O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Industrial Data Space Key Facts

2.225 visualizações

Publicada em

The Industrial Data Space is a strategic initiative driven by industry and supported by the German Federal Government. It aims at supporting the secure exchange and easy combination of data within ecosystems.

Publicada em: Negócios
  • Entre para ver os comentários

  • Seja a primeira pessoa a gostar disto

Industrial Data Space Key Facts

  1. 1. © Fraunhofer · Seite 1 Prof. Dr. Boris Otto · Dortmund · October 2015 INDUSTRIAL DATA SPACE: BRIEF OVERVIEW
  2. 2. © Fraunhofer · Seite 2 Data is the strategic resource to link Smart Services and Smart Manufacturing Information flow Public Data Data from the Value Chain Commercial Services Industrial Services Individualization End-to-End Customer Process Ecosystem Ubiquity Smart Data Management Interoperability Human-Machine- Collaboration Autonomous Systems Internet of Things Customer Production Networks Logistics Networks Smart ServicesDataSmart Manufacturing Material flow.Legend:
  3. 3. © Fraunhofer · Seite 3 The Industrial Data Space aims at a »Network of Trusted Data« Sovereignty Data and ServicesTrustworthiness Certified Members Decentralization Federated Architecture Openness Neutral and User-Driven Governance Common Rules of the Game Scalability Network Effects Ecosystem Platform and Services Security Data Exchange
  4. 4. © Fraunhofer · Seite 4 Piloting the Industrial Data Space materializes in a set of software components
  5. 5. © Fraunhofer · Seite 5 The Industrial Data Space is driven by industry and supported by the German Federal Government Chartered Organization Founders Governmental Research Grant  Reference Architecture Model  Use Case Pilot Implementations
  6. 6. © Fraunhofer · Seite 6 Some key features characterize the Industrial Data Space  Secure »Data Supply Chain«  Flexible »IDS Endpoint« scenarios  Enterprise IT  Cloud  Hardware device (Machine tool, fork lift etc.)  »Light-weight Semantics«  Easy combination of different data goods  Domain-specific governance models  Configurable reference architecture model  Standardized collaboration processes for data  Open design and development process
  7. 7. © Fraunhofer · Seite 7 Prof. Dr. Boris Otto · Dortmund · October 2015 INDUSTRIAL DATA SPACE: BRIEF OVERVIEW

×