O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

www.aulasapoio.com - Matemática - Polinômios

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Polinômios

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Ao final dessa aula você saberá...
O que é um polinômio
Classificar os polinômios
Determinar o grau de um polinômio
Or...

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Carregando em…3
×

Confira estes a seguir

1 de 28 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (18)

Anúncio

Semelhante a www.aulasapoio.com - Matemática - Polinômios (20)

Mais de Aulas Apoio (20)

Anúncio

Mais recentes (20)

www.aulasapoio.com - Matemática - Polinômios

  1. 1. Polinômios
  2. 2. Ao final dessa aula você saberá... O que é um polinômio Classificar os polinômios Determinar o grau de um polinômio Ordenar e completar um polinômio Somar e subtrair polinômios Multiplicar polinômios Dividir um polinômio por um monômio Dividir um polinômio por outro polinômio
  3. 3. O que é polinômio? É uma adição algébrica de monômios. Exemplos de polinômios 4a3 x2+3y 4m2+3m+1 Atenção! O 1º exemplo é a soma do monômio 4a3 com o zero.
  4. 4. Classificação dos polinômios  Monômios  polinômios com apenas 1 termo  Binômios  polinômios com 2 termos  Trinômios  polinômios com 3 termos Não existe um nome específico para os polinômios que apresentam 4 ou mais termos.
  5. 5. Como sabemos o grau de um polinômio? Verificamos o grau de cada monômio da expressão. O maior deles é o grau do polinômio. Exemplos:  x 2 y 3 +2 xy 2   polinômio do 5º grau 5 º grau 3 º grau 4a 3 + 7 a 2 − 6ab  polinômio do 4º grau    b2  3 º grau 2 º grau 4 º grau
  6. 6. Observação Polinômios com uma só variável geralmente são apresentados ordenadamente, começando pelo monômio de maior grau. Exemplo: Ordenar o polinômio 2x2 + x + 5x3 + 9. Resposta: 5x3 + 2x2 + x + 9 Verifique que o 9 é um monômio de grau zero. 9 = 9x0
  7. 7. O que são polinômios incompletos em relação a uma variável? Se um polinômio estiver ordenado e o coeficiente de algum termo for zero, então esse polinômio é incompleto. Exemplos: x4 – 3 = x4 + 0x3 + 0x2 + 0x – 3 8m3 + m2 = 8m3 + m2 + 0m + 0
  8. 8. Qual é a regra para somar e subtrair polinômios? Basta fazer a redução dos termos semelhantes. Exemplos: a) (y3 – 2y2 + 5) + (2y3 – 5y – 7) = y3 – 2y2 + 5 + 2y3 – 5y – 7 = 3y3 – 2y2 – 5y – 2 b) (6m2 – 7mn + 8n2) – (8mn + 5m2 – 7n2) = 6m2 – 7mn + 8n2 – 8mn – 5m2 + 7n2 = m2 – 15mn + 15n2
  9. 9. Tente fazer sozinho! Dados os polinômios: A = 5x2 – 3x + 4 B = 2x2 + 4x – 3 C = x2 – 3x Calcule A + C – B
  10. 10. Solução A+C–B= (5x2 – 3x + 4) + (x2 – 3x) – (2x2 + 4x – 3)= 5x2 – 3x + 4 + x2 – 3x – 2x2 – 4x + 3 = 5x2 + x2 – 2x2 – 3x – 3x – 4x + 4 + 3 = 4x2 – 10x + 7
  11. 11. Como multiplicamos polinômios? Aplicando a propriedade distributiva. Exemplos: a) – y2 (y3 – 2y2 + 1) = – y5 + 2y4 – y2 b) (a + b) (a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2
  12. 12. Tente fazer sozinho! 3 1 2x + y x− y Seja A = 5 eB= 2 Calcule AB.
  13. 13. Solução A.B=  3   1  3 xy 3 y 2  2x + y x − y  5   2  = 2 x 2 − xy + − = 5 10 5 xy 3xy 3 y 2 2 xy 3 y 2 2x − 2 + − = 2x2 − − 5 5 10 5 10
  14. 14. Como dividimos um polinômio por um monômio? Aplicando a propriedade distributiva. Exemplos: a) (15m3 – 10m2) : (-5m) = - 3m2 + 2m 2  3 3 2 1   4  9x 9x 3  6x − x + x  :  x  = − +  4 2  3  2 16 8 b)
  15. 15. Tente fazer sozinho! (Cesgranrio - RJ) Simplificando a expressão 3 (2 3 ) a a +a : a 5 , encontramos: a) 1 + a b) a2 + a c) 1 + 5a d) 1 – a e) a3
  16. 16. Solução ( ) a 3 a 2 + a 3 : a 5 = (a 5 +a 6 ) : a 5 = 1 + a Resposta: A
  17. 17. Para dividir um polinômio por outro também usamos a distributiva? Não! Nesse caso temos que armar a conta, como se fosse uma divisão de números naturais: dividendo divisor resto quociente e seguir os passos descritos nos próximos exemplos.
  18. 18. Exemplo 1 ( Calcule: x + 2 x − 15 2 ) : ( x + 5) 1º passo: ordenar e completar o dividendo, se necessário. Nesse caso não será necessário 2º passo: armar a conta. x+5 x 2 + 2 x − 15
  19. 19. 3º passo: dividir o 1º termo do dividendo pelo 1º termo do divisor. x 2 + 2 x − 15 x+5 x 4º passo: multiplicar o resultado por cada termo do divisor, colocando a resposta embaixo do dividendo,− com xo 5 x 2 + 2 x 15 + sinal contrário. so, pas − x − 5x 2 pr óximo os x acilitar o ar os term ão. Para f re coloc reç proc u mes m a di ant es na semelh
  20. 20. 5º passo: efetuar a soma da 1ª com a 2ª linha, obtendo um novo dividendo. x 2 + 2 x − 15 x+5 − x2 − 5x x − 3 x − 15 6º passo: Verificar se o 1º termo do novo dividendo é menor que o 1º termo do divisor. Caso não seja, voltamos ao 3º passo. x 2 + 2 x − 15 x+5 − x 2 − 5x x−3 − 3 x − 15
  21. 21. x 2 + 2 x − 15 x+5 x 2 + 2 x − 15 x+5 − x2 − 5x x −3 − x2 − 5x x −3 − 3 x − 15 − 3 x − 15 3 x + 15 3 x + 15 0 Logo, quociente = x – 3 e resto = 0. Importante! Note que para toda divisão vale dizer que dividendo = divisor x quociente + resto, ou seja, D = d.q + r
  22. 22. Exemplo 2 Encontre o resto da divisão de x + 1 por x3 + 1 . 4 1º passo: x 4 + 0 x3 + 0 x 2 + 0 x + 1 2º passo: 3º passo: x + 0x + 0x + 0x +1 x +1 4 3 2 3 x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 x
  23. 23. 4º passo: 5º passo: x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 x 4 + 0x3 + 0x 2 + 0x + 1 x3 + 1 − x4 −x x − x4 −x x − x +1 6º passo: como o 1º termo do novo dividendo é menor que o 1º termo do divisor, não podemos continuar a divisão. Logo, o quociente = x e o resto = - x +1
  24. 24. Tente fazer sozinho! 1) (Uespi) O resto da divisão do polinômio 4x3 + 12x2 + x – 4 por 2x + 3 é: a) 1 b) 2 c) 4 d) 6 e) 8 2) Determine o polinômio que dividido por x + 5, tem por quociente x – 2 e resto 3.
  25. 25. Soluções Exercício 1: 4 x 3 + 12 x 2 + x − 4 2x + 3 − 4 x3 − 6 x 2 2 x 2 + 3x − 4 6x2 + x − 4 − 6x2 − 9x − 8x − 4 + 8 x + 12 8 Resposta: E Exercício 2: D = d.q + r = (x + 5) (x – 2) + 3 = x2 – 2x + 5x – 10 + 3 = x2 + 3x – 7

×