The general solution of the equation y???16y=0 is y=c1e4x+c2e?4x. Find values of c1 and c2 so that y(0)=4 and y?(0)=?16. c1= c2= Plug these values into the general solution to obtain the unique solution. y= Solution y = c1*e^(4x) + c2*e^(-4x) y(0) = 4 : 4 = c1e^0 + c2e^0 c1 + c2 =4 ---> EQUATION ONE y\' = 4c1e^(4x) - 4c2e^(-4x) y\'(0) = -16 : -16 = 4c1e^0 - 4c2e^0 4c1 - 4c2 = -16 c1 - c2 = -4 ---> EQUATION TWO c1 + c2 = 4 c1 - c2 = -4 Adding : 2c1 = 0 c1 = 0 --> ANSWER c2 = 4 --> ANSWER So, the unique solution is : y = 0e^(4x) + 4e^(-4x) y = 4e^(-4x) ---> ANSWER.