Iccsa stankuteha180611

Beniamino Murgante
Beniamino Murgantelecturer em Beniamino Murgante
[object Object],[object Object],[object Object],[object Object],[object Object],ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],1  Motivation  Spatial data quality matters
OpenStreetMap   Analog topo map 1:10K  Brandenburg Viewer 1  Motivation  Spatial data quality matters  Potsdam in different spatial datasets
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],2  Spatial data quality  Definition, indicators
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],2  Spatial data quality  Data acquisiton
[object Object],[object Object],source dataset SDS target dataset TDS output dataset 3  Data conflation  Optimising spatial data quality  missing data inserted data
[object Object],[object Object],[object Object],3  Data conflation  Optimising spatial data quality
One spatial object, multiple geometry OpenStreet Map TeleAtlas ATKIS 3  Data conflation  Optimising spatial data quality
4  Data conflation at work  Conceputal framework ,[object Object],[object Object],[object Object],[object Object]
4  Data conflation at work  Automated workflow Producing best-fit dataset dataset 1 dataset 2 pre-processing pre-processing object assignment new dataset data sources
[object Object],[object Object],4  Data conflation at work  Semantic accuracy ,[object Object],[object Object]
[object Object],[object Object],[object Object],4  Data conflation at work  Geometric completeness ,[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],4  Data conflation at work  Data quality optimised
4  Data conflation at work  Data quality optimised  ,[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],5  Conclusion  What‘s the merit of data conflation?
Thank you  for your attention Questions?  Comments?  Feedback?  Contact Hartmut Asche | gislab@uni-potsdam.de Dept of Geography | University of Potsdam | GER Web   www.geographie.uni-potsdam.de/geoinformatik ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011
1 de 17

Recomendados

Spatial Data Model 2 por
Spatial Data Model 2Spatial Data Model 2
Spatial Data Model 2Kaium Chowdhury
1.8K visualizações32 slides
QUERY AND NETWORK ANALYSIS IN GIS por
QUERY AND NETWORK ANALYSIS IN GISQUERY AND NETWORK ANALYSIS IN GIS
QUERY AND NETWORK ANALYSIS IN GISDEVANG KAPADIA
5.7K visualizações23 slides
Remote Sensing: Overlay Analysis por
Remote Sensing: Overlay AnalysisRemote Sensing: Overlay Analysis
Remote Sensing: Overlay AnalysisKamlesh Kumar
602 visualizações39 slides
Mujungi Davis por
Mujungi DavisMujungi Davis
Mujungi DavisSaid Mujungi
158 visualizações25 slides
GIS in land suitability mapping por
GIS in land suitability mappingGIS in land suitability mapping
GIS in land suitability mappingGlory Enaruvbe
5.4K visualizações50 slides
Geographical information system unit 5 por
Geographical information  system unit 5Geographical information  system unit 5
Geographical information system unit 5WE-IT TUTORIALS
681 visualizações23 slides

Mais conteúdo relacionado

Mais procurados

Spatial data analysis por
Spatial data analysisSpatial data analysis
Spatial data analysisJohan Blomme
1.2K visualizações121 slides
Raster data analysis por
Raster data analysisRaster data analysis
Raster data analysisAbdul Raziq
2.6K visualizações19 slides
Understanding Map Integration Using GIS Software Poster_ff por
Understanding Map Integration Using GIS Software Poster_ffUnderstanding Map Integration Using GIS Software Poster_ff
Understanding Map Integration Using GIS Software Poster_ffMichelle Pasco
66 visualizações1 slide
Spatial data mining por
Spatial data miningSpatial data mining
Spatial data miningMITS Gwalior
27.4K visualizações27 slides
Design Process Using Hierarchical Spatial Reasoning Theory And Gis por
Design Process Using Hierarchical Spatial Reasoning Theory And GisDesign Process Using Hierarchical Spatial Reasoning Theory And Gis
Design Process Using Hierarchical Spatial Reasoning Theory And Gisahmad bassiouny
452 visualizações25 slides
Lecture+12+topology+2013 (3) por
Lecture+12+topology+2013 (3)Lecture+12+topology+2013 (3)
Lecture+12+topology+2013 (3)Mei Chi Lo
3K visualizações44 slides

Mais procurados(20)

Spatial data analysis por Johan Blomme
Spatial data analysisSpatial data analysis
Spatial data analysis
Johan Blomme1.2K visualizações
Raster data analysis por Abdul Raziq
Raster data analysisRaster data analysis
Raster data analysis
Abdul Raziq2.6K visualizações
Understanding Map Integration Using GIS Software Poster_ff por Michelle Pasco
Understanding Map Integration Using GIS Software Poster_ffUnderstanding Map Integration Using GIS Software Poster_ff
Understanding Map Integration Using GIS Software Poster_ff
Michelle Pasco66 visualizações
Spatial data mining por MITS Gwalior
Spatial data miningSpatial data mining
Spatial data mining
MITS Gwalior27.4K visualizações
Design Process Using Hierarchical Spatial Reasoning Theory And Gis por ahmad bassiouny
Design Process Using Hierarchical Spatial Reasoning Theory And GisDesign Process Using Hierarchical Spatial Reasoning Theory And Gis
Design Process Using Hierarchical Spatial Reasoning Theory And Gis
ahmad bassiouny452 visualizações
Lecture+12+topology+2013 (3) por Mei Chi Lo
Lecture+12+topology+2013 (3)Lecture+12+topology+2013 (3)
Lecture+12+topology+2013 (3)
Mei Chi Lo3K visualizações
Spatial interpolation techniques por Manisha Shrivastava
Spatial interpolation techniquesSpatial interpolation techniques
Spatial interpolation techniques
Manisha Shrivastava7.7K visualizações
Presentation1.1 por akash dwivedi
Presentation1.1Presentation1.1
Presentation1.1
akash dwivedi652 visualizações
Models of spatial process by sushant por sushantsawant13
Models of spatial process by sushantModels of spatial process by sushant
Models of spatial process by sushant
sushantsawant131.1K visualizações
Datech2014-Session1-Document Representation Refinement for Precise Region Des... por IMPACT Centre of Competence
Datech2014-Session1-Document Representation Refinement for Precise Region Des...Datech2014-Session1-Document Representation Refinement for Precise Region Des...
Datech2014-Session1-Document Representation Refinement for Precise Region Des...
IMPACT Centre of Competence733 visualizações
3D Analyst por Hartanto Sanjaya
3D Analyst3D Analyst
3D Analyst
Hartanto Sanjaya589 visualizações
How to digitize penstocks leading to powerhouse of a hydropower plant from th... por Mrinmoy Majumder
How to digitize penstocks leading to powerhouse of a hydropower plant from th...How to digitize penstocks leading to powerhouse of a hydropower plant from th...
How to digitize penstocks leading to powerhouse of a hydropower plant from th...
Mrinmoy Majumder176 visualizações
Geographical information system unit 4 por WE-IT TUTORIALS
Geographical information  system unit 4Geographical information  system unit 4
Geographical information system unit 4
WE-IT TUTORIALS452 visualizações
Spatial databases por Seraphic Nazir
Spatial databasesSpatial databases
Spatial databases
Seraphic Nazir15.8K visualizações
Vector data model por Naresh Kumar
Vector data modelVector data model
Vector data model
Naresh Kumar248 visualizações
Spatial analysis & interpolation in ARC GIS por KU Leuven
Spatial analysis & interpolation in ARC GISSpatial analysis & interpolation in ARC GIS
Spatial analysis & interpolation in ARC GIS
KU Leuven442 visualizações
Poster Final por Gireeshma Reddy
Poster FinalPoster Final
Poster Final
Gireeshma Reddy35 visualizações
3D Analyst - Lab por Hartanto Sanjaya
3D Analyst - Lab3D Analyst - Lab
3D Analyst - Lab
Hartanto Sanjaya344 visualizações

Destaque

View - and Scale-Based Progressive Transmission of Vector Data por
View - and Scale-Based Progressive Transmission of Vector DataView - and Scale-Based Progressive Transmission of Vector Data
View - and Scale-Based Progressive Transmission of Vector DataBeniamino Murgante
365 visualizações22 slides
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating... por
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...Beniamino Murgante
1.1K visualizações19 slides
Improving the calibration of the MOLAND urban growth model with land-use info... por
Improving the calibration of the MOLAND urban growth model with land-use info...Improving the calibration of the MOLAND urban growth model with land-use info...
Improving the calibration of the MOLAND urban growth model with land-use info...Beniamino Murgante
767 visualizações22 slides
The characterisation of “living” landscapes: the role of mixed descriptors an... por
The characterisation of “living” landscapes: the role of mixed descriptors an...The characterisation of “living” landscapes: the role of mixed descriptors an...
The characterisation of “living” landscapes: the role of mixed descriptors an...Beniamino Murgante
283 visualizações27 slides
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa... por
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...Beniamino Murgante
507 visualizações15 slides
Analyzing demographic and economic simulation model results: a Semi-Automatic... por
Analyzing demographic and economic simulation model results: a Semi-Automatic...Analyzing demographic and economic simulation model results: a Semi-Automatic...
Analyzing demographic and economic simulation model results: a Semi-Automatic...Beniamino Murgante
459 visualizações23 slides

Destaque(9)

View - and Scale-Based Progressive Transmission of Vector Data por Beniamino Murgante
View - and Scale-Based Progressive Transmission of Vector DataView - and Scale-Based Progressive Transmission of Vector Data
View - and Scale-Based Progressive Transmission of Vector Data
Beniamino Murgante365 visualizações
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating... por Beniamino Murgante
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...
Using MODIS Land-Use/Land-Cover Data and Hydrological Modeling for Estimating...
Beniamino Murgante1.1K visualizações
Improving the calibration of the MOLAND urban growth model with land-use info... por Beniamino Murgante
Improving the calibration of the MOLAND urban growth model with land-use info...Improving the calibration of the MOLAND urban growth model with land-use info...
Improving the calibration of the MOLAND urban growth model with land-use info...
Beniamino Murgante767 visualizações
The characterisation of “living” landscapes: the role of mixed descriptors an... por Beniamino Murgante
The characterisation of “living” landscapes: the role of mixed descriptors an...The characterisation of “living” landscapes: the role of mixed descriptors an...
The characterisation of “living” landscapes: the role of mixed descriptors an...
Beniamino Murgante283 visualizações
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa... por Beniamino Murgante
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...
Accounting for Spatial Heterogeneity in Educational Outcomes and Internationa...
Beniamino Murgante507 visualizações
Analyzing demographic and economic simulation model results: a Semi-Automatic... por Beniamino Murgante
Analyzing demographic and economic simulation model results: a Semi-Automatic...Analyzing demographic and economic simulation model results: a Semi-Automatic...
Analyzing demographic and economic simulation model results: a Semi-Automatic...
Beniamino Murgante459 visualizações
Methamorphic Rocks por GAURAV. H .TANDON
Methamorphic RocksMethamorphic Rocks
Methamorphic Rocks
GAURAV. H .TANDON16.5K visualizações

Similar a Iccsa stankuteha180611

TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation por
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationTYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationArti Parab Academics
742 visualizações41 slides
AGILE_FinalDay_RobinFrew por
AGILE_FinalDay_RobinFrewAGILE_FinalDay_RobinFrew
AGILE_FinalDay_RobinFrewRobin Frew
180 visualizações11 slides
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ... por
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...Université Libre de Bruxelles
36 visualizações24 slides
C documents and settings_administrator_local settings_application data_mozil... por
C  documents and settings_administrator_local settings_application data_mozil...C  documents and settings_administrator_local settings_application data_mozil...
C documents and settings_administrator_local settings_application data_mozil...Anuar Ahmad
973 visualizações8 slides
Dtm Quality Assesment por
Dtm Quality AssesmentDtm Quality Assesment
Dtm Quality AssesmentUniversity of Oradea
1.1K visualizações8 slides
ADAPTER por
ADAPTERADAPTER
ADAPTERDjamel Hassaine
90 visualizações15 slides

Similar a Iccsa stankuteha180611(20)

TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation por Arti Parab Academics
TYBSC IT PGIS Unit III Chapter II Data Entry and PreparationTYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
TYBSC IT PGIS Unit III Chapter II Data Entry and Preparation
Arti Parab Academics 742 visualizações
AGILE_FinalDay_RobinFrew por Robin Frew
AGILE_FinalDay_RobinFrewAGILE_FinalDay_RobinFrew
AGILE_FinalDay_RobinFrew
Robin Frew180 visualizações
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ... por Université Libre de Bruxelles
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...
Google Earth Web Service as a Support for GIS Mapping in Geospatial Research ...
Université Libre de Bruxelles36 visualizações
C documents and settings_administrator_local settings_application data_mozil... por Anuar Ahmad
C  documents and settings_administrator_local settings_application data_mozil...C  documents and settings_administrator_local settings_application data_mozil...
C documents and settings_administrator_local settings_application data_mozil...
Anuar Ahmad973 visualizações
Dtm Quality Assesment por University of Oradea
Dtm Quality AssesmentDtm Quality Assesment
Dtm Quality Assesment
University of Oradea1.1K visualizações
ADAPTER por Djamel Hassaine
ADAPTERADAPTER
ADAPTER
Djamel Hassaine90 visualizações
GIS Analysis For Site Remediation por Joseph Luchette
GIS Analysis For Site RemediationGIS Analysis For Site Remediation
GIS Analysis For Site Remediation
Joseph Luchette631 visualizações
Systematic Approch to a GIS por Elizabeth Runkle
Systematic Approch to a GISSystematic Approch to a GIS
Systematic Approch to a GIS
Elizabeth Runkle104 visualizações
Improving Dtm Accuracy por University of Oradea
Improving Dtm AccuracyImproving Dtm Accuracy
Improving Dtm Accuracy
University of Oradea1.1K visualizações
Big data fusion and parametrization for strategic transport models por Luuk Brederode
Big data fusion and parametrization for strategic transport modelsBig data fusion and parametrization for strategic transport models
Big data fusion and parametrization for strategic transport models
Luuk Brederode31 visualizações
GIS_FDP_Final.pdf por SanthoshKumarP38
GIS_FDP_Final.pdfGIS_FDP_Final.pdf
GIS_FDP_Final.pdf
SanthoshKumarP387 visualizações
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval por IJECEIAES
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval
Spectral Clustering and Vantage Point Indexing for Efficient Data Retrieval
IJECEIAES8 visualizações
Term Paper Presentation por Shubham Singh
Term Paper PresentationTerm Paper Presentation
Term Paper Presentation
Shubham Singh380 visualizações
Big Data and IOT por Shubhangi Sheel
Big Data and IOTBig Data and IOT
Big Data and IOT
Shubhangi Sheel285 visualizações
Geographic information system por OssamaElShanawany
Geographic information systemGeographic information system
Geographic information system
OssamaElShanawany406 visualizações
Integrating GIS utility data in the UK por AntArch
Integrating GIS utility data in the UKIntegrating GIS utility data in the UK
Integrating GIS utility data in the UK
AntArch612 visualizações
Data input and transformation por Mohsin Siddique
Data input and transformationData input and transformation
Data input and transformation
Mohsin Siddique3.2K visualizações

Mais de Beniamino Murgante

Analyzing and assessing ecological transition in building sustainable cities por
Analyzing and assessing ecological transition in building sustainable citiesAnalyzing and assessing ecological transition in building sustainable cities
Analyzing and assessing ecological transition in building sustainable citiesBeniamino Murgante
75 visualizações79 slides
Smart Cities: New Science for the Cities por
Smart Cities: New Science for the CitiesSmart Cities: New Science for the Cities
Smart Cities: New Science for the CitiesBeniamino Murgante
95 visualizações103 slides
The evolution of spatial analysis and modeling in decision processes por
The evolution of spatial analysis and modeling in decision processesThe evolution of spatial analysis and modeling in decision processes
The evolution of spatial analysis and modeling in decision processesBeniamino Murgante
644 visualizações132 slides
Smart City or Urban Science? por
Smart City or Urban Science?Smart City or Urban Science?
Smart City or Urban Science?Beniamino Murgante
436 visualizações64 slides
Involving citizens in smart energy approaches: the experience of an energy pa... por
Involving citizens in smart energy approaches: the experience of an energy pa...Involving citizens in smart energy approaches: the experience of an energy pa...
Involving citizens in smart energy approaches: the experience of an energy pa...Beniamino Murgante
340 visualizações45 slides
Programmazione per la governance territoriale in tema di tutela della biodive... por
Programmazione per la governance territoriale in tema di tutela della biodive...Programmazione per la governance territoriale in tema di tutela della biodive...
Programmazione per la governance territoriale in tema di tutela della biodive...Beniamino Murgante
738 visualizações101 slides

Mais de Beniamino Murgante(20)

Analyzing and assessing ecological transition in building sustainable cities por Beniamino Murgante
Analyzing and assessing ecological transition in building sustainable citiesAnalyzing and assessing ecological transition in building sustainable cities
Analyzing and assessing ecological transition in building sustainable cities
Beniamino Murgante75 visualizações
Smart Cities: New Science for the Cities por Beniamino Murgante
Smart Cities: New Science for the CitiesSmart Cities: New Science for the Cities
Smart Cities: New Science for the Cities
Beniamino Murgante95 visualizações
The evolution of spatial analysis and modeling in decision processes por Beniamino Murgante
The evolution of spatial analysis and modeling in decision processesThe evolution of spatial analysis and modeling in decision processes
The evolution of spatial analysis and modeling in decision processes
Beniamino Murgante644 visualizações
Smart City or Urban Science? por Beniamino Murgante
Smart City or Urban Science?Smart City or Urban Science?
Smart City or Urban Science?
Beniamino Murgante436 visualizações
Involving citizens in smart energy approaches: the experience of an energy pa... por Beniamino Murgante
Involving citizens in smart energy approaches: the experience of an energy pa...Involving citizens in smart energy approaches: the experience of an energy pa...
Involving citizens in smart energy approaches: the experience of an energy pa...
Beniamino Murgante340 visualizações
Programmazione per la governance territoriale in tema di tutela della biodive... por Beniamino Murgante
Programmazione per la governance territoriale in tema di tutela della biodive...Programmazione per la governance territoriale in tema di tutela della biodive...
Programmazione per la governance territoriale in tema di tutela della biodive...
Beniamino Murgante738 visualizações
Involving Citizens in a Participation Process for Increasing Walkability por Beniamino Murgante
Involving Citizens in a Participation Process for Increasing WalkabilityInvolving Citizens in a Participation Process for Increasing Walkability
Involving Citizens in a Participation Process for Increasing Walkability
Beniamino Murgante123 visualizações
Presentation of ICCSA 2019 at the University of Saint petersburg por Beniamino Murgante
Presentation of ICCSA 2019 at the University of Saint petersburg Presentation of ICCSA 2019 at the University of Saint petersburg
Presentation of ICCSA 2019 at the University of Saint petersburg
Beniamino Murgante338 visualizações
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s... por Beniamino Murgante
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
RISCHIO TERRITORIALE NEL GOVERNO DEL TERRITORIO: Ricerca e formazione nelle s...
Beniamino Murgante444 visualizações
Presentation of ICCSA 2017 at the University of trieste por Beniamino Murgante
Presentation of ICCSA 2017 at the University of triestePresentation of ICCSA 2017 at the University of trieste
Presentation of ICCSA 2017 at the University of trieste
Beniamino Murgante828 visualizações
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g... por Beniamino Murgante
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Beniamino Murgante558 visualizações
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo... por Beniamino Murgante
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
Focussing Energy Consumers’ Behaviour Change towards Energy Efficiency and Lo...
Beniamino Murgante443 visualizações
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector  por Beniamino Murgante
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
Socio-Economic Planning profiles: Sciences VS Daily activities in public sector 
Beniamino Murgante377 visualizações
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g... por Beniamino Murgante
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
GEOGRAPHIC INFORMATION – NEED TO KNOW (GI-N2K) Towards a more demand-driven g...
Beniamino Murgante2.1K visualizações
Garden in motion. An experience of citizens involvement in public space regen... por Beniamino Murgante
Garden in motion. An experience of citizens involvement in public space regen...Garden in motion. An experience of citizens involvement in public space regen...
Garden in motion. An experience of citizens involvement in public space regen...
Beniamino Murgante3.5M visualizações
Planning and Smartness: the true challenge por Beniamino Murgante
Planning and Smartness: the true challengePlanning and Smartness: the true challenge
Planning and Smartness: the true challenge
Beniamino Murgante1.1K visualizações
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP... por Beniamino Murgante
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
GeoSDI: una piattaforma social di dati geografici basata sui principi di INSP...
Beniamino Murgante1.7K visualizações
Murgante smart energy por Beniamino Murgante
Murgante smart energyMurgante smart energy
Murgante smart energy
Beniamino Murgante1.1K visualizações
Informazione Geografica, Città, Smartness por Beniamino Murgante
Informazione Geografica, Città, Smartness Informazione Geografica, Città, Smartness
Informazione Geografica, Città, Smartness
Beniamino Murgante1.2K visualizações
Tecnologie, Territorio, Smartness por Beniamino Murgante
Tecnologie, Territorio, SmartnessTecnologie, Territorio, Smartness
Tecnologie, Territorio, Smartness
Beniamino Murgante911 visualizações

Último

ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... por
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...Jasper Oosterveld
18 visualizações49 slides
AMAZON PRODUCT RESEARCH.pdf por
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdfJerikkLaureta
26 visualizações13 slides
SAP Automation Using Bar Code and FIORI.pdf por
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdfVirendra Rai, PMP
23 visualizações38 slides
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors por
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensorssugiuralab
19 visualizações15 slides
Serverless computing with Google Cloud (2023-24) por
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)wesley chun
11 visualizações33 slides
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 por
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院IttrainingIttraining
52 visualizações8 slides

Último(20)

ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... por Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
Jasper Oosterveld18 visualizações
AMAZON PRODUCT RESEARCH.pdf por JerikkLaureta
AMAZON PRODUCT RESEARCH.pdfAMAZON PRODUCT RESEARCH.pdf
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta26 visualizações
SAP Automation Using Bar Code and FIORI.pdf por Virendra Rai, PMP
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdf
Virendra Rai, PMP23 visualizações
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors por sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab19 visualizações
Serverless computing with Google Cloud (2023-24) por wesley chun
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)
wesley chun11 visualizações
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 por IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
IttrainingIttraining52 visualizações
Case Study Copenhagen Energy and Business Central.pdf por Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana16 visualizações
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf por Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Dr. Jimmy Schwarzkopf19 visualizações
Piloting & Scaling Successfully With Microsoft Viva por Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
Richard Harbridge12 visualizações
Empathic Computing: Delivering the Potential of the Metaverse por Mark Billinghurst
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
Mark Billinghurst478 visualizações
Info Session November 2023.pdf por AleksandraKoprivica4
Info Session November 2023.pdfInfo Session November 2023.pdf
Info Session November 2023.pdf
AleksandraKoprivica412 visualizações
Voice Logger - Telephony Integration Solution at Aegis por Nirmal Sharma
Voice Logger - Telephony Integration Solution at AegisVoice Logger - Telephony Integration Solution at Aegis
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma39 visualizações
Uni Systems for Power Platform.pptx por Uni Systems S.M.S.A.
Uni Systems for Power Platform.pptxUni Systems for Power Platform.pptx
Uni Systems for Power Platform.pptx
Uni Systems S.M.S.A.56 visualizações
Business Analyst Series 2023 - Week 3 Session 5 por DianaGray10
Business Analyst Series 2023 -  Week 3 Session 5Business Analyst Series 2023 -  Week 3 Session 5
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10248 visualizações
Data Integrity for Banking and Financial Services por Precisely
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial Services
Precisely21 visualizações
Mini-Track: Challenges to Network Automation Adoption por Network Automation Forum
Mini-Track: Challenges to Network Automation AdoptionMini-Track: Challenges to Network Automation Adoption
Mini-Track: Challenges to Network Automation Adoption
Network Automation Forum12 visualizações

Iccsa stankuteha180611

  • 1.
  • 2.
  • 3.
  • 4. OpenStreetMap Analog topo map 1:10K Brandenburg Viewer 1 Motivation Spatial data quality matters Potsdam in different spatial datasets
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. One spatial object, multiple geometry OpenStreet Map TeleAtlas ATKIS 3 Data conflation Optimising spatial data quality
  • 10.
  • 11. 4 Data conflation at work Automated workflow Producing best-fit dataset dataset 1 dataset 2 pre-processing pre-processing object assignment new dataset data sources
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17. Thank you for your attention Questions? Comments? Feedback? Contact Hartmut Asche | gislab@uni-potsdam.de Dept of Geography | University of Potsdam | GER Web www.geographie.uni-potsdam.de/geoinformatik ICCSA 2011 | GEOG-AN-MOD 2011 | University of Santander | 20-23/06/2011

Notas do Editor

  1. With the introduction of digital mapping techniques in the 1960s and then GIS shortly afterwards, researchers realized that error and uncertainty in digital spatial data had the potential to cause problems that had not been experienced with paper maps. An international trend started in the early-1980s to design and implement data transfer standards which would include data quality information that had disappeared from the margins of paper maps with the transformation to digital data products. The main intention of this work is to present the data conflation as one of the options for improvement of spatial data quality.
  2. In a number of fields, the approach to quality evolved into a definition based on fitness-for-use. ISO 8402 defines the quality as the ‘totality of characteristics of a product that bear on its ability to satisfy stated or implied needs’. This means that to define the quality two information are needed: the information on the data being used and on the users needs. Spatial data is defined to be fitness-for-use if it meets requirements of the target application.   Data quality is defined by one or more quality dimensions. Quality dimensions for geographic data are called spatial data quality elements. They include completeness, logical consistency, positional accuracy, temporal accuracy (the accuracy of reporting time associated with the data) and thematical/semantical or attribute accuracy. Typically, metadata for spatial data include descriptions of data quality and include information about these elements.
  3. During the conflation process information from the source input dataset (SDS) and the target input dataset (TDS) have to be assigned to each other. The SDS is defined as the dataset from where the geospatial information is taken (e.g. thematic information) and the TDS is defined as the dataset to which the geospatial information taken from the SDS is being transferred, i.e. the expanded dataset.
  4. In order to transmit the real world into the language understandable for the computer, it should be modeled according to specific rules in a simplified form. Such data models represent the objects of reality as points, lines or areas (polygons). Each of these objects is provided with the x -and y-coordinates and contains information on the spatial reference. This example shows the differences of data formats of the same object.
  5. The different producers of spatial data detected the same object of the real world differently. There are no uniform rules for acquisition of spatial data. According to this the different abstract representations of one and the same object of the real world may arise. This Figure shows an example of alternative geometric representations of the same real world object. Each representation was generated by different spatial data providers.
  6. The approach presented here improves the quality of spatial data. This method illustrates how to increase the geometrical completeness of the road networks data. In the source dataset available objects such roundabouts must be found in the target dataset and assigned to the new amended dataset.   The problem is that crossroads, which are roundabouts, in the dataset are saved as simple crossroad. At first a position of all available crossroads in the both datasets has to be found. A roundabout is finding if minimum three edges of the road network have the same start- and endpoint. If there are three edges, which have the same node, regardless of that is start or end point of each edge, then this intersection is a part of the roundabout.
  7. In this way every crossroad of the dataset is verified. If a roundabout is defined, than at the second step the adequate crossroad is searched in the second dataset. Therefore the points are used, which are valid as traffic access or exits
  8. All access or exits of roundabout are found in the first input dataset. The corresponding edges in the second input dataset are also found. Now the geometrical information about new objects can be assigned
  9. After merge process of two or more datasets, the completeness of input data is always increased. This applies to all data types: polygons, lines, points. One condition must be fulfilled - one of the input datasets must have more information than the other. Not all new geometrical object of the end dataset include information about attributes. The completeness of the end dataset can never be complete in terms of thematic information. Datasets generated by conflation can be complete only in terms of geometrical information. The figure illustrates this problem.   The figure 3 shows an example of two datasets. The first dataset (source dataset) includes the information about 6 buildings. However in the real world total number of buildings is 8, so two objects in this dataset are not provided. The source dataset includes thematic information about type of use of these buildings. The second dataset (target dataset) includes geometrical information about 5 objects. The information about existence of the buildings number 6, 7 and 8 is not available. Unlike source dataset, target data have information about quantity of floors. This information in the first dataset is missing. The end dataset in the figure 3 shows the complete dataset in terms of geometric information. The table under it shows increment of attributes. Geometrical objects, which are available in both input datasets, have 100% thematically completeness. The missing objects have thematic information of only one input dataset.
  10. Conflation approaches allow the improvement of positional and temporal accuracy as well. Positional accuracy of a dataset can be increased with the information given by another input dataset. If both datasets have the major variance from real world, the arithmetic average of all input datasets can increase this quality element. The temporal accuracy will be improved if metadata provide information about actuality of spatial data.