Aplicações da genética

32.057 visualizações

Publicada em

Publicada em: Tecnologia, Educação
0 comentários
6 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
32.057
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1.082
Ações
Compartilhamentos
0
Downloads
415
Comentários
0
Gostaram
6
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aplicações da genética

  1. 1. Melhoramento genético O melhoramento genético de plantas e animais domésticos consiste em selecionar e aprimorar determinadas qualidades das espécies, tendo em vista sua utilização pela humanidade
  2. 2. Melhoramento genético 1-O gado da raça Shorthorn, criado em certas regiões dos EUA, é um excelente produtor de carne, mas sensível a doenças transmitidas por insetos e carrapatos; além disso, é pouco resistente ao calor, sofrendo muito no verão 2-O gado da Zebu, raça de origem indiana muito resistente à parasitas e ao calor, mas que produz relativamente menos carne.
  3. 3. Melhoramento genético Após vários ciclos de cruzamentos entre Shorthorn e Zebu, sempre selecionando as características desejadas, desenvolveu-se uma população homogênea, que foi considerada uma nova raça, denominada Santa Gertrudes tem boa resistência a doenças infecciosas e grande tolerância ao calor, podendo viver em regiões onde o gado Shorthorn não sobreviveria.
  4. 4. EXEMPLOS O gado Santa Gertrudes (A) é uma raça desenvolvida por seleção a partir de cruzamentos entre as raças Shorthorn (B) e Zebu (C)
  5. 5. MELHORAMENTO GENÉTICO VEGETAL
  6. 6. MELHORAMENTO GENÉTICO Transgênicos Resultam de experimentos de engenharia genética nos quais o material genético é movido de um organismo a outro visando a obtenção de características específicas
  7. 7. TRANSGÊNICOS  O QUE É O.G.M.?  PARA QUE FAZER ?  VANTAGENS  DESVANTANGENS
  8. 8. Ferramentas usadas na engenharia genética 1- Enzimas de restrição - endonucleases São enzimas que funcionam como “tesouras moleculares” capazes de clivar o DNA com precisão. Estas enzimas são endonucleases, ou seja, no interior (daí o prefixo endo-) das moléculas de DNA, cortando-as em locais bem definidos.
  9. 9. As enzimas de restrição reconhecem e atuam sobre seqüências específicas de DNA, catalisando a destruição de uma ligação fosfodiéster entre dois nucleotídeos consecutivos ligados a determinadas bases. Os nucleotídeos entre os quais a enzima corta, ou seja, entre os quais promove a hidrólise, encontram-se no interior dessas mesmas seqüências específicas de reconhecimento (ver imagem).
  10. 10. Uso das enzimas de restrição
  11. 11. Ferramentas usadas na engenharia genética 2- DNA ligase Esta enzima promove a ligação dos fragmentos de DNA em vetores previamente clivados por endonucleases de restrição. A DNA ligase requer um grupo OH livre na extremidade 3' de uma das cadeias de DNA e um grupo fosfato na extremidade 5' da outra cadeia( veja figura)
  12. 12. Ferramentas usadas na engenharia genética 3- Vetores  Plasmídeo bacteriano Além do DNA cromossômico, a célula bacteriana contém pequenas moléculas de DNA circular denominadas PLASMÍDEOS. Estes mantém uma existência independente do cromossomo; no entanto, sua duplicação é sincronizada com a da bactéria, garantindo assim sua transmissão para as bactérias-filhas.
  13. 13.  Lipossomos São essencialmente esferas de membrana sintética formadas por camadas bilipídicas preenchidas com DNA. Eles se fundem espontaneamente com a membrana celular, liberando seu conteúdo no citoplasma.
  14. 14.  Vírus
  15. 15. DNA RECOMBINANTE  Construção de uma molécula de DNA híbrida a partir de fragmentos de diferentes organismos obtidos com o uso de enzima de restrição.
  16. 16. Transgênicos Que características os agricultores gostariam de modificar nas plantas?  Resistência a insetos  Resistência a vírus  Resistência a herbicidas  Aumento do valor nutritivo da planta  Retardo na maturação dos frutos  Alteração de flores ornamentais
  17. 17. Passos na obtenção de transgênicos  O gene escolhido (extraído de outro organismo) é inserido no plasmídeo Ti;  O plasmídeo, contendo o gene de interesse, é inserido na bactéria;  A bactéria infecta a planta, introduzindo nela o seu DNA;  O gene de interesse da planta associa-se ao DNA da planta;  As células modificadas são isoladas e cultivadas em meio de cultura apropriado, produzindo uma nova planta  A nova planta expressa o gene da outra espécie, produzindo a característica escolhida  Todas as células da nova planta são transgênica, o que significa que a planta toda passa a ter a nova característica
  18. 18. Transgênicos Exemplos: 1-Arroz dourado Um arroz transgênico, enriquecido com beta- caroteno e ferro. O famoso arroz dourado, além de conter os genes normais da espécie (Oryza sativa), contém também fragmentos de DNA da bactéria Erwinia uredovora e de uma flor, o narciso silvestre.
  19. 19. Transgênicos Exemplos 2-Mamão transgênico Mamão papaia transgênico, com o mesmo gosto e a mesma aparência, contendo dois genes a mais que o tradicional. Um dos genes torna a planta resistente ao vírus da mancha anular, ou mosaico, responsável por grandes prejuízos nas plantações da fruta.
  20. 20. Exemplos 3-Soja soja na qual se inseriu a capacidade de resistir à aplicação de determinados herbicidas como por exemplos Round-up.
  21. 21. Exemplos 4- Bactérias transgênicas Produtoras de hormônios.
  22. 22. Exemplos 5-Milho Bt Assim chamado por ter sido modificado a partir da inserção de genes da bactéria Bacillus thuringiensis, produtores de uma substância inseticida.
  23. 23. Transgênicos Vantagens 1-O alimento pode ser enriquecido com um componente nutricional essencial. Um feijão geneticamente modificado por inserção de gene da castanha do Para passa produzir metionina, um aminoácido essencial para a vida. Um arroz geneticamente modificado produz vitamina A;
  24. 24. Transgênicos 2-O alimento pode ter a função de prevenir, reduzir ou evitar riscos de doenças, através de plantas geneticamente modificadas para produzir vacinas, ou iogurtes fermentados com microorganismo geneticamente modificados que estimulem o sistema imunológico;
  25. 25. Transgênicos 3- A planta pode resistir ao ataque de insetos, seca ou geada. Isso garante estabilidade dos preços e custos de produção. Um microorganismo geneticamente modificado produz enzimas usadas na fabricação de queijos e pães o que reduz o preço deste ingrediente; Sem falar ainda que aumenta o grau de pureza e a especificidade do ingrediente e permite maior flexibilidade para as indústrias;
  26. 26. Transgênicos 4-Aumento da produtividade agrícola através do desenvolvimento de lavouras mais produtivas e menos onerosas, cuja produção agrida menos o meio ambiente.
  27. 27. Transgênicos Desvantagens 1-O lugar em que o gene é inserido não pode ser controlado completamente, o que pode causar resultados inesperados uma vez que os genes de outras partes do organismo podem ser afetados.
  28. 28. Transgênicos 2-Os genes são transferidos entre espécies que não se relacionam, como genes de animais em vegetais, de bactérias em plantas e até de humanos em animais. A engenharia genética não respeita as fronteiras da natureza – fronteiras que existem para proteger a singularidade de cada espécie e assegurar a integridade genética das futuras gerações.
  29. 29. Transgênicos 3-A uniformidade genética leva a uma maior vulnerabilidade do cultivo porque a invasão de pestes, doenças e ervas daninha sempre é maior em áreas que plantam o mesmo tipo de cultivo.
  30. 30. Transgênicos 4-Organismos antes cultivados para serem usados na alimentação estão sendo modificados para produzirem produtos farmacêuticos e químicos. Essas plantas modificadas poderiam fazer uma polinização cruzada com espécies semelhantes e, deste modo, contaminar plantas utilizadas exclusivamente na alimentação.
  31. 31. Transgênicos 5-Os alimentos transgênicos poderiam aumentar as alergias. Muitas pessoas são alérgicas a determinados alimentos em virtude das proteínas que elas produzem. Há evidências de que os cultivos transgênicos podem proporcionar um potencial aumento de alergias em relação a cultivos convencionais.
  32. 32. EXAMES GENÉTICOS Amniocentese e Amostragem vilo-coriônica

×