SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
6 sigma
• Six Sigma is a business management strategy originally
  Six Sigma is a business management strategy originally 
  developed by Bill Smith at Motorola, USA in 1986.
• The maturity of a manufacturing process can be described 
              y                     gp
  by a sigma rating indicating its yield, or the percentage of 
  defect‐free products it creates. 
• A six sigma process is one in which 99 99966% of the
  A six sigma process is one in which 99.99966% of the 
  products manufactured are statistically expected to be free 
  of defects (3.4 defects per million). 
• Motorola set a goal of "six sigma" for all of its 
           l          l f"           "f    ll f
  manufacturing operations, and this goal became a byword 
  for the management and engineering practices used to 
                g               g        gp
  achieve it.
• Bill Smith f
    ill   i h first f
                    formulated the particulars of
                         l d h             l    f
  the methodology at Motorola in 1986.
• Six Sigma was heavily inspired by six preceding
  decades        of     quality    improvement
  methodologies such as quality control, TQM,
  and Z
      d Zero D f t b d on th work of
              Defects, based       the       k f
  pioneers such as Shewhart, Deming, Juran,
  Ishikawa, Taguchi and others.
6 sigma
• Six Sigma seeks to improve the quality of process outputs
  by identifying and removing the causes of defects (errors)
  and minimizing variability in manufacturing and business
  processes.
  processes
• Continuous efforts to achieve stable and predictable
  p
  process results (i.e., reduce process variation) are of vital
                  ( ,           p                )
  importance to business success.
• Manufacturing and business processes have characteristics
  that can be measured analyzed improved and controlled
              measured, analyzed,                  controlled.
• Achieving sustained quality improvement requires
  commitment from the entire organization, particularly from
  top‐level management.
6 sigma
• A clear focus on achieving measurable and
  quantifiable financial returns from any Six Sigma
  project.
• An increased emphasis on strong and passionate
  management leadership and support.
• A special infrastructure of " h
           l f              f "Champions," "
                                         " "Master Black
                                                     l k
  Belts," "Black Belts," "Green Belts", etc. to lead and
  implement the Six Sigma approach.
• A clear commitment to making decisions on the basis
  of verifiable data, rather than assumptions and
  guesswork.
• Six Sigma projects follow two project
  Six Sigma projects follow two project 
  methodologies inspired by Deming's Plan‐Do‐
  Check Act Cycle. These methodologies, 
  Check‐Act Cycle. These methodologies,
  composed of five phases each, bear the acronyms 
  DMAIC and DMADV.
  – DMAIC is used for projects aimed at improving an 
    existing business process. DMAIC is pronounced as 
    "duh‐may‐ick".
     duh‐may‐ick
  – DMADV is used for projects aimed at creating new 
    p
    product or process designs. DMADV is pronounced as 
               p           g              p
    "duh‐mad‐vee".
• D fi th
            Define the problem, the voice of the customer, and the project goals, specifically.
                          bl    th    i    f th     t        d th     j t     l       ifi ll
Define



          • Measure key aspects of the current process and collect relevant data.
Measure


          • Analyze the data to investigate and verify cause‐and‐effect relationships.
               l     h d                      d     f          d ff       l      h
Analyze   • Seek out root cause of the defect under investigation.


        • Improve or optimize the current process based upon data analysis using techniques
Improve • Set up pilot runs to establish process capability.


         • Control the future state process to ensure that any deviations from target are 
Control    corrected before they result in defects. 
• Define design goals that are consistent with customer demands and the enterprise 
                       g g                                                             p
 Define     strategy.


        • Measure and identify CTQs (characteristics that are Critical To Quality) product
          Measure and identify CTQs (characteristics that are Critical To Quality), product 
Measure   capabilities, production process capability, and risks.


        • Analyze to develop and design alternatives create a high level design and evaluate
          Analyze to develop and design alternatives, create a high‐level design and evaluate 
Analyze   design capability to select the best design.


          • Design details, optimize the design, and plan for design verification. This phase may 
Design      require simulations.


          • Verify the design, set up pilot runs, implement the production process and hand it over 
 Verify     to the process owner(s).
Chi‐square test of independence and fits 
5 Whys
5 Whys                         Regression analysis
                               R       i      l i
Histograms                     Control chart
Analysis of variance           Root cause analysis
Quality Function Deployment    Correlation 
                               Correlation
(QFD)                          Run charts
                               Cost‐benefit analysis 
ANOVA Gauge R&R                SIPOC analysis (Suppliers, Inputs, Process, 
                               SIPOC analysis (Suppliers Inputs Process
Pareto chart                   Outputs, Customers)
Axiomatic design               CTQ tree 
Pick chart
Pick chart                     Taguchi methods
                               Taguchi methods
Business Process Mapping       Design of experiments 
                               Taguchi Loss Function
Process capability             Failure mode and effects analysis (FMEA)
                                                             y (        )
Cause & effects diagram        TRIZ
Enterprise Feedback            General linear model
Management (EFM) systems
Six Sigma identifies several key roles for its successful implementation.
Six Sigma identifies several key roles for its successful implementation
• Executive Leadership includes the CEO and other members of top management. 
    They are responsible for setting up a vision for Six Sigma implementation. 
• Champions take responsibility for Six Sigma implementation across the 
    organization. Champions also act as mentors to Black Belts.
• Master Black Belts act as in‐house coaches on Six Sigma Apart from statistical
    Master Black Belts act as in house coaches on Six Sigma. Apart from statistical 
    tasks, they ensure consistent application of Six Sigma across various functions 
    and departments.
• Bl k B l
    Black Belts apply Six Sigma methodology to specific projects. They primarily 
                    l Si Si           h d l             ifi    j    Th      i    il
    focus on Six Sigma project execution, whereas Champions and Master Black 
    Belts focus on identifying projects/functions for Six Sigma.
• Green Belts are the employees who take up Six Sigma implementation along 
    with their other job responsibilities, operating under the guidance of Black Belts.
Sigma     DPMO       % Defective     % Yield     Short‐Term   Long‐Term 
Level                                               Cpk          Cpk
1        6,91,462   69%            31%           0.33         ‐0.17
2        3,08,538   31%            69%           0.67         0.17
3        66,807     6.7%           93.3%         1.00         0.5
4        6,210      0.62%          99.38%        1.33         0.83
5        233        0.023%         99.977%       1.67         1.17
6        3.4        0.00034%       99.99966%     2.00         1.5
7        0.019      0.0000019%     99.9999981%   2.33         1.83
• Lack of originality
  Lack of originality
   – Noted quality expert Joseph M. Juran has described Six Sigma 
     as "a basic version of quality improvement", stating that "there 
     is nothing new there. It includes what we used to call 
     i     thi        th     It i l d   h t       dt     ll
     facilitators. They've adopted more flamboyant terms, like belts 
     with different colors.
• R l f
  Role of consultants
               l
   – The use of "Black Belts" as itinerant change agents has 
     (controversially) fostered an industry of training and 
     certification. 
   – Critics argue there is overselling of Six Sigma by too great a 
     number of consulting firms, many of which claim expertise in Six 
                           g      ,     y                   p
     Sigma when they only have a rudimentary understanding of the 
     tools and techniques involved.
• P t ti l
  Potential negative effects
                ti    ff t
   – A Fortune article stated that "of 58 large companies that have announced Six Sigma 
     programs, 91 percent have trailed the S&P 500 since". 
   – The summary of the article is that Six Sigma is effective at what it is intended to do, 
     but that it is "narrowly designed to fix an existing process" and does not help in 
     "coming up with new products or disruptive technologies.“
            g p             p                  p             g
• Criticism of the 1.5 sigma shift
   – The statistician Donald J. Wheeler has dismissed the 1.5 sigma shift as "goofy" 
     because of its arbitrary nature. 
     b          fi     bi
   – The 1.5 sigma shift has also become contentious because it results in stated "sigma 
     levels" that reflect short‐term rather than long‐term performance: a process that 
     has long‐term defect levels corresponding to 4.5 sigma performance is, by Six Sigma 
     convention, described as a "six sigma process.”
• Based on arbitrary standards
  Based on arbitrary standards
  – While 3.4 defects per million opportunities might work well for certain 
    products/processes, it might not operate optimally or cost effectively for 
    others. 
  – A pacemaker process might need higher standards, for example, whereas a 
    Safety bin process might not need higher standards. 
    Safety bin process might not need higher standards.
  – The basis and justification for choosing 6 (as opposed to 5 or 7, for 
    example) as the number of standard deviations is not clearly explained. 
  – In addition, the Six Sigma model assumes that the process data always 
    conform to the normal distribution. The calculation of defect rates for 
    situations where the normal distribution model does not apply is not 
    properly addressed in the current Six Sigma literature.
6 sigma

Mais conteúdo relacionado

Mais procurados

Test Process Maturity Measurement and Related Measurements
Test Process Maturity Measurement and Related MeasurementsTest Process Maturity Measurement and Related Measurements
Test Process Maturity Measurement and Related MeasurementsSTAG Software Private Limited
 
Core tools apqp, ppap, fmea, spc and msa
Core tools   apqp, ppap, fmea, spc and msa Core tools   apqp, ppap, fmea, spc and msa
Core tools apqp, ppap, fmea, spc and msa Mouhcine Nahal
 
Software Testing Maturity Model and Assessment by Abstracta
Software Testing Maturity Model and Assessment by AbstractaSoftware Testing Maturity Model and Assessment by Abstracta
Software Testing Maturity Model and Assessment by AbstractaKalei White
 
Validation vs. verification
Validation vs. verificationValidation vs. verification
Validation vs. verificationSaad Al Jabri
 
Different Software Testing Levels for Detecting Errors
Different Software Testing Levels for Detecting ErrorsDifferent Software Testing Levels for Detecting Errors
Different Software Testing Levels for Detecting ErrorsWaqas Tariq
 
Sw Software QA Testing
Sw Software QA TestingSw Software QA Testing
Sw Software QA Testingjonathan077070
 
Process auditing as per VDA 6.3
Process auditing as per VDA 6.3Process auditing as per VDA 6.3
Process auditing as per VDA 6.3Kiran Walimbe
 
Process Audit --VDA
Process Audit --VDAProcess Audit --VDA
Process Audit --VDABill Yan
 
Software engineering testing and types
Software engineering testing and typesSoftware engineering testing and types
Software engineering testing and typesDr. Anthony Vincent. B
 
Generic product development with QbD pathway
Generic product development with QbD pathwayGeneric product development with QbD pathway
Generic product development with QbD pathwayGuru Balaji .S
 
What i es do iie iab v2
What i es do iie iab v2What i es do iie iab v2
What i es do iie iab v2Jitesh Gaurav
 
Asish Gouda's Manual Testing Course of study
Asish Gouda's Manual Testing Course of studyAsish Gouda's Manual Testing Course of study
Asish Gouda's Manual Testing Course of studyAsishTesting
 

Mais procurados (19)

Test Process Maturity Measurement and Related Measurements
Test Process Maturity Measurement and Related MeasurementsTest Process Maturity Measurement and Related Measurements
Test Process Maturity Measurement and Related Measurements
 
Core tools apqp, ppap, fmea, spc and msa
Core tools   apqp, ppap, fmea, spc and msa Core tools   apqp, ppap, fmea, spc and msa
Core tools apqp, ppap, fmea, spc and msa
 
Lec25
Lec25Lec25
Lec25
 
Software Testing Maturity Model and Assessment by Abstracta
Software Testing Maturity Model and Assessment by AbstractaSoftware Testing Maturity Model and Assessment by Abstracta
Software Testing Maturity Model and Assessment by Abstracta
 
SDLC lifecycle
SDLC lifecycleSDLC lifecycle
SDLC lifecycle
 
Validation vs. verification
Validation vs. verificationValidation vs. verification
Validation vs. verification
 
Different Software Testing Levels for Detecting Errors
Different Software Testing Levels for Detecting ErrorsDifferent Software Testing Levels for Detecting Errors
Different Software Testing Levels for Detecting Errors
 
Quality Assurance Process
Quality Assurance ProcessQuality Assurance Process
Quality Assurance Process
 
Sw Software QA Testing
Sw Software QA TestingSw Software QA Testing
Sw Software QA Testing
 
Process auditing as per VDA 6.3
Process auditing as per VDA 6.3Process auditing as per VDA 6.3
Process auditing as per VDA 6.3
 
Spice
SpiceSpice
Spice
 
TMMi Implementation Guideline
TMMi Implementation GuidelineTMMi Implementation Guideline
TMMi Implementation Guideline
 
Verification process
Verification processVerification process
Verification process
 
Process Audit --VDA
Process Audit --VDAProcess Audit --VDA
Process Audit --VDA
 
Guide to Agile testing
Guide to Agile testingGuide to Agile testing
Guide to Agile testing
 
Software engineering testing and types
Software engineering testing and typesSoftware engineering testing and types
Software engineering testing and types
 
Generic product development with QbD pathway
Generic product development with QbD pathwayGeneric product development with QbD pathway
Generic product development with QbD pathway
 
What i es do iie iab v2
What i es do iie iab v2What i es do iie iab v2
What i es do iie iab v2
 
Asish Gouda's Manual Testing Course of study
Asish Gouda's Manual Testing Course of studyAsish Gouda's Manual Testing Course of study
Asish Gouda's Manual Testing Course of study
 

Destaque

WordCamp RVA 2011 - Performance & Tuning
WordCamp RVA 2011 - Performance & TuningWordCamp RVA 2011 - Performance & Tuning
WordCamp RVA 2011 - Performance & TuningTimothy Wood
 
High Performance - Joomla!Days NL 2009 #jd09nl
High Performance - Joomla!Days NL 2009 #jd09nlHigh Performance - Joomla!Days NL 2009 #jd09nl
High Performance - Joomla!Days NL 2009 #jd09nlJoomla!Days Netherlands
 
Software reliability engineering process
Software reliability engineering processSoftware reliability engineering process
Software reliability engineering processHimanshu
 
Defect Prediction & Prevention In Automotive Software Development
Defect Prediction & Prevention In Automotive Software DevelopmentDefect Prediction & Prevention In Automotive Software Development
Defect Prediction & Prevention In Automotive Software DevelopmentRAKESH RANA
 
Software Performance Testing: Conceptos y metodología
Software Performance Testing: Conceptos y metodologíaSoftware Performance Testing: Conceptos y metodología
Software Performance Testing: Conceptos y metodologíaBelatrix Software
 
Shop floor management new flyer 1 day workshop - november 2016
Shop floor management new flyer 1 day workshop - november 2016Shop floor management new flyer 1 day workshop - november 2016
Shop floor management new flyer 1 day workshop - november 2016W3 Group Canada Inc.
 
Software and Hardware Reliability
Software and Hardware ReliabilitySoftware and Hardware Reliability
Software and Hardware ReliabilitySandeep Patalay
 
Chapter 7 software reliability
Chapter 7 software reliabilityChapter 7 software reliability
Chapter 7 software reliabilitydespicable me
 
Software reliability
Software reliabilitySoftware reliability
Software reliabilityAnand Kumar
 

Destaque (19)

Relations diagram
Relations diagramRelations diagram
Relations diagram
 
6 sigma
6 sigma6 sigma
6 sigma
 
Complexity metrics and models
Complexity metrics and modelsComplexity metrics and models
Complexity metrics and models
 
Seven basic tools of quality
Seven basic tools of qualitySeven basic tools of quality
Seven basic tools of quality
 
Case tools
Case toolsCase tools
Case tools
 
Ui perf
Ui perfUi perf
Ui perf
 
WordCamp RVA 2011 - Performance & Tuning
WordCamp RVA 2011 - Performance & TuningWordCamp RVA 2011 - Performance & Tuning
WordCamp RVA 2011 - Performance & Tuning
 
Presentation1
Presentation1Presentation1
Presentation1
 
High Performance - Joomla!Days NL 2009 #jd09nl
High Performance - Joomla!Days NL 2009 #jd09nlHigh Performance - Joomla!Days NL 2009 #jd09nl
High Performance - Joomla!Days NL 2009 #jd09nl
 
Software reliability engineering process
Software reliability engineering processSoftware reliability engineering process
Software reliability engineering process
 
Defect Prediction & Prevention In Automotive Software Development
Defect Prediction & Prevention In Automotive Software DevelopmentDefect Prediction & Prevention In Automotive Software Development
Defect Prediction & Prevention In Automotive Software Development
 
The future of java
The future of javaThe future of java
The future of java
 
Software Performance Testing: Conceptos y metodología
Software Performance Testing: Conceptos y metodologíaSoftware Performance Testing: Conceptos y metodología
Software Performance Testing: Conceptos y metodología
 
Reliability growth models
Reliability growth modelsReliability growth models
Reliability growth models
 
Shop floor management new flyer 1 day workshop - november 2016
Shop floor management new flyer 1 day workshop - november 2016Shop floor management new flyer 1 day workshop - november 2016
Shop floor management new flyer 1 day workshop - november 2016
 
Software and Hardware Reliability
Software and Hardware ReliabilitySoftware and Hardware Reliability
Software and Hardware Reliability
 
Chapter 7 software reliability
Chapter 7 software reliabilityChapter 7 software reliability
Chapter 7 software reliability
 
Software Reliability
Software ReliabilitySoftware Reliability
Software Reliability
 
Software reliability
Software reliabilitySoftware reliability
Software reliability
 

Semelhante a 6 sigma (20)

Understanding six sigma
Understanding six sigmaUnderstanding six sigma
Understanding six sigma
 
Yellow belt training 68 s
Yellow belt training 68 sYellow belt training 68 s
Yellow belt training 68 s
 
Six sigma
Six sigmaSix sigma
Six sigma
 
Six sigma
Six sigmaSix sigma
Six sigma
 
Six sigma
Six sigma Six sigma
Six sigma
 
SIX SIGMA
SIX SIGMASIX SIGMA
SIX SIGMA
 
Understanding Six Sigma
Understanding Six SigmaUnderstanding Six Sigma
Understanding Six Sigma
 
Six sigma
Six sigma Six sigma
Six sigma
 
What does six sigma really mean??
What does six sigma really mean??What does six sigma really mean??
What does six sigma really mean??
 
Six sigma introduction
Six sigma introductionSix sigma introduction
Six sigma introduction
 
six sigma ppt
six sigma pptsix sigma ppt
six sigma ppt
 
Six sigma
Six sigmaSix sigma
Six sigma
 
Six Sigma the best ppt
Six Sigma the best pptSix Sigma the best ppt
Six Sigma the best ppt
 
Six sigma.pptx
Six sigma.pptxSix sigma.pptx
Six sigma.pptx
 
yellow belt training
yellow belt trainingyellow belt training
yellow belt training
 
Introduction to Six Sigma.pptx
Introduction to Six Sigma.pptxIntroduction to Six Sigma.pptx
Introduction to Six Sigma.pptx
 
Introduction to six sigma
Introduction to six sigmaIntroduction to six sigma
Introduction to six sigma
 
Six sigma
Six sigmaSix sigma
Six sigma
 
3 16-01 six-sigma
3 16-01 six-sigma3 16-01 six-sigma
3 16-01 six-sigma
 
6 sigma
6 sigma6 sigma
6 sigma
 

Mais de Roy Antony Arnold G (20)

Run chart
Run chartRun chart
Run chart
 
Quality management models
Quality management modelsQuality management models
Quality management models
 
Pareto diagram
Pareto diagramPareto diagram
Pareto diagram
 
Ishikawa diagram
Ishikawa diagramIshikawa diagram
Ishikawa diagram
 
Histogram
HistogramHistogram
Histogram
 
Customer satisfaction
Customer satisfactionCustomer satisfaction
Customer satisfaction
 
Control chart
Control chartControl chart
Control chart
 
Complexity metrics and models
Complexity metrics and modelsComplexity metrics and models
Complexity metrics and models
 
Check lists
Check listsCheck lists
Check lists
 
Capability maturity model
Capability maturity modelCapability maturity model
Capability maturity model
 
Structure chart
Structure chartStructure chart
Structure chart
 
Seven new tools
Seven new toolsSeven new tools
Seven new tools
 
Scatter diagram
Scatter diagramScatter diagram
Scatter diagram
 
Qms
QmsQms
Qms
 
Rayleigh model
Rayleigh modelRayleigh model
Rayleigh model
 
Defect removal effectiveness
Defect removal effectivenessDefect removal effectiveness
Defect removal effectiveness
 
Customer satisfaction
Customer satisfactionCustomer satisfaction
Customer satisfaction
 
Rayleigh model
Rayleigh modelRayleigh model
Rayleigh model
 
Customer oriented planning of case-tools using quality function deployment (qfd)
Customer oriented planning of case-tools using quality function deployment (qfd)Customer oriented planning of case-tools using quality function deployment (qfd)
Customer oriented planning of case-tools using quality function deployment (qfd)
 
Case Tools
Case ToolsCase Tools
Case Tools
 

6 sigma

  • 2. • Six Sigma is a business management strategy originally Six Sigma is a business management strategy originally  developed by Bill Smith at Motorola, USA in 1986. • The maturity of a manufacturing process can be described  y gp by a sigma rating indicating its yield, or the percentage of  defect‐free products it creates.  • A six sigma process is one in which 99 99966% of the A six sigma process is one in which 99.99966% of the  products manufactured are statistically expected to be free  of defects (3.4 defects per million).  • Motorola set a goal of "six sigma" for all of its  l l f" "f ll f manufacturing operations, and this goal became a byword  for the management and engineering practices used to  g g gp achieve it.
  • 3. • Bill Smith f ill i h first f formulated the particulars of l d h l f the methodology at Motorola in 1986. • Six Sigma was heavily inspired by six preceding decades of quality improvement methodologies such as quality control, TQM, and Z d Zero D f t b d on th work of Defects, based the k f pioneers such as Shewhart, Deming, Juran, Ishikawa, Taguchi and others.
  • 5. • Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects (errors) and minimizing variability in manufacturing and business processes. processes • Continuous efforts to achieve stable and predictable p process results (i.e., reduce process variation) are of vital ( , p ) importance to business success. • Manufacturing and business processes have characteristics that can be measured analyzed improved and controlled measured, analyzed, controlled. • Achieving sustained quality improvement requires commitment from the entire organization, particularly from top‐level management.
  • 7. • A clear focus on achieving measurable and quantifiable financial returns from any Six Sigma project. • An increased emphasis on strong and passionate management leadership and support. • A special infrastructure of " h l f f "Champions," " " "Master Black l k Belts," "Black Belts," "Green Belts", etc. to lead and implement the Six Sigma approach. • A clear commitment to making decisions on the basis of verifiable data, rather than assumptions and guesswork.
  • 8. • Six Sigma projects follow two project Six Sigma projects follow two project  methodologies inspired by Deming's Plan‐Do‐ Check Act Cycle. These methodologies,  Check‐Act Cycle. These methodologies, composed of five phases each, bear the acronyms  DMAIC and DMADV. – DMAIC is used for projects aimed at improving an  existing business process. DMAIC is pronounced as  "duh‐may‐ick". duh‐may‐ick – DMADV is used for projects aimed at creating new  p product or process designs. DMADV is pronounced as  p g p "duh‐mad‐vee".
  • 9. • D fi th Define the problem, the voice of the customer, and the project goals, specifically. bl th i f th t d th j t l ifi ll Define • Measure key aspects of the current process and collect relevant data. Measure • Analyze the data to investigate and verify cause‐and‐effect relationships. l h d d f d ff l h Analyze • Seek out root cause of the defect under investigation. • Improve or optimize the current process based upon data analysis using techniques Improve • Set up pilot runs to establish process capability. • Control the future state process to ensure that any deviations from target are  Control  corrected before they result in defects. 
  • 10. • Define design goals that are consistent with customer demands and the enterprise  g g p Define strategy. • Measure and identify CTQs (characteristics that are Critical To Quality) product Measure and identify CTQs (characteristics that are Critical To Quality), product  Measure capabilities, production process capability, and risks. • Analyze to develop and design alternatives create a high level design and evaluate Analyze to develop and design alternatives, create a high‐level design and evaluate  Analyze design capability to select the best design. • Design details, optimize the design, and plan for design verification. This phase may  Design require simulations. • Verify the design, set up pilot runs, implement the production process and hand it over  Verify to the process owner(s).
  • 11. Chi‐square test of independence and fits  5 Whys 5 Whys Regression analysis R i l i Histograms Control chart Analysis of variance  Root cause analysis Quality Function Deployment  Correlation  Correlation (QFD) Run charts Cost‐benefit analysis  ANOVA Gauge R&R  SIPOC analysis (Suppliers, Inputs, Process,  SIPOC analysis (Suppliers Inputs Process Pareto chart Outputs, Customers) Axiomatic design  CTQ tree  Pick chart Pick chart Taguchi methods Taguchi methods Business Process Mapping  Design of experiments  Taguchi Loss Function Process capability Failure mode and effects analysis (FMEA) y ( ) Cause & effects diagram TRIZ Enterprise Feedback  General linear model Management (EFM) systems
  • 12. Six Sigma identifies several key roles for its successful implementation. Six Sigma identifies several key roles for its successful implementation • Executive Leadership includes the CEO and other members of top management.  They are responsible for setting up a vision for Six Sigma implementation.  • Champions take responsibility for Six Sigma implementation across the  organization. Champions also act as mentors to Black Belts. • Master Black Belts act as in‐house coaches on Six Sigma Apart from statistical Master Black Belts act as in house coaches on Six Sigma. Apart from statistical  tasks, they ensure consistent application of Six Sigma across various functions  and departments. • Bl k B l Black Belts apply Six Sigma methodology to specific projects. They primarily  l Si Si h d l ifi j Th i il focus on Six Sigma project execution, whereas Champions and Master Black  Belts focus on identifying projects/functions for Six Sigma. • Green Belts are the employees who take up Six Sigma implementation along  with their other job responsibilities, operating under the guidance of Black Belts.
  • 13. Sigma  DPMO % Defective % Yield Short‐Term Long‐Term  Level Cpk Cpk 1 6,91,462 69% 31% 0.33 ‐0.17 2 3,08,538 31% 69% 0.67 0.17 3 66,807 6.7% 93.3% 1.00 0.5 4 6,210 0.62% 99.38% 1.33 0.83 5 233 0.023% 99.977% 1.67 1.17 6 3.4 0.00034% 99.99966% 2.00 1.5 7 0.019 0.0000019% 99.9999981% 2.33 1.83
  • 14. • Lack of originality Lack of originality – Noted quality expert Joseph M. Juran has described Six Sigma  as "a basic version of quality improvement", stating that "there  is nothing new there. It includes what we used to call  i thi th It i l d h t dt ll facilitators. They've adopted more flamboyant terms, like belts  with different colors. • R l f Role of consultants l – The use of "Black Belts" as itinerant change agents has  (controversially) fostered an industry of training and  certification.  – Critics argue there is overselling of Six Sigma by too great a  number of consulting firms, many of which claim expertise in Six  g , y p Sigma when they only have a rudimentary understanding of the  tools and techniques involved.
  • 15. • P t ti l Potential negative effects ti ff t – A Fortune article stated that "of 58 large companies that have announced Six Sigma  programs, 91 percent have trailed the S&P 500 since".  – The summary of the article is that Six Sigma is effective at what it is intended to do,  but that it is "narrowly designed to fix an existing process" and does not help in  "coming up with new products or disruptive technologies.“ g p p p g • Criticism of the 1.5 sigma shift – The statistician Donald J. Wheeler has dismissed the 1.5 sigma shift as "goofy"  because of its arbitrary nature.  b fi bi – The 1.5 sigma shift has also become contentious because it results in stated "sigma  levels" that reflect short‐term rather than long‐term performance: a process that  has long‐term defect levels corresponding to 4.5 sigma performance is, by Six Sigma  convention, described as a "six sigma process.”
  • 16. • Based on arbitrary standards Based on arbitrary standards – While 3.4 defects per million opportunities might work well for certain  products/processes, it might not operate optimally or cost effectively for  others.  – A pacemaker process might need higher standards, for example, whereas a  Safety bin process might not need higher standards.  Safety bin process might not need higher standards. – The basis and justification for choosing 6 (as opposed to 5 or 7, for  example) as the number of standard deviations is not clearly explained.  – In addition, the Six Sigma model assumes that the process data always  conform to the normal distribution. The calculation of defect rates for  situations where the normal distribution model does not apply is not  properly addressed in the current Six Sigma literature.