Convolutional Neural Networks

Ashray Bhandare
Ashray BhandareData Science and Machine Learning Enthusiast with interest in Convolutional Neural Networks and Bio-Inspired Algorithms em The University of Toledo
Convolutional Neural Networks
Ashray Bhandare
Anil Sehgal
Page  2
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  3
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  4
Introduction
 A convolutional neural network (or ConvNet) is a type of feed-forward artificial neural network
 The architecture of a ConvNet is designed to take advantage of the 2D structure of an input image.
 
 A ConvNet is comprised of one or more convolutional layers (often with a pooling step) and then
followed by one or more fully connected layers as in a standard multilayer neural network.
EECS6980:006 Social Network Analysis
VS
Page  5
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  6
Motivation behind ConvNets
 Consider an image of size 200x200x3 (200 wide, 200 high, 3 color channels)
– a single fully-connected neuron in a first hidden layer of a regular Neural Network would have 200*200*3
= 120,000 weights.
– Due to the presence of several such neurons, this full connectivity is wasteful and the huge number of
parameters would quickly lead to overfitting
 However, in a ConvNet, the neurons in a layer will only be connected to a small region of the layer
before it, instead of all of the neurons in a fully-connected manner.
– the final output layer would have dimensions 1x1xN, because by the end of the ConvNet architecture we will
reduce the full image into a single vector of class scores (for N classes), arranged along the depth
dimension
EECS6980:006 Social Network Analysis
Page  7
MLP VS ConvNet
EECS6980:006 Social Network Analysis
Input
Hidden
Output
Input
Hidden
Output
Multilayered
Perceptron:
All Fully
Connected
Layers
Convolutional
Neural Network
With Partially
Connected
Convolution Layer
Page  8
MLP vs ConvNet
A regular 3-layer Neural
Network.
A ConvNet arranges its
neurons in three dimensions
(width, height, depth), as
visualized in one of the
layers.
EECS6980:006 Social Network Analysis
Page  9
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  10
How ConvNet Works
 For example, a ConvNet takes the input as an image which can be classified as ‘X’ or ‘O’
 In a simple case, ‘X’ would look like:
X or OCNN
A two-dimensional
array of pixels
Page  11
How ConvNet Works
 What about trickier cases?
CNN
X
CNN
O
Page  12
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 1 -1 -1
-1 -1 -1 1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
=
?
How ConvNet Works – What Computer Sees
Page  13
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 1 -1 -1 -1
-1 -1 1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 1 -1 -1
-1 -1 -1 1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
=x
How ConvNet Works
Page  14
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 X -1 -1 -1 -1 X X -1
-1 X X -1 -1 X X -1 -1
-1 -1 X 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 X -1 -1
-1 -1 X X -1 -1 X X -1
-1 X X -1 -1 -1 -1 X -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
How ConvNet Works – What Computer Sees
 Since the pattern doesnot match exactly, the computer will not be able to classify this as ‘X’
Page  15
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  16
ConvNet Layers (At a Glance)
 CONV layer will compute the output of neurons that are connected to local regions in the input,
each computing a dot product between their weights and a small region they are connected to in
the input volume.
 RELU layer will apply an elementwise activation function, such as the max(0,x) thresholding at
zero. This leaves the size of the volume unchanged.
 POOL layer will perform a downsampling operation along the spatial dimensions (width, height).
 FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1xN],
where each of the N numbers correspond to a class score, such as among the N categories.
EECS6980:006 Social Network Analysis
Page  17
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  18
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 X -1 -1 -1 -1 X X -1
-1 X X -1 -1 X X -1 -1
-1 -1 X 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 X -1 -1
-1 -1 X X -1 -1 X X -1
-1 X X -1 -1 -1 -1 X -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Recall – What Computer Sees
 Since the pattern doesnot match exactly, the computer will not be able to classify this as ‘X’
 What got changed?
Page  19
=
=
=
 Convolution layer will work to identify patterns (features) instead of individual pixels
Convolutional Layer
Page  20
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 1
-1 1 -1
1 -1 -1
1 -1 1
-1 1 -1
1 -1 1
Convolutional Layer - Filters
 The CONV layer’s parameters consist of a set of learnable filters.
 Every filter is small spatially (along width and height), but extends through the full depth of the input
volume.
 During the forward pass, we slide (more precisely, convolve) each filter across the width and height
of the input volume and compute dot products between the entries of the filter and the input at any
position.
Page  21
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 1
-1 1 -1
1 -1 -1
1 -1 1
-1 1 -1
1 -1 1
Convolutional Layer - Filters
 Sliding the filter over the width and height of the input gives 2-dimensional activation map that
responds to that filter at every spatial position.
Page  22
Convolutional Layer - Strides
Input
Hidden
Output
Input
Hidden
Output
1-D convolution
Filters: 1
Filter Size: 2
Stride: 2
1-D convolution
Filters: 1
Filter Size: 2
Stride: 1
• The distance that filter is moved across the input from the
previous layer each activation is referred to as the stride.
Page  23
Convolutional Layer - Padding
 Sometimes it is convenient to pad the input volume with zeros around the border.
 Zero padding is allows us to preserve the spatial size of the output volumes
EECS6980:006 Social Network Analysis
Input
Hidden
Output
1 D convolution with:
Filters: 1
Filter Size: 2
Stride: 2
Padding: 1
0
0
Input
Hidden
Output
1 D convolution with:
Filters: 2
Filter Size: 2
Stride: 2
Padding: 1
0
0
Page  24
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
 Strides = 1, Filter Size = 3 X 3 X 1, Padding = 0
Page  25
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  26
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  27
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  28
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  29
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  30
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  31
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  32
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Navigation Example
Page  33
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  34
1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  35
1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  36
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  37
1 1 1
1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  38
1 1 1
1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  39
1 1 1
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  40
1 1 1
1 1 1
1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  41
1 1 1
1 1 1
1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  42
1 1 1
1 1 1
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  43
1
1 1 1
1 1 1
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  44
1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  45
1 1 -1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  46
1 1 -1
1 1 1
-1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Computation Example
Page  47
1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 -1
1 1 1
-1 1 1
55
1 1 -1
1 1 1
-1 1 1
Convolutional Layer – Filters – Computation Example
Page  48
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
=
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
Convolutional Layer – Filters – Computation Example
Input Size (W): 9
Filter Size (F): 3 X 3
Stride (S): 1
Filters: 1
Padding (P): 0
9 X 9 7 X 7
Feature Map Size = 1+ (W – F + 2P)/S
= 1+ (9 – 3 + 2 X 0)/1 = 7
Page  49
1 -1 -1
-1 1 -1
-1 -1 1
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
=
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
-1 -1 1
-1 1 -1
1 -1 -1
1 -1 1
-1 1 -1
1 -1 1
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
=
=
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Filters – Output Feature Map
 Output Feature
Map of One
complete
convolution:
– Filters: 3
– Filter Size: 3 X 3
– Stride: 1
 Conclusion:
– Input Image:
9 X 9
– Output of
Convolution:
7 X 7 X 3
Page  50
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
Convolutional Layer – Output
Page  51
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  52
Rectified Linear Units (ReLUs)
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
0.77
Page  53
0.77 0
Rectified Linear Units (ReLUs)
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
Page  54
0.77 0 0.11 0.33 0.55 0 0.33
Rectified Linear Units (ReLUs)
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
Page  55
0.77 0 0.11 0.33 0.55 0 0.33
0 1.00 0 0.33 0 0.11 0
0.11 0 1.00 0 0.11 0 0.55
0.33 0.33 0 0.55 0 0.33 0.33
0.55 0 0.11 0 1.00 0 0.11
0 0.11 0 0.33 0 1.00 0
0.33 0 0.55 0.33 0.11 0 0.77
Rectified Linear Units (ReLUs)
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
Page  56
ReLU layer
0.77 0 0.11 0.33 0.55 0 0.33
0 1.00 0 0.33 0 0.11 0
0.11 0 1.00 0 0.11 0 0.55
0.33 0.33 0 0.55 0 0.33 0.33
0.55 0 0.11 0 1.00 0 0.11
0 0.11 0 0.33 0 1.00 0
0.33 0 0.55 0.33 0.11 0 0.77
0.33 0 0.11 0 0.11 0 0.33
0 0.55 0 0.33 0 0.55 0
0.11 0 0.55 0 0.55 0 0.11
0 0.33 0 1.00 0 0.33 0
0.11 0 0.55 0 0.55 0 0.11
0 0.55 0 0.33 0 0.55 0
0.33 0 0.11 0 0.11 0 0.33
0.33 0 0.55 0.33 0.11 0 0.77
0 0.11 0 0.33 0 1.00 0
0.55 0 0.11 0 1.00 0 0.11
0.33 0.33 0 0.55 0 0.33 0.33
0.11 0 1.00 0 0.11 0 0.55
0 1.00 0 0.33 0 0.11 0
0.77 0 0.11 0.33 0.55 0 0.33
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
0.77 -0.11 0.11 0.33 0.55 -0.11 0.33
-0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11
0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55
0.33 0.33 -0.33 0.55 -0.33 0.33 0.33
0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11
-0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11
0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11
0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11
-0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55
0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
Page  57
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  58
Pooling Layer
 The pooling layers down-sample the previous layers feature map.
 Its function is to progressively reduce the spatial size of the representation to reduce the amount of
parameters and computation in the network
 The pooling layer often uses the Max operation to perform the downsampling process
EECS6980:006 Social Network Analysis
Page  59
1.00
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  60
1.00 0.33
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  61
1.00 0.33 0.55
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  62
1.00 0.33 0.55 0.33
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  63
1.00 0.33 0.55 0.33
0.33
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  64
1.00 0.33 0.55 0.33
0.33 1.00 0.33 0.55
0.55 0.33 1.00 0.11
0.33 0.55 0.11 0.77
Pooling
 Pooling Filter Size = 2 X 2, Stride = 2
Page  65
1.00 0.33 0.55 0.33
0.33 1.00 0.33 0.55
0.55 0.33 1.00 0.11
0.33 0.55 0.11 0.77
0.33 0.55 1.00 0.77
0.55 0.55 1.00 0.33
1.00 1.00 0.11 0.55
0.77 0.33 0.55 0.33
0.55 0.33 0.55 0.33
0.33 1.00 0.55 0.11
0.55 0.55 0.55 0.11
0.33 0.11 0.11 0.33
Pooling
Page  66
Layers get stacked
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
1.00 0.33 0.55 0.33
0.33 1.00 0.33 0.55
0.55 0.33 1.00 0.11
0.33 0.55 0.11 0.77
0.33 0.55 1.00 0.77
0.55 0.55 1.00 0.33
1.00 1.00 0.11 0.55
0.77 0.33 0.55 0.33
0.55 0.33 0.55 0.33
0.33 1.00 0.55 0.11
0.55 0.55 0.55 0.11
0.33 0.11 0.11 0.33
Page  67
Layers Get Stacked - Example
224 X 224 X 3 224 X 224 X 64
CONVOLUTION
WITH 64 FILTERS
112 X 112 X 64
POOLING
(DOWNSAMPLING)
Page  68
Deep stacking
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
1.00 0.55
0.55 1.00
0.55 1.00
1.00 0.55
1.00 0.55
0.55 0.55
Page  69
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Demos & Parameters
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  70
Fully connected layer
 Fully connected layers are the normal flat
feed-forward neural network layers.
 These layers may have a non-linear
activation function or a softmax activation
in order to predict classes.
 To compute our output, we simply re-
arrange the output matrices as a 1-D
array.
1.00 0.55
0.55 1.00
0.55 1.00
1.00 0.55
1.00 0.55
0.55 0.55
1.00
0.55
0.55
1.00
1.00
0.55
0.55
0.55
0.55
1.00
1.00
0.55
Page  71
Fully connected layer
 A summation of product of inputs and weights at each output node determines the final prediction
X
O
0.55
1.00
1.00
0.55
0.55
0.55
0.55
0.55
1.00
0.55
0.55
1.00
Page  72
Putting it all together
-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 -1 -1 1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 -1 -1 -1
-1 -1 1 -1 -1 -1 1 -1 -1
-1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1 -1
X
O
Page  73
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Parameters & Demos
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  74
Hyperparameters (knobs)
 Convolution
– Filter Size
– Number of Filters
– Padding
– Stride
 Pooling
– Window Size
– Stride
 Fully Connected
– Number of neurons
Page  75
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Parameters & Demos
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  76
Agenda
 Introduction
 Archetecture Overview
– How ConvNet Works
 ConvNet Layers
– Convolutional Layer
– Pooling Layer
– Normalization Layer (ReLU)
– Fully-Connected Layer
 Parameters & Demos
– Hyper Parameters
– Mnist dataset on AWS
– CIFAR-10 ConvNetJS
 Case Studies
EECS6980:006 Social Network Analysis
Page  77
Case Studies
 LeNet – 1998
 AlexNet – 2012
 ZFNet – 2013
 VGG – 2014
 GoogLeNet – 2014
 ResNet – 2015
EECS6980:006 Social Network Analysis
Page  78
References
 Karpathy, A. (n.d.). CS231n Convolutional Neural Networks for Visual Recognition. Retrieved from
http://cs231n.github.io/convolutional-networks/#overview
 Rohrer, B. (n.d.). How do Convolutional Neural Networks work?. Retrieved from
http://brohrer.github.io/how_convolutional_neural_networks_work.html
 Brownlee, J. (n.d.). Crash Course in Convolutional Neural Networks for Machine Learning. Retrieved from
http://machinelearningmastery.com/crash-course-convolutional-neural-networks/
 Lidinwise (n.d.). The revolution of depth. Retrieved from https://medium.com/@Lidinwise/the-revolution-of-
depth-facf174924f5#.8or5c77ss
 Nervana. (n.d.). Tutorial: Convolutional neural networks. Retrieved from
https://www.nervanasys.com/convolutional-neural-networks/
EECS6980:006 Social Network Analysis
Page  79
Questions
EECS6980:006 Social Network Analysis
Page  80
Thank you!!
EECS6980:006 Social Network Analysis
1 de 80

Recomendados

Convolutional Neural Network and Its Applications por
Convolutional Neural Network and Its ApplicationsConvolutional Neural Network and Its Applications
Convolutional Neural Network and Its ApplicationsKasun Chinthaka Piyarathna
4.6K visualizações23 slides
Convolutional Neural Networks (CNN) por
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Gaurav Mittal
58.5K visualizações70 slides
Convolutional Neural Network Models - Deep Learning por
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningBenha University
12.6K visualizações83 slides
Convolution Neural Network (CNN) por
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Suraj Aavula
13.8K visualizações22 slides
Cnn por
CnnCnn
CnnNirthika Rajendran
14K visualizações31 slides
Deep learning - A Visual Introduction por
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual IntroductionLukas Masuch
57.5K visualizações53 slides

Mais conteúdo relacionado

Mais procurados

Artificial Neural Networks Lect3: Neural Network Learning rules por
Artificial Neural Networks Lect3: Neural Network Learning rulesArtificial Neural Networks Lect3: Neural Network Learning rules
Artificial Neural Networks Lect3: Neural Network Learning rulesMohammed Bennamoun
17.8K visualizações73 slides
Introduction to Deep learning por
Introduction to Deep learningIntroduction to Deep learning
Introduction to Deep learningleopauly
1.7K visualizações48 slides
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S... por
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Simplilearn
13.6K visualizações63 slides
Deep learning por
Deep learningDeep learning
Deep learningBenha University
8.5K visualizações36 slides
Deep neural networks por
Deep neural networksDeep neural networks
Deep neural networksSi Haem
162.5K visualizações36 slides
Deep Learning - CNN and RNN por
Deep Learning - CNN and RNNDeep Learning - CNN and RNN
Deep Learning - CNN and RNNAshray Bhandare
5.9K visualizações135 slides

Mais procurados(20)

Artificial Neural Networks Lect3: Neural Network Learning rules por Mohammed Bennamoun
Artificial Neural Networks Lect3: Neural Network Learning rulesArtificial Neural Networks Lect3: Neural Network Learning rules
Artificial Neural Networks Lect3: Neural Network Learning rules
Mohammed Bennamoun17.8K visualizações
Introduction to Deep learning por leopauly
Introduction to Deep learningIntroduction to Deep learning
Introduction to Deep learning
leopauly1.7K visualizações
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S... por Simplilearn
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...
Simplilearn13.6K visualizações
Deep learning por Benha University
Deep learningDeep learning
Deep learning
Benha University8.5K visualizações
Deep neural networks por Si Haem
Deep neural networksDeep neural networks
Deep neural networks
Si Haem162.5K visualizações
Deep Learning - CNN and RNN por Ashray Bhandare
Deep Learning - CNN and RNNDeep Learning - CNN and RNN
Deep Learning - CNN and RNN
Ashray Bhandare5.9K visualizações
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S... por Simplilearn
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Simplilearn18.7K visualizações
Convolution Neural Network (CNN) por Basit Rafiq
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)
Basit Rafiq586 visualizações
Image classification using CNN por Noura Hussein
Image classification using CNNImage classification using CNN
Image classification using CNN
Noura Hussein5.3K visualizações
Image classification with Deep Neural Networks por Yogendra Tamang
Image classification with Deep Neural NetworksImage classification with Deep Neural Networks
Image classification with Deep Neural Networks
Yogendra Tamang7.6K visualizações
Overview of Convolutional Neural Networks por ananth
Overview of Convolutional Neural NetworksOverview of Convolutional Neural Networks
Overview of Convolutional Neural Networks
ananth7.7K visualizações
Convolutional Neural Network (CNN) por Muhammad Haroon
Convolutional Neural Network (CNN)Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN)
Muhammad Haroon837 visualizações
GAN - Theory and Applications por Emanuele Ghelfi
GAN - Theory and ApplicationsGAN - Theory and Applications
GAN - Theory and Applications
Emanuele Ghelfi9.5K visualizações
Introduction to Deep Learning por Oswald Campesato
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
Oswald Campesato3.8K visualizações
Back propagation por Nagarajan
Back propagationBack propagation
Back propagation
Nagarajan66.7K visualizações
CNN and its applications by ketaki por Ketaki Patwari
CNN and its applications by ketakiCNN and its applications by ketaki
CNN and its applications by ketaki
Ketaki Patwari1.7K visualizações
AlexNet por Bertil Hatt
AlexNetAlexNet
AlexNet
Bertil Hatt2.9K visualizações
Resnet por ashwinjoseph95
ResnetResnet
Resnet
ashwinjoseph951.6K visualizações
Introduction to Recurrent Neural Network por Knoldus Inc.
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
Knoldus Inc.1.9K visualizações
Deep learning ppt por BalneSridevi
Deep learning pptDeep learning ppt
Deep learning ppt
BalneSridevi1.2K visualizações

Similar a Convolutional Neural Networks

Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural... por
Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...
Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...Ashray Bhandare
591 visualizações146 slides
Introduction to machinel learning and deep learning por
Introduction to machinel learning and deep learningIntroduction to machinel learning and deep learning
Introduction to machinel learning and deep learningIbrahim Amer
687 visualizações100 slides
Practical Deep Learning Using Tensor Flow - Sandeep Kath por
Practical Deep Learning Using Tensor Flow - Sandeep KathPractical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep KathSandeep Kath
84 visualizações38 slides
CNN por
CNNCNN
CNNgeorgejustymirobi1
24 visualizações49 slides
CNN (v2).pptx por
CNN (v2).pptxCNN (v2).pptx
CNN (v2).pptxFKKBWITTAINAN
26 visualizações45 slides
Loop parallelization & pipelining por
Loop parallelization & pipeliningLoop parallelization & pipelining
Loop parallelization & pipeliningjagrat123
4.8K visualizações31 slides

Similar a Convolutional Neural Networks(20)

Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural... por Ashray Bhandare
Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...
Bio-inspired Algorithms for Evolving the Architecture of Convolutional Neural...
Ashray Bhandare591 visualizações
Introduction to machinel learning and deep learning por Ibrahim Amer
Introduction to machinel learning and deep learningIntroduction to machinel learning and deep learning
Introduction to machinel learning and deep learning
Ibrahim Amer687 visualizações
Practical Deep Learning Using Tensor Flow - Sandeep Kath por Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep KathPractical Deep Learning Using Tensor Flow - Sandeep Kath
Practical Deep Learning Using Tensor Flow - Sandeep Kath
Sandeep Kath84 visualizações
CNN (v2).pptx por FKKBWITTAINAN
CNN (v2).pptxCNN (v2).pptx
CNN (v2).pptx
FKKBWITTAINAN26 visualizações
Loop parallelization & pipelining por jagrat123
Loop parallelization & pipeliningLoop parallelization & pipelining
Loop parallelization & pipelining
jagrat1234.8K visualizações
DL_Lecture_29_06_2020.pptx por AmlanChakrabarti3
DL_Lecture_29_06_2020.pptxDL_Lecture_29_06_2020.pptx
DL_Lecture_29_06_2020.pptx
AmlanChakrabarti33 visualizações
Deep-Learning-2017-Lecture5CNN.pptx por Dr. Radhey Shyam
Deep-Learning-2017-Lecture5CNN.pptxDeep-Learning-2017-Lecture5CNN.pptx
Deep-Learning-2017-Lecture5CNN.pptx
Dr. Radhey Shyam15 visualizações
IRJET-Multiple Object Detection using Deep Neural Networks por IRJET Journal
IRJET-Multiple Object Detection using Deep Neural NetworksIRJET-Multiple Object Detection using Deep Neural Networks
IRJET-Multiple Object Detection using Deep Neural Networks
IRJET Journal43 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por AminHa5
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
AminHa519 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por EngineeringTamilan
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
EngineeringTamilan42 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por rohithprabhas1
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
rohithprabhas18 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por sruthiksanalkumar
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
sruthiksanalkumar2 visualizações
Deep-Learning por Amnaalia
Deep-LearningDeep-Learning
Deep-Learning
Amnaalia13 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por kundurti
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
kundurti6 visualizações
Deep-Learning-Convolutional Neural Networks and Sequence Modeling.ppt por PraveenVundrajavarap
Deep-Learning-Convolutional Neural Networks and Sequence Modeling.pptDeep-Learning-Convolutional Neural Networks and Sequence Modeling.ppt
Deep-Learning-Convolutional Neural Networks and Sequence Modeling.ppt
PraveenVundrajavarap2 visualizações
Deep learning-2017-lecture5 cnn por AnandShinde47
Deep learning-2017-lecture5 cnnDeep learning-2017-lecture5 cnn
Deep learning-2017-lecture5 cnn
AnandShinde4786 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por sghorai
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
sghorai4 visualizações
Deep-Learning-2017-Lecture5CNN.ppt por archn4
Deep-Learning-2017-Lecture5CNN.pptDeep-Learning-2017-Lecture5CNN.ppt
Deep-Learning-2017-Lecture5CNN.ppt
archn42 visualizações

Último

SUPER STORE SQL PROJECT.pptx por
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptxkhan888620
13 visualizações16 slides
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx por
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptxDataScienceConferenc1
6 visualizações12 slides
Data about the sector workshop por
Data about the sector workshopData about the sector workshop
Data about the sector workshopinfo828217
16 visualizações27 slides
META.pptx por
META.pptxMETA.pptx
META.pptxvasanthan19012003
6 visualizações10 slides
CRM stick or twist.pptx por
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptxinfo828217
11 visualizações16 slides
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int... por
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...DataScienceConferenc1
5 visualizações17 slides

Último(20)

SUPER STORE SQL PROJECT.pptx por khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862013 visualizações
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx por DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
DataScienceConferenc16 visualizações
Data about the sector workshop por info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821716 visualizações
CRM stick or twist.pptx por info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821711 visualizações
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int... por DataScienceConferenc1
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
DataScienceConferenc15 visualizações
3196 The Case of The East River por ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9017 visualizações
Dr. Ousmane Badiane-2023 ReSAKSS Conference por AKADEMIYA2063
Dr. Ousmane Badiane-2023 ReSAKSS ConferenceDr. Ousmane Badiane-2023 ReSAKSS Conference
Dr. Ousmane Badiane-2023 ReSAKSS Conference
AKADEMIYA20635 visualizações
UNEP FI CRS Climate Risk Results.pptx por pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 visualizações
shivam tiwari.pptx por AanyaMishra4
shivam tiwari.pptxshivam tiwari.pptx
shivam tiwari.pptx
AanyaMishra45 visualizações
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo... por DataScienceConferenc1
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
DataScienceConferenc16 visualizações
Product Research sample.pdf por AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson29 visualizações
CRM stick or twist workshop por info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821712 visualizações
Advanced_Recommendation_Systems_Presentation.pptx por neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
neeharikasingh295 visualizações
VoxelNet por taeseon ryu
VoxelNetVoxelNet
VoxelNet
taeseon ryu16 visualizações
LIVE OAK MEMORIAL PARK.pptx por ms2332always
LIVE OAK MEMORIAL PARK.pptxLIVE OAK MEMORIAL PARK.pptx
LIVE OAK MEMORIAL PARK.pptx
ms2332always7 visualizações
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines por DataScienceConferenc1
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
[DSC Europe 23] Luca Morena - From Psychohistory to Curious Machines
DataScienceConferenc15 visualizações
Data Journeys Hard Talk workshop final.pptx por info828217
Data Journeys Hard Talk workshop final.pptxData Journeys Hard Talk workshop final.pptx
Data Journeys Hard Talk workshop final.pptx
info82821710 visualizações
Organic Shopping in Google Analytics 4.pdf por GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials16 visualizações

Convolutional Neural Networks

  • 2. Page  2 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 3. Page  3 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 4. Page  4 Introduction  A convolutional neural network (or ConvNet) is a type of feed-forward artificial neural network  The architecture of a ConvNet is designed to take advantage of the 2D structure of an input image.    A ConvNet is comprised of one or more convolutional layers (often with a pooling step) and then followed by one or more fully connected layers as in a standard multilayer neural network. EECS6980:006 Social Network Analysis VS
  • 5. Page  5 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 6. Page  6 Motivation behind ConvNets  Consider an image of size 200x200x3 (200 wide, 200 high, 3 color channels) – a single fully-connected neuron in a first hidden layer of a regular Neural Network would have 200*200*3 = 120,000 weights. – Due to the presence of several such neurons, this full connectivity is wasteful and the huge number of parameters would quickly lead to overfitting  However, in a ConvNet, the neurons in a layer will only be connected to a small region of the layer before it, instead of all of the neurons in a fully-connected manner. – the final output layer would have dimensions 1x1xN, because by the end of the ConvNet architecture we will reduce the full image into a single vector of class scores (for N classes), arranged along the depth dimension EECS6980:006 Social Network Analysis
  • 7. Page  7 MLP VS ConvNet EECS6980:006 Social Network Analysis Input Hidden Output Input Hidden Output Multilayered Perceptron: All Fully Connected Layers Convolutional Neural Network With Partially Connected Convolution Layer
  • 8. Page  8 MLP vs ConvNet A regular 3-layer Neural Network. A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers. EECS6980:006 Social Network Analysis
  • 9. Page  9 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 10. Page  10 How ConvNet Works  For example, a ConvNet takes the input as an image which can be classified as ‘X’ or ‘O’  In a simple case, ‘X’ would look like: X or OCNN A two-dimensional array of pixels
  • 11. Page  11 How ConvNet Works  What about trickier cases? CNN X CNN O
  • 12. Page  12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = ? How ConvNet Works – What Computer Sees
  • 13. Page  13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 =x How ConvNet Works
  • 14. Page  14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 X -1 -1 -1 -1 X X -1 -1 X X -1 -1 X X -1 -1 -1 -1 X 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 X -1 -1 -1 -1 X X -1 -1 X X -1 -1 X X -1 -1 -1 -1 X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 How ConvNet Works – What Computer Sees  Since the pattern doesnot match exactly, the computer will not be able to classify this as ‘X’
  • 15. Page  15 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 16. Page  16 ConvNet Layers (At a Glance)  CONV layer will compute the output of neurons that are connected to local regions in the input, each computing a dot product between their weights and a small region they are connected to in the input volume.  RELU layer will apply an elementwise activation function, such as the max(0,x) thresholding at zero. This leaves the size of the volume unchanged.  POOL layer will perform a downsampling operation along the spatial dimensions (width, height).  FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1xN], where each of the N numbers correspond to a class score, such as among the N categories. EECS6980:006 Social Network Analysis
  • 17. Page  17 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 18. Page  18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 X -1 -1 -1 -1 X X -1 -1 X X -1 -1 X X -1 -1 -1 -1 X 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 X -1 -1 -1 -1 X X -1 -1 X X -1 -1 X X -1 -1 -1 -1 X -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Recall – What Computer Sees  Since the pattern doesnot match exactly, the computer will not be able to classify this as ‘X’  What got changed?
  • 19. Page  19 = = =  Convolution layer will work to identify patterns (features) instead of individual pixels Convolutional Layer
  • 20. Page  20 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 Convolutional Layer - Filters  The CONV layer’s parameters consist of a set of learnable filters.  Every filter is small spatially (along width and height), but extends through the full depth of the input volume.  During the forward pass, we slide (more precisely, convolve) each filter across the width and height of the input volume and compute dot products between the entries of the filter and the input at any position.
  • 21. Page  21 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 Convolutional Layer - Filters  Sliding the filter over the width and height of the input gives 2-dimensional activation map that responds to that filter at every spatial position.
  • 22. Page  22 Convolutional Layer - Strides Input Hidden Output Input Hidden Output 1-D convolution Filters: 1 Filter Size: 2 Stride: 2 1-D convolution Filters: 1 Filter Size: 2 Stride: 1 • The distance that filter is moved across the input from the previous layer each activation is referred to as the stride.
  • 23. Page  23 Convolutional Layer - Padding  Sometimes it is convenient to pad the input volume with zeros around the border.  Zero padding is allows us to preserve the spatial size of the output volumes EECS6980:006 Social Network Analysis Input Hidden Output 1 D convolution with: Filters: 1 Filter Size: 2 Stride: 2 Padding: 1 0 0 Input Hidden Output 1 D convolution with: Filters: 2 Filter Size: 2 Stride: 2 Padding: 1 0 0
  • 24. Page  24 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example  Strides = 1, Filter Size = 3 X 3 X 1, Padding = 0
  • 25. Page  25 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 26. Page  26 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 27. Page  27 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 28. Page  28 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 29. Page  29 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 30. Page  30 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 31. Page  31 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 32. Page  32 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Navigation Example
  • 33. Page  33 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 34. Page  34 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 35. Page  35 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 36. Page  36 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 37. Page  37 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 38. Page  38 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 39. Page  39 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 40. Page  40 1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 41. Page  41 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 42. Page  42 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 43. Page  43 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 44. Page  44 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 45. Page  45 1 1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 46. Page  46 1 1 -1 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Computation Example
  • 47. Page  47 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 1 -1 1 1 55 1 1 -1 1 1 1 -1 1 1 Convolutional Layer – Filters – Computation Example
  • 48. Page  48 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 Convolutional Layer – Filters – Computation Example Input Size (W): 9 Filter Size (F): 3 X 3 Stride (S): 1 Filters: 1 Padding (P): 0 9 X 9 7 X 7 Feature Map Size = 1+ (W – F + 2P)/S = 1+ (9 – 3 + 2 X 0)/1 = 7
  • 49. Page  49 1 -1 -1 -1 1 -1 -1 -1 1 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 = 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33 = = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Filters – Output Feature Map  Output Feature Map of One complete convolution: – Filters: 3 – Filter Size: 3 X 3 – Stride: 1  Conclusion: – Input Image: 9 X 9 – Output of Convolution: 7 X 7 X 3
  • 50. Page  50 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 Convolutional Layer – Output
  • 51. Page  51 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 52. Page  52 Rectified Linear Units (ReLUs) 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 0.77
  • 53. Page  53 0.77 0 Rectified Linear Units (ReLUs) 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
  • 54. Page  54 0.77 0 0.11 0.33 0.55 0 0.33 Rectified Linear Units (ReLUs) 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
  • 55. Page  55 0.77 0 0.11 0.33 0.55 0 0.33 0 1.00 0 0.33 0 0.11 0 0.11 0 1.00 0 0.11 0 0.55 0.33 0.33 0 0.55 0 0.33 0.33 0.55 0 0.11 0 1.00 0 0.11 0 0.11 0 0.33 0 1.00 0 0.33 0 0.55 0.33 0.11 0 0.77 Rectified Linear Units (ReLUs) 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77
  • 56. Page  56 ReLU layer 0.77 0 0.11 0.33 0.55 0 0.33 0 1.00 0 0.33 0 0.11 0 0.11 0 1.00 0 0.11 0 0.55 0.33 0.33 0 0.55 0 0.33 0.33 0.55 0 0.11 0 1.00 0 0.11 0 0.11 0 0.33 0 1.00 0 0.33 0 0.55 0.33 0.11 0 0.77 0.33 0 0.11 0 0.11 0 0.33 0 0.55 0 0.33 0 0.55 0 0.11 0 0.55 0 0.55 0 0.11 0 0.33 0 1.00 0 0.33 0 0.11 0 0.55 0 0.55 0 0.11 0 0.55 0 0.33 0 0.55 0 0.33 0 0.11 0 0.11 0 0.33 0.33 0 0.55 0.33 0.11 0 0.77 0 0.11 0 0.33 0 1.00 0 0.55 0 0.11 0 1.00 0 0.11 0.33 0.33 0 0.55 0 0.33 0.33 0.11 0 1.00 0 0.11 0 0.55 0 1.00 0 0.33 0 0.11 0 0.77 0 0.11 0.33 0.55 0 0.33 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 0.77 -0.11 0.11 0.33 0.55 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.11 -0.11 0.11 -0.11 1.00 -0.33 0.11 -0.11 0.55 0.33 0.33 -0.33 0.55 -0.33 0.33 0.33 0.55 -0.11 0.11 -0.33 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 0.33 -0.11 0.55 0.33 0.11 -0.11 0.77 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.11 0.33 -0.77 1.00 -0.77 0.33 -0.11 0.11 -0.55 0.55 -0.77 0.55 -0.55 0.11 -0.55 0.55 -0.55 0.33 -0.55 0.55 -0.55 0.33 -0.55 0.11 -0.11 0.11 -0.55 0.33
  • 57. Page  57 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 58. Page  58 Pooling Layer  The pooling layers down-sample the previous layers feature map.  Its function is to progressively reduce the spatial size of the representation to reduce the amount of parameters and computation in the network  The pooling layer often uses the Max operation to perform the downsampling process EECS6980:006 Social Network Analysis
  • 59. Page  59 1.00 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 60. Page  60 1.00 0.33 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 61. Page  61 1.00 0.33 0.55 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 62. Page  62 1.00 0.33 0.55 0.33 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 63. Page  63 1.00 0.33 0.55 0.33 0.33 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 64. Page  64 1.00 0.33 0.55 0.33 0.33 1.00 0.33 0.55 0.55 0.33 1.00 0.11 0.33 0.55 0.11 0.77 Pooling  Pooling Filter Size = 2 X 2, Stride = 2
  • 65. Page  65 1.00 0.33 0.55 0.33 0.33 1.00 0.33 0.55 0.55 0.33 1.00 0.11 0.33 0.55 0.11 0.77 0.33 0.55 1.00 0.77 0.55 0.55 1.00 0.33 1.00 1.00 0.11 0.55 0.77 0.33 0.55 0.33 0.55 0.33 0.55 0.33 0.33 1.00 0.55 0.11 0.55 0.55 0.55 0.11 0.33 0.11 0.11 0.33 Pooling
  • 66. Page  66 Layers get stacked -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.00 0.33 0.55 0.33 0.33 1.00 0.33 0.55 0.55 0.33 1.00 0.11 0.33 0.55 0.11 0.77 0.33 0.55 1.00 0.77 0.55 0.55 1.00 0.33 1.00 1.00 0.11 0.55 0.77 0.33 0.55 0.33 0.55 0.33 0.55 0.33 0.33 1.00 0.55 0.11 0.55 0.55 0.55 0.11 0.33 0.11 0.11 0.33
  • 67. Page  67 Layers Get Stacked - Example 224 X 224 X 3 224 X 224 X 64 CONVOLUTION WITH 64 FILTERS 112 X 112 X 64 POOLING (DOWNSAMPLING)
  • 68. Page  68 Deep stacking -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.00 0.55 0.55 1.00 0.55 1.00 1.00 0.55 1.00 0.55 0.55 0.55
  • 69. Page  69 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Demos & Parameters – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 70. Page  70 Fully connected layer  Fully connected layers are the normal flat feed-forward neural network layers.  These layers may have a non-linear activation function or a softmax activation in order to predict classes.  To compute our output, we simply re- arrange the output matrices as a 1-D array. 1.00 0.55 0.55 1.00 0.55 1.00 1.00 0.55 1.00 0.55 0.55 0.55 1.00 0.55 0.55 1.00 1.00 0.55 0.55 0.55 0.55 1.00 1.00 0.55
  • 71. Page  71 Fully connected layer  A summation of product of inputs and weights at each output node determines the final prediction X O 0.55 1.00 1.00 0.55 0.55 0.55 0.55 0.55 1.00 0.55 0.55 1.00
  • 72. Page  72 Putting it all together -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 X O
  • 73. Page  73 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Parameters & Demos – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 74. Page  74 Hyperparameters (knobs)  Convolution – Filter Size – Number of Filters – Padding – Stride  Pooling – Window Size – Stride  Fully Connected – Number of neurons
  • 75. Page  75 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Parameters & Demos – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 76. Page  76 Agenda  Introduction  Archetecture Overview – How ConvNet Works  ConvNet Layers – Convolutional Layer – Pooling Layer – Normalization Layer (ReLU) – Fully-Connected Layer  Parameters & Demos – Hyper Parameters – Mnist dataset on AWS – CIFAR-10 ConvNetJS  Case Studies EECS6980:006 Social Network Analysis
  • 77. Page  77 Case Studies  LeNet – 1998  AlexNet – 2012  ZFNet – 2013  VGG – 2014  GoogLeNet – 2014  ResNet – 2015 EECS6980:006 Social Network Analysis
  • 78. Page  78 References  Karpathy, A. (n.d.). CS231n Convolutional Neural Networks for Visual Recognition. Retrieved from http://cs231n.github.io/convolutional-networks/#overview  Rohrer, B. (n.d.). How do Convolutional Neural Networks work?. Retrieved from http://brohrer.github.io/how_convolutional_neural_networks_work.html  Brownlee, J. (n.d.). Crash Course in Convolutional Neural Networks for Machine Learning. Retrieved from http://machinelearningmastery.com/crash-course-convolutional-neural-networks/  Lidinwise (n.d.). The revolution of depth. Retrieved from https://medium.com/@Lidinwise/the-revolution-of- depth-facf174924f5#.8or5c77ss  Nervana. (n.d.). Tutorial: Convolutional neural networks. Retrieved from https://www.nervanasys.com/convolutional-neural-networks/ EECS6980:006 Social Network Analysis
  • 79. Page  79 Questions EECS6980:006 Social Network Analysis
  • 80. Page  80 Thank you!! EECS6980:006 Social Network Analysis