann) mc(ann) mc(eric) pc(eric) ... mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Original Bayesian logic program mc(X) | m(M,X),pc(X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X). Initial hypothesis mc(X) | m(M,X). pc(X) | f(F,X). bt(X) | mc(X), pc(X). Refinement
  • 70.
  • 71. Example Experiments  mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). Data: sampling from 2 families, each 1000 samples Score: LogLikelihood Goal: learn the definition of bt CLAUDIEN mc(X) | m(M,X). pc(X) | f(F,X). Bloodtype mc(X) | m(M,X), mc(M), pc(M). pc(X) | f(F,X), mc(F), pc(F). bt(X) | mc(X), pc(X). highest score
  • 72.