SlideShare a Scribd company logo
1 of 87
Download to read offline
DISPLACEMENT METHOD OF ANALYSIS:
SLOPE DEFLECTION EQUATIONS
!
!
!
!
!
!
!
!
!

General Case
Stiffness Coefficients
Stiffness Coefficients Derivation
Fixed-End Moments
Pin-Supported End Span
Typical Problems
Analysis of Beams
Analysis of Frames: No Sidesway
Analysis of Frames: Sidesway

1
Slope – Deflection Equations
P

i

w

j

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

2
Degrees of Freedom
M

θΑ

B

A

1 DOF: θΑ

C

2 DOF: θΑ , θΒ

L

θΑ

A

P
B
θΒ

3
Stiffness

kAA

kBA

1

B

A
L
k AA =

4 EI
L

k BA =

2 EI
L

4
kBB

kAB

A

B

1
L
k BB =

4 EI
L

k AB =

2 EI
L

5
Fixed-End Forces
Fixed-End Moments: Loads
P
L/2

PL
8

L/2

PL
8

L
P
2

P
2

w
wL2
12
wL
2

L

wL2
12
wL
2

6
General Case

P

i

w

j

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

7
Mij

P

i

j

w

Mji

θi
L

θj

ψ
4 EI
2 EI
θi +
θj = M
ij
L
L

Mji =

2 EI
4 EI
θi +
θj
L
L

θj

θi
(MFij)∆

+
(MFji)∆
settlement = ∆j

+
P
(MFij)Load

M ij = (

settlement = ∆j

w
(MFji)Load

4 EI
2 EI
2 EI
4 EI
)θ i + (
)θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = (
)θ i + (
)θ j + ( M F ji ) ∆ + ( M F ji ) Load 8
L
L
L
L
Equilibrium Equations
i

P

w

j

k

Cj

Cj M

Mji
Mji

jk

Mjk
j

+ ΣM j = 0 : − M ji − M jk + C j = 0

9
Stiffness Coefficients
Mij

i

j

Mji

L

θj

θi

kii =

4 EI
L

k ji =

2 EI
L

×θ i

k jj =

4 EI
L

×θ j

1

kij =

2 EI
L

+
1

10
Matrix Formulation

M ij = (

4 EI
2 EI
)θ i + (
)θ j + ( M F ij )
L
L

M ji = (

2 EI
4 EI
)θ i + (
)θ j + ( M F ji )
L
L

 M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F 

M  = 
 +
(2 EI / L) ( 4 EI / L) θ j   M ji F 

 ji  



 kii
k ji

[k ] = 

kij 
k jj 


Stiffness Matrix
11
P

i

Mij

w

j

Mji

θi

L

[ M ] = [ K ][θ ] + [ FEM ]

θj

ψ

∆j

([ M ] − [ FEM ]) = [ K ][θ ]

[θ ] = [ K ]−1[ M ] − [ FEM ]

Mij

Mji

θj

θi

Fixed-end moment
Stiffness matrix matrix

+
(MFij)∆

(MFji)∆

[D] = [K]-1([Q] - [FEM])
+
(MFij)Load

P

w

(MFji)Load

Displacement
matrix

Force matrix

12
Stiffness Coefficients Derivation: Fixed-End Support
Mj

θi

Mi

Real beam
i

j

L

Mi + M j
L

Mi + M j

L/3

M jL
2 EI

L

Mj
EI

Conjugate beam
Mi
EI

θι

MiL
2 EI

M j L 2L
MiL L
)( ) + (
)( ) = 0
2 EI 3
2 EI 3
M i = 2 M j − − − (1)

+ ΣM 'i = 0 : − (

+ ↑ ΣFy = 0 : θ i − (

M L
MiL
) + ( j ) = 0 − − − (2)
2 EI
2 EI

From (1) and (2);
4 EI
)θ i
L
2 EI
)θ i
Mj =(
L
Mi = (

13
Stiffness Coefficients Derivation: Pinned-End Support
Mi

θi
i

L
Mi
L

2L
3

Mi
EI

θi
+ ΣM ' j = 0 : (

MiL
2 EI

M i L 2L
)( ) − θ i L = 0
2 EI 3
ML
θi = ( i )
3EI

θi = 1 = (

θj

j

Real beam

Mi
L

Conjugate beam

θj
+ ↑ ΣFy = 0 : (

MiL
ML
) − ( i ) +θ j = 0
3EI
2 EI

θj =(
MiL
3EI
) → Mi =
L
3EI

− MiL
)
6 EI
14
Fixed end moment : Point Load
P Real beam

Conjugate beam
A

A

B

B

L

M
EI

M

M

M
EI

M
EI

ML
2 EI

ML
2 EI

P
PL2
16 EI

PL
4 EI

M
EI

PL2
16 EI

PL
ML ML 2 PL2
+ ↑ ΣFy = 0 : −
−
+
= 0, M =
2 EI 2 EI 16 EI
8 15
P
PL
8

PL
8

L
P
2

P
2

P/2

PL/8

P/2

-PL/8

-PL/8
-

-PL/8

-PL/16
-

-PL/16
PL/4
+

-PL/8

− PL − PL PL PL
+
=
+
16
16
4
8

16
Uniform load
w

Real beam

Conjugate beam
A

A

L

B

B
M
EI

M

M

M
EI

M
EI

ML
2 EI

ML
2 EI

w

wL3
24 EI

wL2
8 EI

M
EI

wL3
24 EI

wL2
ML ML 2 wL3
+ ↑ ΣFy = 0 : −
−
+
= 0, M =
2 EI 2 EI 24 EI
12 17
Settlements
Mi = Mj

Real beam

Mj

Conjugate beam

L
Mi + M j

M

L

A

M
EI

B

∆

∆
M
EI

Mi + M j
L
M
EI

ML
2 EI

ML
2 EI

M

M
EI

∆

+ ΣM B = 0 : − ∆ − (

ML L
ML 2 L
)( ) + (
)( ) = 0,
2 EI 3
2 EI 3
M=

6 EI∆
L2

18
Pin-Supported End Span: Simple Case
P

w
B

A

L

2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

θB

+
P

B
w
(FEM)BA

(FEM)AB
A
B
= 0 = (4 EI / L)θ A + (2 EI / L)θ B + ( FEM ) AB

− − − (1)

M BA = 0 = (2 EI / L)θ A + (4 EI / L)θ B + ( FEM ) BA

− − − ( 2)

M AB

2(2) − (1) : 2 M BA = (6 EI / L)θ B + 2( FEM ) BA − ( FEM ) BA

M BA = (3EI / L)θ B + ( FEM ) BA −

( FEM ) BA
2

19
Pin-Supported End Span: With End Couple and Settlement
P

w

MA

B

A

L

∆

2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

P

θB

w

B
(MF BA)load

(MF AB)load
(MF

AB)∆

A
A

B
B

(MF BA) ∆

4 EI
2 EI
F
F
θA +
θ B + ( M AB )load + ( M AB ) ∆ − − − (1)
L
L
2 EI
4 EI
F
F
θA +
θ B + ( M BA )load + ( M BA ) ∆ − − − (2)
M BA =
L
L
2(2) − (1)
3EI
1
1
M
F
F
F
: M BA =
θ B + [( M BA )load − ( M AB )load ] + ( M BA ) ∆ + A
2
2
2
2
L

M AB = M A =

E lim inate θ A by

20
Fixed-End Moments
Fixed-End Moments: Loads
P
PL
8

L/2

L/2

PL
8

L/2

PL 1
PL
3PL
+ ( )[−(−
)] =
8
2
8
16

P
L/2

wL2
12

wL2
12

wL2 1
wL2
wL2
)] =
+ ( )[−( −
12
2
12
8

21
Typical Problem

CB
w

P1

P2
C

A
B

L1

P

PL
8

PL
8

L2
wL2
12

L
0
PL
4 EI
2 EI
M AB =
θA +
θB + 0 + 1 1
8
L1
L1
0 EI
PL
2 EI
4
M BA =
θA +
θB + 0 − 1 1
8
L1
L1
0
2
P2 L2 wL2
4 EI
2 EI
M BC =
θB +
θC + 0 +
+
L2
L2
8
12
0
2
− P2 L2 wL2
2 EI
4 EI
θB +
θC + 0 +
−
M CB =
8
12
L2
L2

w

wL2
12

L

22
CB
w

P1

P2
C

A
B

L1

L2

CB M
BC

MBA

B

M BA =
M BC

PL
2 EI
4 EI
θA +
θB + 0 − 1 1
8
L1
L1

P L wL
4 EI
2 EI
=
θB +
θC + 0 + 2 2 + 2
L2
L2
8
12

2

+ ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B

23
P1
MAB

CB
w

MBA

A
L1

B

P2

MBC
L2

C M
CB

Substitute θB in MAB, MBA, MBC, MCB
0
PL
4 EI
2 EI
θA +
θB + 0 + 1 1
M AB =
L1
L1
8
0 EI
PL
2 EI
4
M BA =
θA +
θB + 0 − 1 1
8
L1
L1
0
2
4 EI
2 EI
P2 L2 wL2
θB +
θC + 0 +
+
M BC =
8
12
L2
L2
0
2
− P2 L2 wL2
2 EI
4 EI
θB +
θC + 0 +
−
M CB =
L2
L2
8
12

24
P1
MAB
A

Ay

CB
w

MBA
B

L1

P2
MCB

MBC
L2

Cy

C

By = ByL + ByR

B

P1
MAB

B

A
Ay

L1

MBA

ByL

P2

MBC
ByR

L2

C
MCB

Cy

25
Example of Beams

26
Example 1
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN

6 kN/m
C

A
4m

4m

B

6m

27
10 kN

6 kN/m
C

A
4m
PL
8

4m

P

B

6m
wL2
30

PL
8

wL2
20

w

FEM
MBA

MBC

[M] = [K][Q] + [FEM]
0

4 EI
2 EI
(10)(8)
θA +
θB +
8
8
8
0
2 EI
4 EI
(10)(8)
M BA =
θA +
θB −
8
8
8
0
4 EI
2 EI
(6)(6 2 )
θB +
θC +
M BC =
6
6
30
0
2 EI
4 EI
(6)(6) 2
θB +
θC −
M CB =
6
6
20
M AB =

B

+ ΣM B = 0 : − M BA − M BC = 0
4 EI 4 EI
(6)(6 2 )
+
=0
(
)θ B − 10 +
8
6
30
2.4
θB =
EI
Substitute θB in the moment equations:

MAB = 10.6 kN•m,

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

MCB = -10 kN•m 28
10 kN
8.8 kN•m
10.6 kN•m

A

6 kN/m
C

8.8 kN•m
4m

B

4m

MAB = 10.6 kN•m,

6m

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

10 kN•m

MCB= -10 kN•m

2m
18 kN

10 kN

6 kN/m
10.6 kN•m

A

B

8.8 kN•m B
10 kN•m
8.8 kN•m

Ay = 5.23 kN

ByL = 4.78 kN

ByR = 5.8 kN

Cy = 12.2 kN

29
10 kN
10.6 kN•m

6 kN/m
C

A
4m

5.23 kN

B

4m

6m

10 kN•m

12.2 kN

4.78 + 5.8 = 10.58 kN

V (kN)

5.8

5.23
+

+

x (m)

- 4.78

-

10.3
M
(kN•m)

-10.6

Deflected shape

-12.2
+
-8.8

2.4
θB =
EI

x (m)
-10
x (m)
30
Example 2
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.
10 kN

6 kN/m
C

A
4m

4m

B

6m

31
10 kN

6 kN/m
C

A
4m
PL
8

P

4m

B

6m
wL2
30

PL
8

w

wL2
20

FEM
10
[M] = [K][Q] + [FEM]
0 4 EI
2 EI
(10)(8)
θA +
θB +
M AB =
− − − (1)
8
8
8 10
2 EI
4 EI
(10)(8)
θA +
θB −
− − − (2)
M BA =
8
8
8
4 EI
2 EI 0 (6)(6 2 )
θB +
θC +
− − − (3)
M BC =
6
6
30
2 EI
4 EI 0 (6)(6) 2
θB +
θC −
− − − (4)
M CB =
6
6
20
6 EI
2(2) − (1) : 2 M BA =
θ B − 30
8
3EI
θ B − 15 − − − (5)
M BA =
8

32
MBA

MBC
B

M BC

4 EI
(6)(6 2 )
=
θB +
6
30

M CB =

2 EI
(6)(6)
θB −
6
20

2

− − − (3)

Substitute θA and θB in (5), (3) and (4):
MBA = - 12.19 kN•m

− − − (4)

3EI
θ B − 15 − − − (5)
8
+ ΣM B = 0 : − M BA − M BC = 0
M BA =

MBC = 12.19 kN•m
MCB = - 8.30 kN•m

3EI 4 EI
(6)(6 2 )
+
= 0 − − − (6 )
(
)θ B − 15 +
8
6
30
7.488
θB =
EI

4 EI
2 EI
θA +
θ B − 10
8
8
− 23.74
θA =
EI

Substitute θ B in (1) : 0 =

33
10 kN
12.19 kN•m
A
4m

4m

B

6 kN/m
C

12.19 kN•m
6m

8.30 kN•m

MBA = - 12.19 kN•m, MBC = 12.19 kN•m, MCB = - 8.30 kN•m
2m
10 kN
A

18 kN
B

B
12.19 kN•m

6 kN/m
C

8.30 kN•m

12.19 kN•m
Ay = 3.48 kN

ByL = 6.52 kN

ByR = 6.65 kN

Cy = 11.35 kN

34
10 kN

6 kN/m
C

A
3.48 kN

4m

4m

B

6m

11.35 kN

6.52 + 6.65 = 13.17 kN

V (kN)

6.65

3.48

x (m)
- 6.52

-11.35

14
M
(kN•m)

x (m)
-12.2

Deflected shape
− 23.74
θA =
EI

θB =

7.49
EI

-8.3
x (m)
35
Example 3
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN

4 kN/m
C

A
2EI
4m

B
4m

3EI
6m

36
10 kN

4 kN/m
C

A
2EI
(10)(8)/8
(10)(8)/8
4m
4m

0
M AB

3EI
B (4)(62)/12
6m

(4)(62)/12

10
4(2 EI )
2(2 EI )
(10)(8)
=
θA +
θB +
− − − (1)
8
8
8 10

M BA =

2(2 EI )
4(2 EI )
(10)(8)
θA +
θB −
8
8
15 8

− − − (2)

2(2) − (1)
3(2 EI )
(3 / 2)(10)(8)
: M BA =
θB −
− − − ( 2a )
2
8
8
12
4(3EI )
(4)(6 2 )
θB +
− − − (3)
M BC =
6
12

37
10 kN

4 kN/m
C

A
3EI
2EI
(3/2)(10)(8)/8 B (4)(62)/12
4m
6m
4m

(4)(62)/12

15
3(2 EI )
(3 / 2)(10)(8)
M BA =
θB −
− − − ( 2a )
8
8
12
2
4(3EI )
(4)(6 )
θB +
− − − (3)
M BC =
6
12
− M BA − M BC = 0 : 2.75EIθ B = −12 + 15 = 3

θ B = 1.091 / EI
3(2 EI ) 1.091
(
) − 15 = −14.18 kN • m
8
EI
4(3EI ) 1.091
(
) − 12 = 14.18 kN • m
=
6
EI
2(3EI )
=
θ B − 12 = −10.91 kN • m
6

M BA =
M BC
M CB

38
10 kN
A

2EI 14.18
4m

4 kN/m
C 10.91
B

14.18

3EI

6m

4m

MBA = - 14.18 kN•m, MBC = 14.18 kN•m, MCB = -10.91 kN•m

10 kN
A

24 kN
B

4 kN/m

14.18 kN•m
140.18 kN•m

10.91 kN•m
C

Ay = 3.23 kN

ByL = 6.73 kN

ByR = 12.55 kN

Cy = 11.46 kN

39
10 kN

4 kN/m
C 10.91 kN•m

A
2EI

3.23 kN
4m

V (kN)

3.23

B

3EI
11.46 kN

6m

4m

6.77 + 12.55 = 19.32 kN
12.55
2.86
+
-6.73

+

x (m)
-11.46

12.91
M
(kN•m)

5.53
+

+
-

-10.91
-14.18

Deflected shape

-

x (m)

θB = 1.091/EI

x (m)

40
Example 4
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN 12 kN•m

4 kN/m
C

A
2EI
4m

B
4m

3EI
6m

41
10 kN 12 kN•m

4 kN/m
C

A

2EI
3EI
2/12 = 12
1.5PL/8 = 15 B wL
wL2/12 = 12
4m
6m
4m

M BA =

3(2 EI )
θ B − 15 − − − (1)
8

M BC =

4(3EI )
θ B + 12 − − − (2)
6

2(3EI )
θ B − 12 − − − (3)
6
12 kN•m
MBA
MBA

M CB =

B MBC MBC
Jo int B : − M BA − M BC − 12 = 0

-3.273/EI
4(2 EI )
2(3EI )
(10)(8)
θA +
θB +
M AB =
8
8
8
7.21
θA = −
EI
3.273
M BA = 0.75 EI ( −
) − 15 = −17.45 kN • m
EI
3.273
M BC = 2 EI (−
) + 12 = 5.45 kN • m
EI
3.273
M CB = EI (−
) − 12 = −15.27 kN • m
EI
0

− (0.75 EI − 15) − (2 EIθ B + 12) − 12 = 0

θB = −

3.273
EI

42
3.273
) − 15 = −17.45 kN • m
EI
3.273
M BC = 2 EI (−
) + 12 = 5.45 kN • m
EI
3.273
M CB = EI ( −
) − 12 = −15.27 kN • m
EI
M BA = 0.75EI ( −

24 kN

10 kN

4 kN/m
A

5.45 kN•m

B

2.82 kN

17.45 kN•m
7.18 kN

C

10.36 kN

10 kN 12 kN•m

2.82 kN

B
17.54 kN

13.64 kN

4 kN/m
C

A

15.27 kN•m

15.27 kN•m

13.64 kN
43
10 kN 12 kN•m

4 kN/m
C 15.27 kN•m

A
2.82 kN
4m

3EI

2EI

7.21
EI
3.273
θB = −
EI

B
17.54 kN
6m

4m

13.64 kN θ A = −

10.36
V (kN)

2.82

+

+

3.41 m

-

-

-7.18
M
(kN•m)

-13.64

11.28

7.98

+

+
-

x (m)
-

-5.45

-15.27

-17.45
Deflected shape
− 7.21
θA =
EI

x (m)

x (m)

θB =

3.273
EI

44
Example 5
Draw the quantitative shear, bending moment diagrams, and qualitative
deflected curve for the beam shown. Support B settles 10 mm, and EI is
constant. Take E = 200 GPa, I = 200x106 mm4.

10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

45
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
6 EI∆
L2

4m

4m

A

P

B

6 EI∆
L2

[FEM]∆
PL
8

6 EI∆
L2

6m

6 EI∆
L2

∆
PL
8

10 mm

2

wL
30

∆
B

w

C
wL2
30

[FEM]load
-12
4(2 EI )
2(2 EI )
6(2 EI )(0.01) (10)(8)
M AB =
θA +
θB +
+
− − − (1)
8
8
82
8
2(2 EI )
4(2 EI )
6(2 EI )(0.01) (10)(8)
M BA =
θA +
θB +
−
− − − ( 2)
8
8
82
8
0
4(3EI )
2(3EI )
6(3EI )(0.01) (6)(6 2 )
M BC =
θB +
θC −
+
− − − (3)
6
6
62
30
0
2(3EI )
4(3EI )
6(3EI )(0.01) (6)(6) 2
M CB =
θB +
θC −
−
− − − (4)
2
6
6
6
30

46
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

4(2 EI )
2(2 EI )
6(2 EI )(0.01) (10)(8)
θA +
θB +
+
− − − (1)
8
8
82
8
2(2 EI )
4(2 EI )
6(2 EI )(0.01) (10)(8)
=
θA +
θB +
−
− − − ( 2)
8
8
82
8

M AB =
M BA

Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN• m2 :
4(2 EI )
2(2 EI )
θA +
θ B + 75 + 10 − − − (1)
8
8
2(2 EI )
4(2 EI )
=
θA +
θ B + 75 − 10 − − − (2)
8
8
16.5

M AB =
M BA

2(2) − (1)
3(2 EI )
: M BA =
θ B + 75 − (75 / 2) − 10 − (10 / 2) − 12 / 2 − − − (2a )
8
2
47
10 kN

12 kN•m

6 kN/m
B
C

A
3EI

2EI
4m

4m

10 mm

6m

MBA = (3/4)(2EI)θB + 16.5
MBC = (4/6)(3EI)θB - 192.8
+ ΣMB = 0: - MBA - MBC = 0
MBA

MBC
B

(3/4 + 2)EIθB + 16.5 - 192.8 = 0

θB = 64.109/ EI
Substitute θB in (1):

θA = -129.06/EI

Substitute θA and θB in (5), (3), (4):
MBA = 64.58 kN•m,
MBC = -64.58 kN•m
MCB = -146.69 kN•m
48
10 kN

12 kN•m

6 kN/m
B

146.69 kN•m

C

A
64.58 kN•m
4m

4m

64.58 kN•m
6m

MBA = 64.58 kN•m,
MBC = -64.58 kN•m
2m

MCB = -146.69 kN•m
12 kN•m

18 kN

10 kN

A

64.58 kN•m
B

146.69 kN•m
B

Ay = 11.57 kN

ByL = -1.57 kN

6 kN/m

64.58 kN•m

ByR = -29.21 kN

C
Cy = 47.21 kN

49
10 kN

12 kN•m

6 kN/m
C

A
2EI

11.57 kN

3EI

B

4m

47.21 kN

6m

4m

θA = -129.06/EI
θB = 64.109/ EI

1.57 + 29.21 = 30.78 kN
11.57
+

V (kN)

1.57

x (m)
-

-29.21

M
(kN•m)

12

58.29

146.69 kN•m

-47.21

64.58

+

x (m)
-146.69

Deflected shape

x (m)
θA = -129.06/EI

10 mm

θB = 64.109/ EI

50
Example 6
For the beam shown, support A settles 10 mm downward, use the slope-deflection
method to
(a)Determine all the slopes at supports
(b)Determine all the reactions at supports
(c)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape. (3 points)
Take E= 200 GPa, I = 50(106) mm4.

6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

51
6 kN/m
B

C

2EI
3m
6(32 )
= 4.5
12
6(1.5 × 200 × 50)(0.01)
32
= 100 kN • m

12 kN•m
A

1.5EI

10 mm

3m
6 kN/m
4.5
C
C

MFw

A
0.01 m

MF∆

100 kN • m

A

M CB =

4(2 EI )
θC
3

M CA =

4(1.5EI )
2(1.5 EI )
θC +
θ A + 4.5 + 100 − − − (2)
3
3

12

M AC =

− − − (1)

2(1.5EI )
4(1.5 EI )
θC +
θ A − 4.5 + 100 − − − (3)
3
3

2(2) − (2)
3(1.5EI )
3(4.5) 100 12
: M CA =
θC +
+
+
3
2
2
2
2

− − − ( 2a )
52
6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

4(2 EI )
θ C − − − (1)
3
3(1.5 EI )
3(4.5) 100 12
=
θC +
+
+
3
2
2
2

M CB =
M CA

MCB

MCA

− − − ( 2a )

• Equilibrium equation:
M CB + M CA = 0

(8 + 4.5) EI
3(4.5) 100 12
θC +
+
+ =0
C
3
2
2
2
− 15.06
θC =
= −0.0015 rad
EI
2(1.5 EI ) − 15.06 4(1.5 EI )
Substitute θC in eq.(3)
12 =
(
)+
θ A − 4.5 + 100 − − − (3)
EI
3
3
− 34.22
θA =
= −0.0034 rad
EI

53
6 kN/m
B

C

2EI

12 kN•m

1.5EI

3m

A

10 mm

3m

− 15.06
− 34.22
= −0.0015 rad θ A =
= −0.0034 rad
EI
EI
2(2 EI )
2( 2 EI ) − 15.06
=
θC =
(
) = −20.08 kN • m
3
3
EI
4(2 EI )
4(2 EI ) − 15.06
=
θC =
(
) = −40.16 kN • m
3
3
EI

θC =
M BC
M CB

20.08 kN•m
B
20.08 kN

C

40.16 kN•m

40.16 + 20.08
= 20.08 kN
3
18 kN

6 kN/m
40.16 kN•m

C
26.39 kN

12 kN•m

A

8.39 kN

54
12 kN•m

6 kN/m

θ C = −0.0015 rad

B

θ A = −0.0034 rad

C

2EI
3m
B

40.16 kN•m

C
20.08 kN
40.16 kN•m

V (kN)

6 kN/m

C
26.39 kN
26.39

12 kN•m

A

-

Deflected shape

-20.08
20.08

12
-40.16

θ C = 0.0015 rad

8.39 kN
8.39
x (m)

+
M (kN•m)

10 mm

3m

20.08 kN•m
20.08 kN

A

1.5EI

x (m)

x (m)
θ A = 0.0034 rad

55
Example 7

For the beam shown, support A settles 10 mm downward, use the
slope-deflection method to
(a)Determine all the slopes at supports
(b)Determine all the reactions at supports
(c)Draw its quantitative shear, bending moment diagrams, and qualitative
deflected shape.
Take E= 200 GPa, I = 50(106) mm4.

6 kN/m
B
2EI
3m

C

1.5EI

12 kN•m
A

10 mm

3m

56
12 kN•m

6 kN/m
B

C

2EI
3m

C
B

∆C

6( 2 EI )∆ C 4 EI∆ C
=
2
3
3

M BC
M CB
M CA =

2(2 EI )
4 EI
=
θC −
∆C
3
3
4(2 EI )
4 EI
=
θC −
∆C
3
3

A

1.5EI

10 mm

3m
EI∆ C

C
∆C

4 EI∆ C
3

A

6 kN/m
4.5

100
− − − (1)

C

A

C

− − − (2)

0.01 m

A

6(1.5 EI ) ∆ C
= EI∆ C
2
3

6(32 )
= 4.5
12
6(1.5 × 200 × 50)(0.01)
32
= 100 kN • m

4(1.5 EI )
2(1.5EI )
θC +
θ A + EI∆ C + 4.5 + 100 − −(3)
3
3

12
2(1.5 EI )
4(1.5 EI )
M AC =
θC +
θ A + EI∆ C − 4.5 + 100 − −(4)
3
3
2(3) − (4)
3(1.5 EI )
EI
3(4.5) 100 12
: M CA =
θ C + ∆C +
+
+
− − − (3a)
2
3
2
2
2
2

57
12 kN•m

6 kN/m
B

C

2EI
3m

A

1.5EI
3m

18 kN

• Equilibrium equation:

6 kN/m
MBC

B
By

C
(C y ) CB = −(

MCB

MCA

C

M BC + M CB
(C y ) CA
)
3
MCB
MCA

(Cy)CB

10 mm

C

12 kN•m

A

Ay
M + 12 + 18(1.5) M CA + 39
= CA
=
3
3
ΣM C = 0 : M CB + M CA = 0 − − − (1*)

ΣC y = 0 : (C y ) CB + (C y ) CA = 0 − − − (2*)

(Cy)CA

Substitute in (1*) 4.167 EIθ C − 0.8333EI∆ C = −62.15 − − − (5)
Substitute in ( 2*) − 2.5 EIθ C + 3.167 EI∆ C = −101.75 − − − (6)
From (5) and (6) θ C = −25.51 / EI = −0.00255 rad

∆ C = −52.27 / EI = −5.227 mm

58
6 kN/m
B
2EI

C

3m

1.5EI

12 kN•m
A

10 mm

3m

• Solve equation

θC =

− 25.51
= −0.00255 rad
EI

Substitute θC and ∆C in (1), (2) and (3a)
M BC = 35.68 kN • m

− 52.27
∆C =
= −5.227 mm
EI

M CB = 1.67 kN • m

Substitute θC and ∆C in (4)

θA =

M CA = −1.67 kN • m

− 2.86
= −0.000286 rad
EI

6 kN/m
35.68 kN•m

B

B y = 18 − 5.55
= 12.45 kN

2EI
3m

C

1.5EI
3m

12 kN•m
A

18(4.5) − 12 − 35.68
6
= 5.55 kN

Ay =

59
6 kN/m
35.68 kN•m

B

C

2EI

12.45 kN

3m

12 kN•m
A

1.5EI

10 mm
5.55 kN

3m

V (kN) 12.45
θ C = −0.00255 rad
+

0.925 m
x (m)

∆ C = −5.227 mm

-5.55

θ A = −0.000286 rad
M (kN•m)

1.67

14.57
+

12

-

x (m)

-35.68
Deflected shape

∆ C = 5.227 mm

θ C = 0.00255 rad

x (m)

θ A = 0.000286 rad

60
Example of Frame: No Sidesway

61
Example 6
For the frame shown, use the slope-deflection method to
(a) Determine the end moments of each member and reactions at supports
(b) Draw the quantitative bending moment diagram, and also draw the
qualitative deflected shape of the entire frame.
10 kN

12 kN/m
C

3m

B
3EI

40 kN
3m

2EI

A
1m

6m

62
10 kN

36/2 = 18

12 kN/m

• Equilibrium equations

C
B

3m
40 kN
3m

A
1m

2EI 2
36
(wL /12 ) =36
PL/8 = 30
3EI
PL/8 = 30
6m

• Slope-Deflection Equations
M AB =

M BA =
M BC

10
MBC
MBA
10 − M BA − M BC = 0 − − − (1*)

Substitute (2) and (3) in (1*)
10 − 3EIθ B + 30 − 54 = 0

− 14 − 4.667
=
(3EI )
EI

2(3EI )
θ B + 30 − − − (1)
6

θB =

4(3EI )
θ B − 30 − − − (2)
6

Substitute θ B =

3( 2 EI )
θ B + 36 + 18 − − − (3)
=
6

− 4.667
in (1) to (3)
EI

M AB = 25.33 kN • m
M BA = −39.33 kN • m
M BC = 49.33 kN • m

63
10 kN

12 kN/m

20.58

C
3m

B

49.33
39.33
3EI

40 kN
3m

25.33

A
1m

2EI

10

-39.3

-49.33

MAB = 25.33 kN•m

27.7

MBA = -39.33 kN•m
-25.33

MBC = 49.33 kN•m

6m

Bending moment diagram
12 kN/m

B
B

C

θB

49.33
39.33

27.78 kN

θB

θB = -4.667/EI

40 kN
A

17.67 kN
25.33

Deflected curve

64
Example 7
Draw the quantitative shear, bending moment diagrams and qualitative
deflected curve for the frame shown. E = 200 GPa.
25 kN

5 kN/m

B
240(106) mm4
5m

180(106)

C

120(106) mm4

60(106) mm4

A

E

D
3m

3m

4m

65
25 kN
PL/8 = 18.75
18.75
B
240(106) mm4 C
5m

5 kN/m
180(106)
6.667+ 3.333

120(106) mm4

(wL2/12 ) = 6.667

60(106) mm4

A

E

D
3m

3m

0
4(2 EI )
2(2 EI )
M AB =
θA +
θB
5
5
0
2(2 EI )
4(2 EI )
M BA =
θA +
θB
5
5
4( 4 EI )
2(4 EI )
M BC =
θB +
θ C + 18.75
6
6
2(4 EI )
4(4 EI )
M CB =
θB +
θ C − 18.75
6
6
3( EI )
θC
M CD =
5
3(3EI )
M CE =
θ C + 10
4

4m
M BA + M BC = 0
8 16
8
( + ) EIθ B + ( ) EIθ C = −18.75 − − − (1)
5 6
6
M CB + M CD + M CE = 0
16 3 9
8
( ) EIθ B + ( + + ) EIθ C = 8.75 − − − (2)
6 5 4
6
From (1) and (2) : θ B =

− 5.29
EI

θC =

2.86
EI
66
Substitute θB = -1.11/EI, θc = -20.59/EI below
4(2 EI ) 0 2(2 EI )
M AB =
θA +
θB
5
5
0
2(2 EI )
4(2 EI )
M BA =
θA +
θB
5
5
4( 4 EI )
2(4 EI )
M BC =
θB +
θ C + 18.75
6
6
2(4 EI )
4(4 EI )
θB +
θ C − 18.75
M CB =
6
6
3( EI )
θC
M CD =
5
3(3EI )
θ C + 10
M CE =
4

MAB = −4.23 kN•m
MBA = −8.46 kN•m
MBC = 8.46 kN•m
MCB = −18.18 kN•m
MCD = 1.72 kN•m
MCE = 16.44 kN•m

67
MAB = -4.23 kN•m, MBA = -8.46 kN•m, MBC = 8.46 kN•m, MCB = -18.18 kN•m,
MCD = 1.72 kN•m, MCE = 16.44 kN•m
20 kN

25 kN

16.44 kN•m
3m
3m C
C
2.54 kN B
2.54 kN 2.54-0.34
=2.2 kN
8.46 kN•m
18.18 kN•m
(20(2)+16.44)/4
(25(3)+8.46-18.18)/6
14.12 kN
= 14.11 kN
= 10.88 kN
10.88 kN
B

8.46 kN•m
(8.46 + 4.23)/5
= 2.54 kN

5m

A

E 2.2 kN
5.89 kN

14.12+14.11=28.23 kN
1.72 kN•m
(1.72)/5 = 0.34 kN
B

5m
2.54 kN

A

0.34 kN

4.23 kN•m
10.88 kN

28.23 kN

68
24.18
1.29 m 2.33 m

14.11

10.88

1.18 m

+

+

-2.54

2.82 m

-

-14.12

-

-2.54

+

0.78 m

-

-8.46

-5.89 -8.46 +

-

-18.18

0.34

4.23

Shear diagram
0.78 m

+

3.46

1.72

+

-

1.18 m

-16.44

1.67m
Moment diagram

1.29 m 2.33 m

θB = −5.29/EI

1.18 m

θC = 2.86/EI
1.67m
Deflected curve

69
Example of Frames: Sidesway

70
Example 8
Determine the moments at each joint of the frame and draw the quantitative
bending moment diagrams and qualitative deflected curve . The joints at A and
D are fixed and joint C is assumed pin-connected. EI is constant for each member
3m
1m

B
10 kN

C

3m
A

D

71
• Overview
• Unknowns

C

B
1m
10 kN

θB and ∆
• Boundary Conditions

3m
MAB
Ax
3m

A
Ay

θA = θD = 0

MDC
D D

• Equilibrium Conditions

x

- Joint B

Dy

B
MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*)

72
∆

∆
(0.375EI∆)∆

1m

B
10 kN
(5.625)load

MAB

C
(0.375EI∆)∆

10 kN

C

B

4m

4m

3m
(1.875)load

A

(0.375EI∆)∆

(1/2)(0.375EI∆)∆
(0.375EI∆)∆

A

D

Ax

D

Dx

3m

MBA

• Slope-Deflection Equations
5.625 0.375EI∆
2( EI )
10(3)(12 ) 6 EI∆
M AB =
θB +
+ 2
− − − (1)
4
42
4
5.625
0.375EI∆
2
4( EI )
10(3 )(1) 6 EI∆
M BA =
θB −
+ 2
− − − (2)
4
42
4
M BC =

3( EI )
θB
3

− − − (3)

1
M DC = 0.375EI∆ − 0.375EI∆ = 0.1875EI∆ − − − (4)
2

MDC

+ ΣM B = 0 :
( M AB + M BA )
4
Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5)
Ax =

+ ΣM C = 0 :
Dx =

M DC
= 0.0468EI∆ − − − (6)
4

73
Equilibrium Conditions:
M BA + M BC = 0 − − − (1*)

10 − Ax − Dx = 0 − − − (2*)

• Solve equation
Substitute (2) and (3) in (1*)
2EI θB + 0.375EI ∆ = 5.625 ----(7)

Slope-Deflection Equations:
Substitute (5) and (6) in (2*)
2( EI )
M AB =
θ B + 5.625 + 0.375EI∆ − − − (1)
− 0.375EIθ B − 0.235EI∆ = −8.437 − − − (8)
4
4( EI )
M BA =
θ B − 5.625 + 0.375EI∆ − − − (2) From (7) and (8) can solve;
4
− 5.6
44.8
3( EI )
θB =
∆=
M BC =
θ B − − − (3)
EI
EI
3
− 5.6
44.8
M DC = 0.1875EI∆ − − − (4)
Substituteθ B =
and ∆ =
in (1)to (6)
EI
EI
Horizontal reaction at supports:
Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5)
Dx = 0.0468EI∆ − − − (6)

MAB = 15.88 kN•m
MBA = 5.6 kN•m
MBC = -5.6 kN•m
MDC = 8.42 kN•m
Ax = 7.9 kN
Dx = 2.1 kN

74
C

B
1m
10 kN

MAB = 15.88 kN•m, MBA = 5.6 kN•m,
MBC = -5.6 kN•m, MDC = 8.42 kN•m,
Ax = 7.9 kN, Dx = 2.1 kN,

5.6

3m
8.42
D 2.1 kN

15.88
7.9 kN
3m

A

5.6

C

B

B

7.8

A

∆ = 44.8/EI
C

∆ = 44.8/EI

5.6

15.88

D

8.42

Bending moment diagram

A

θB = -5.6/EI

D
Deflected curve

75
Example 9
From the frame shown use the slope-deflection method to:
(a) Determine the end moments of each member and reactions at supports
(b) Draw the quantitative bending moment diagram, and also draw the
qualitative deflected shape of the entire frame.
B

C
2 EI

10 kN
2m

pin

4m

2.5 EI

EI

A

D
4m

3m

76
• Overview
B ∆ 2EI
B´

10 kN
2m
A

EI
MAB
Ax
Ay

4m

∆ CD

C

C´
∆BC
∆

2.5EI

• Unknowns

θB and ∆
MDC

• Boundary Conditions

Dx

D
3m

4m

θA = θD = 0

Dy

• Equilibrium Conditions
- Joint B
B
MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*)

77
• Slope-Deflection Equation
C´
B ∆
∆ CD
∆BC
5
B´ 2EI C ∆
10 kN
36.87°
4m
2.5EI
EI
2m
PL/8 = 5
D
A
4m
3m
0.375EI∆
B
∆´

B´

= ∆ / cos 36.87° = 1.25 ∆
C´
∆CD
∆BC = ∆ tan 36.87° = 0.75 ∆
36.87°
∆

C

2( EI )
θ B + 0.375EI∆ + 5 − − − (1)
4
(6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆
4( EI )
M BA =
θ B + 0.375EI∆ − 5 − − − (2)
C´
4
∆CD= 1.25 ∆
3(2 EI )
C
M BC =
θ B − 0.2813EI∆ − − − (3)
4
M AB =

M DC = 0.375EI∆ − − − (4)

A

D
0.75EI∆

6EI∆/(4)

2=

0.375EI∆

0.5625EI∆
B

B´
(1/2) 0.5625EI∆

C´
C

(1/2) 0.75EI∆

(6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆
∆BC= 0.75 ∆
78
• Horizontal reactions
B

2 EI

pin
C

10 kN
2m

4m

2.5 EI

EI

A

D
4m

3m
MBC

MBA

B

B
10 kN

C
MBC

MBC

4

4
C

A

Ax = (MBA+ MAB-20)/4 -----(5)
MAB
D

Dx= (MDC-(3/4)MBC)/4 ---(6)
MDC

MBC/4

79
Equilibrium Conditions:
M BA + M BC = 0 − − − (1*)

10 − Ax − Dx = 0 − − − (2*)
Slope-Deflection Equation:

• Solve equations
Substitute (2) and (3) in (1*)
2.5EIθ B + 0.0938 EI∆ − 5 = 0 − − − (7)

Substitute (5) and (6) in (2*)

2( EI )
6 EI∆
0.0938EIθ B + 0.334EI∆ − 5 = 0 − − − (8)
θB + 5 + 2
− − − (1)
4
4
From (7) and (8) can solve;
6 EI∆
4( EI )
M BA =
θB −5 + 2
− − − (2)
4
4
1.45
− 14.56
θB =
∆=
3(2 EI )
3(2 EI )(0.75∆)
EI
EI
M BC =
θB −
− − − (3)
2
4
4
1.45
− 14.56
3(2.5EI )(1.25∆)
Substituteθ B =
and ∆ =
in (1)to (6)
M DC =
− − − (4)
EI
EI
52
Horizontal reactions at supports:
MAB = 15.88 kN•m
MBA = 5.6 kN•m
( M BA + M AB − 20)
− − − (5)
Ax =
MBC = -5.6 kN•m
4
MDC = 8.42 kN•m
3
Ax = 7.9 kN
M DC − M BC
4
Dx =
− − − (6)
Dx = 2.1 kN
4
80
M AB =
1.91

1.91
B
2 EI

A

pin
C

10 kN
2m

MAB = 11.19 kN•m
MBA = 1.91 kN•m
MBC = -1.91 kN•m

2.5 EI
EI
11.19 kN•m
8.27 kN
0.478 kN
4m

5.46

4m
1.73

D

MDC = 5.46 kN•m
Ax = 8.28 kN•m
Dx = 1.72 kN•m

0.478 kN

3m

∆

∆
B
1.91

1.91

B

C

C

5.35
A

θB=1.45/EI

θB=1.45/EI
11.19

5.46
D

Bending-moment diagram

A

D
Deflected shape

81
Example 10
From the frame shown use the moment distribution method to:
(a) Determine all the reactions at supports, and also
(b) Draw its quantitative shear and bending moment diagrams, and
qualitative deflected curve.
3m

20 kN/m
B

pin
C

3EI
3m

2EI
4m

4EI
A
D

82
• Overview
• Unknowns

∆

∆

3m

20 kN/m

B
3EI
2EI

θB and ∆

C

• Boundary Conditions
4EI

θA = θD = 0

4m

• Equilibrium Conditions
- Joint B

A
[FEM]load

D

B

3m

MBA

MBC

ΣM B = 0 : M BA + M BC = 0 − − − (1*)

- Entire Frame
+

→ ΣFx = 0 : 60 − Ax − Dx = 0 − − − (2*)

83
• Slope-Deflection Equation
B

20 kN/m

B

3m

6(2EI∆)/(3)
= 1.333EI∆

2

C

3EI
= 15

wL2/12
2EI

4EI

6(2EI∆)/(3) 2
= 1.333EI∆
A

A
[FEM]load

D

0

M BA

1.5EI∆

4m

wL2/12 = 15

M AB

∆
C

∆

3m

(1/2)(1.5EI∆)

6(4EI∆)/(4) 2
= 1.5EI∆

[FEM]∆

D
4(2 EI )
2(2 EI )
=
θA +
θ B + 15 + 1.333EI∆ = 1.333EIθ B + 15 + 1.333EI∆ ----------(1)
3
3
0
2( 2 EI )
4(2 EI )
=
θA +
θ B − 15 + 1.333EI∆ = 2.667 EIθ B − 15 + 1.333EI∆ ----------(2)
3
3
3(3EI )
θ B = 3EIθ B ----------(3)
3
0
3( 4 EI )
=
θ D + 0.75 EI∆ = 0.75 EI∆ ----------(4)
4

M BC =
M DC

84
• Horizontal reactions
MAB
C
B
1.5 m

+ ΣM B = 0 :

60 kN

4m
1.5 m

M BA + M AB + 60(1.5)
3
Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5)
Ax =

A
Ax
MBA

D

Dx
MDC

+ ΣMC = 0:
Dx =

M DC
= 0.188EI∆ − − − (6)
4

85
Equilibrium Conditions
M BA + M BC = 0 − − − (1*)

60 − Ax − Dx = 0 − − − (2*)
Equation of moment
M AB = 1.333EIθ B + 15 + 1.333EI∆ − − − (1)
M BA = 2.667 EIθ B − 15 + 1.333EI∆ − − − (2)
M BC = 3EIθ B

− − − (3)

M DC = 0.75 EI∆ − − − ( 4)

Horizontal reaction at support
Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5)

Dx = 0.188EI∆ − − − (6)

• Solve equation
Substitute (2) and (3) in (1*)
5.667 EIθ B + 1.333EI∆ = 15 − − − (7)

Substitute (5) and (6) in (2*)
− 1.333EIθ B − 1.077 EI∆ = −30 − − − (8)

From (7) and (8), solve equations;

θB =

− 5.51
EI

∆=

34.67
EI

34.67
− 5.51
and ∆ =
EI
EI
M AB = 53.87 kN • m
M BA = 16.52 kN • m
M BC = −16.52 kN • m

Substituteθ B =

in (1)to (6)

M DC = 26.0 kN • m

Ax = 53.48 kN
Dx = 6.52 kN

86
B

3m

20 kN/m

C
3m

M AB = 53.87 kN • m
M BA = 16.52 kN • m
M BC = −16.52 kN • m

53.87 kN•m 4m

M DC = 26.0 kN • m

16.52 kN•m

Ax = 53.48 kN

53.48 kN
A

D

5.55 kN

26 kN•m

Dx = 6.52 kN

6.52 kN

5.55 kN
∆

16.52

C

B

∆

B

16.52

C

53.87
A
Moment diagram

26.
D

A
Deflected shape
D

87

More Related Content

What's hot

Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525KAMARAN SHEKHA
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concreteguest00bb06
 
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.IMALONE1
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
Module 4_spring 2020.pdf
Module 4_spring 2020.pdfModule 4_spring 2020.pdf
Module 4_spring 2020.pdfMohammad Javed
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodkasirekha
 
Instructor solution manual for chapter 10 indeterminate structures "structur...
Instructor solution manual for chapter 10  indeterminate structures "structur...Instructor solution manual for chapter 10  indeterminate structures "structur...
Instructor solution manual for chapter 10 indeterminate structures "structur...Omar Daher
 
Flexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisFlexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisMahdi Damghani
 
Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Muhammad Irfan
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concreteJo Gijbels
 
Lecture 2( Moment distribution method with sway)
Lecture  2( Moment distribution method with sway)Lecture  2( Moment distribution method with sway)
Lecture 2( Moment distribution method with sway)Iqbal Hafeez
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Muhammad Irfan
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Muhammad Irfan
 

What's hot (20)

Stiffness matrix method for beam , examples ce525
Stiffness  matrix method for beam , examples   ce525Stiffness  matrix method for beam , examples   ce525
Stiffness matrix method for beam , examples ce525
 
Singly Reinforce Concrete
Singly Reinforce ConcreteSingly Reinforce Concrete
Singly Reinforce Concrete
 
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]
Geotechnical Engineering-I [Lec #4: Phase Relationships - Problems]
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Pile settlement-ps
Pile settlement-psPile settlement-ps
Pile settlement-ps
 
Slope deflection method
Slope deflection methodSlope deflection method
Slope deflection method
 
structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.structural analysis CE engg. solved ex.
structural analysis CE engg. solved ex.
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Module 4_spring 2020.pdf
Module 4_spring 2020.pdfModule 4_spring 2020.pdf
Module 4_spring 2020.pdf
 
Analysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness methodAnalysis of sway type portal frame using direct stiffness method
Analysis of sway type portal frame using direct stiffness method
 
Instructor solution manual for chapter 10 indeterminate structures "structur...
Instructor solution manual for chapter 10  indeterminate structures "structur...Instructor solution manual for chapter 10  indeterminate structures "structur...
Instructor solution manual for chapter 10 indeterminate structures "structur...
 
Flexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysisFlexibility Energy Method in structural analysis
Flexibility Energy Method in structural analysis
 
Geotechnical vertical stress
Geotechnical vertical stressGeotechnical vertical stress
Geotechnical vertical stress
 
Lateral Earth pressure
Lateral Earth pressureLateral Earth pressure
Lateral Earth pressure
 
stress distribution in soils
stress distribution in soilsstress distribution in soils
stress distribution in soils
 
Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]Geotechnical Engineering-I [Lec #15: Field Compaction]
Geotechnical Engineering-I [Lec #15: Field Compaction]
 
Eurocode 2 design of composite concrete
Eurocode 2 design of composite concreteEurocode 2 design of composite concrete
Eurocode 2 design of composite concrete
 
Lecture 2( Moment distribution method with sway)
Lecture  2( Moment distribution method with sway)Lecture  2( Moment distribution method with sway)
Lecture 2( Moment distribution method with sway)
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 

Similar to easy step on how to solve slope deflection

Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineeringAshu Kushwaha
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2Salama Alsalama
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodnawalesantosh35
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2Jesthiger Cohil
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)Prionath Roy
 
4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendiIgorTherik
 
structural analysis 2.pdf
structural analysis 2.pdfstructural analysis 2.pdf
structural analysis 2.pdfAuRevoir4
 
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...crush424
 
Slope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringNagma Modi
 
Analysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodAnalysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodnawalesantosh35
 
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptA(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptaymannasser12
 
Struc lec. no. 1
Struc lec. no. 1Struc lec. no. 1
Struc lec. no. 1LovelyRomio
 

Similar to easy step on how to solve slope deflection (20)

Slope deflection equation structure analysis - civil engineering
Slope deflection equation   structure analysis - civil engineeringSlope deflection equation   structure analysis - civil engineering
Slope deflection equation structure analysis - civil engineering
 
تحليل انشائي2
تحليل انشائي2تحليل انشائي2
تحليل انشائي2
 
Analysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection methodAnalysis of indeterminate beam by slopeand deflection method
Analysis of indeterminate beam by slopeand deflection method
 
Solución al ejercicio 2
Solución al ejercicio 2Solución al ejercicio 2
Solución al ejercicio 2
 
Ejercicio dos
Ejercicio dosEjercicio dos
Ejercicio dos
 
3 formulario para_vigas_y_porticos
3 formulario para_vigas_y_porticos3 formulario para_vigas_y_porticos
3 formulario para_vigas_y_porticos
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
Influence linebeams (ce 311)
Influence linebeams (ce 311)Influence linebeams (ce 311)
Influence linebeams (ce 311)
 
4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi4 portal-dan-pelengkung-tiga-sendi
4 portal-dan-pelengkung-tiga-sendi
 
structural analysis 2.pdf
structural analysis 2.pdfstructural analysis 2.pdf
structural analysis 2.pdf
 
Moment Distribution Method.ppt
Moment Distribution Method.pptMoment Distribution Method.ppt
Moment Distribution Method.ppt
 
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
Solutions manual for fitzgerald and kingsleys electric machinery 7th edition ...
 
Slope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineeringSlope deflection method for structure analysis in civil engineering
Slope deflection method for structure analysis in civil engineering
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
Shi20396 ch04
Shi20396 ch04Shi20396 ch04
Shi20396 ch04
 
aaaa
aaaaaaaa
aaaa
 
perhitungan waffle slab
perhitungan waffle slab  perhitungan waffle slab
perhitungan waffle slab
 
Analysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection methodAnalysis of non sway frame portal frames by slopeand deflection method
Analysis of non sway frame portal frames by slopeand deflection method
 
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.pptA(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
A(1)gggggggggggggghhhhhhhhhhhhhhhhjjjjjjjjjjj.ppt
 
Struc lec. no. 1
Struc lec. no. 1Struc lec. no. 1
Struc lec. no. 1
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

easy step on how to solve slope deflection

  • 1. DISPLACEMENT METHOD OF ANALYSIS: SLOPE DEFLECTION EQUATIONS ! ! ! ! ! ! ! ! ! General Case Stiffness Coefficients Stiffness Coefficients Derivation Fixed-End Moments Pin-Supported End Span Typical Problems Analysis of Beams Analysis of Frames: No Sidesway Analysis of Frames: Sidesway 1
  • 2. Slope – Deflection Equations P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 2
  • 3. Degrees of Freedom M θΑ B A 1 DOF: θΑ C 2 DOF: θΑ , θΒ L θΑ A P B θΒ 3
  • 4. Stiffness kAA kBA 1 B A L k AA = 4 EI L k BA = 2 EI L 4
  • 5. kBB kAB A B 1 L k BB = 4 EI L k AB = 2 EI L 5
  • 6. Fixed-End Forces Fixed-End Moments: Loads P L/2 PL 8 L/2 PL 8 L P 2 P 2 w wL2 12 wL 2 L wL2 12 wL 2 6
  • 7. General Case P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 7
  • 8. Mij P i j w Mji θi L θj ψ 4 EI 2 EI θi + θj = M ij L L Mji = 2 EI 4 EI θi + θj L L θj θi (MFij)∆ + (MFji)∆ settlement = ∆j + P (MFij)Load M ij = ( settlement = ∆j w (MFji)Load 4 EI 2 EI 2 EI 4 EI )θ i + ( )θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = ( )θ i + ( )θ j + ( M F ji ) ∆ + ( M F ji ) Load 8 L L L L
  • 9. Equilibrium Equations i P w j k Cj Cj M Mji Mji jk Mjk j + ΣM j = 0 : − M ji − M jk + C j = 0 9
  • 10. Stiffness Coefficients Mij i j Mji L θj θi kii = 4 EI L k ji = 2 EI L ×θ i k jj = 4 EI L ×θ j 1 kij = 2 EI L + 1 10
  • 11. Matrix Formulation M ij = ( 4 EI 2 EI )θ i + ( )θ j + ( M F ij ) L L M ji = ( 2 EI 4 EI )θ i + ( )θ j + ( M F ji ) L L  M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F   M  =   + (2 EI / L) ( 4 EI / L) θ j   M ji F    ji      kii k ji [k ] =  kij  k jj   Stiffness Matrix 11
  • 12. P i Mij w j Mji θi L [ M ] = [ K ][θ ] + [ FEM ] θj ψ ∆j ([ M ] − [ FEM ]) = [ K ][θ ] [θ ] = [ K ]−1[ M ] − [ FEM ] Mij Mji θj θi Fixed-end moment Stiffness matrix matrix + (MFij)∆ (MFji)∆ [D] = [K]-1([Q] - [FEM]) + (MFij)Load P w (MFji)Load Displacement matrix Force matrix 12
  • 13. Stiffness Coefficients Derivation: Fixed-End Support Mj θi Mi Real beam i j L Mi + M j L Mi + M j L/3 M jL 2 EI L Mj EI Conjugate beam Mi EI θι MiL 2 EI M j L 2L MiL L )( ) + ( )( ) = 0 2 EI 3 2 EI 3 M i = 2 M j − − − (1) + ΣM 'i = 0 : − ( + ↑ ΣFy = 0 : θ i − ( M L MiL ) + ( j ) = 0 − − − (2) 2 EI 2 EI From (1) and (2); 4 EI )θ i L 2 EI )θ i Mj =( L Mi = ( 13
  • 14. Stiffness Coefficients Derivation: Pinned-End Support Mi θi i L Mi L 2L 3 Mi EI θi + ΣM ' j = 0 : ( MiL 2 EI M i L 2L )( ) − θ i L = 0 2 EI 3 ML θi = ( i ) 3EI θi = 1 = ( θj j Real beam Mi L Conjugate beam θj + ↑ ΣFy = 0 : ( MiL ML ) − ( i ) +θ j = 0 3EI 2 EI θj =( MiL 3EI ) → Mi = L 3EI − MiL ) 6 EI 14
  • 15. Fixed end moment : Point Load P Real beam Conjugate beam A A B B L M EI M M M EI M EI ML 2 EI ML 2 EI P PL2 16 EI PL 4 EI M EI PL2 16 EI PL ML ML 2 PL2 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 16 EI 8 15
  • 17. Uniform load w Real beam Conjugate beam A A L B B M EI M M M EI M EI ML 2 EI ML 2 EI w wL3 24 EI wL2 8 EI M EI wL3 24 EI wL2 ML ML 2 wL3 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 24 EI 12 17
  • 18. Settlements Mi = Mj Real beam Mj Conjugate beam L Mi + M j M L A M EI B ∆ ∆ M EI Mi + M j L M EI ML 2 EI ML 2 EI M M EI ∆ + ΣM B = 0 : − ∆ − ( ML L ML 2 L )( ) + ( )( ) = 0, 2 EI 3 2 EI 3 M= 6 EI∆ L2 18
  • 19. Pin-Supported End Span: Simple Case P w B A L 2 EI 4 EI θA + θB L L 4 EI 2 EI θA + θB L L θA A θB + P B w (FEM)BA (FEM)AB A B = 0 = (4 EI / L)θ A + (2 EI / L)θ B + ( FEM ) AB − − − (1) M BA = 0 = (2 EI / L)θ A + (4 EI / L)θ B + ( FEM ) BA − − − ( 2) M AB 2(2) − (1) : 2 M BA = (6 EI / L)θ B + 2( FEM ) BA − ( FEM ) BA M BA = (3EI / L)θ B + ( FEM ) BA − ( FEM ) BA 2 19
  • 20. Pin-Supported End Span: With End Couple and Settlement P w MA B A L ∆ 2 EI 4 EI θA + θB L L 4 EI 2 EI θA + θB L L θA A P θB w B (MF BA)load (MF AB)load (MF AB)∆ A A B B (MF BA) ∆ 4 EI 2 EI F F θA + θ B + ( M AB )load + ( M AB ) ∆ − − − (1) L L 2 EI 4 EI F F θA + θ B + ( M BA )load + ( M BA ) ∆ − − − (2) M BA = L L 2(2) − (1) 3EI 1 1 M F F F : M BA = θ B + [( M BA )load − ( M AB )load ] + ( M BA ) ∆ + A 2 2 2 2 L M AB = M A = E lim inate θ A by 20
  • 21. Fixed-End Moments Fixed-End Moments: Loads P PL 8 L/2 L/2 PL 8 L/2 PL 1 PL 3PL + ( )[−(− )] = 8 2 8 16 P L/2 wL2 12 wL2 12 wL2 1 wL2 wL2 )] = + ( )[−( − 12 2 12 8 21
  • 22. Typical Problem CB w P1 P2 C A B L1 P PL 8 PL 8 L2 wL2 12 L 0 PL 4 EI 2 EI M AB = θA + θB + 0 + 1 1 8 L1 L1 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 P2 L2 wL2 4 EI 2 EI M BC = θB + θC + 0 + + L2 L2 8 12 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = 8 12 L2 L2 w wL2 12 L 22
  • 23. CB w P1 P2 C A B L1 L2 CB M BC MBA B M BA = M BC PL 2 EI 4 EI θA + θB + 0 − 1 1 8 L1 L1 P L wL 4 EI 2 EI = θB + θC + 0 + 2 2 + 2 L2 L2 8 12 2 + ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B 23
  • 24. P1 MAB CB w MBA A L1 B P2 MBC L2 C M CB Substitute θB in MAB, MBA, MBC, MCB 0 PL 4 EI 2 EI θA + θB + 0 + 1 1 M AB = L1 L1 8 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 4 EI 2 EI P2 L2 wL2 θB + θC + 0 + + M BC = 8 12 L2 L2 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = L2 L2 8 12 24
  • 25. P1 MAB A Ay CB w MBA B L1 P2 MCB MBC L2 Cy C By = ByL + ByR B P1 MAB B A Ay L1 MBA ByL P2 MBC ByR L2 C MCB Cy 25
  • 27. Example 1 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 6 kN/m C A 4m 4m B 6m 27
  • 28. 10 kN 6 kN/m C A 4m PL 8 4m P B 6m wL2 30 PL 8 wL2 20 w FEM MBA MBC [M] = [K][Q] + [FEM] 0 4 EI 2 EI (10)(8) θA + θB + 8 8 8 0 2 EI 4 EI (10)(8) M BA = θA + θB − 8 8 8 0 4 EI 2 EI (6)(6 2 ) θB + θC + M BC = 6 6 30 0 2 EI 4 EI (6)(6) 2 θB + θC − M CB = 6 6 20 M AB = B + ΣM B = 0 : − M BA − M BC = 0 4 EI 4 EI (6)(6 2 ) + =0 ( )θ B − 10 + 8 6 30 2.4 θB = EI Substitute θB in the moment equations: MAB = 10.6 kN•m, MBC = 8.8 kN•m MBA = - 8.8 kN•m, MCB = -10 kN•m 28
  • 29. 10 kN 8.8 kN•m 10.6 kN•m A 6 kN/m C 8.8 kN•m 4m B 4m MAB = 10.6 kN•m, 6m MBC = 8.8 kN•m MBA = - 8.8 kN•m, 10 kN•m MCB= -10 kN•m 2m 18 kN 10 kN 6 kN/m 10.6 kN•m A B 8.8 kN•m B 10 kN•m 8.8 kN•m Ay = 5.23 kN ByL = 4.78 kN ByR = 5.8 kN Cy = 12.2 kN 29
  • 30. 10 kN 10.6 kN•m 6 kN/m C A 4m 5.23 kN B 4m 6m 10 kN•m 12.2 kN 4.78 + 5.8 = 10.58 kN V (kN) 5.8 5.23 + + x (m) - 4.78 - 10.3 M (kN•m) -10.6 Deflected shape -12.2 + -8.8 2.4 θB = EI x (m) -10 x (m) 30
  • 31. Example 2 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 6 kN/m C A 4m 4m B 6m 31
  • 32. 10 kN 6 kN/m C A 4m PL 8 P 4m B 6m wL2 30 PL 8 w wL2 20 FEM 10 [M] = [K][Q] + [FEM] 0 4 EI 2 EI (10)(8) θA + θB + M AB = − − − (1) 8 8 8 10 2 EI 4 EI (10)(8) θA + θB − − − − (2) M BA = 8 8 8 4 EI 2 EI 0 (6)(6 2 ) θB + θC + − − − (3) M BC = 6 6 30 2 EI 4 EI 0 (6)(6) 2 θB + θC − − − − (4) M CB = 6 6 20 6 EI 2(2) − (1) : 2 M BA = θ B − 30 8 3EI θ B − 15 − − − (5) M BA = 8 32
  • 33. MBA MBC B M BC 4 EI (6)(6 2 ) = θB + 6 30 M CB = 2 EI (6)(6) θB − 6 20 2 − − − (3) Substitute θA and θB in (5), (3) and (4): MBA = - 12.19 kN•m − − − (4) 3EI θ B − 15 − − − (5) 8 + ΣM B = 0 : − M BA − M BC = 0 M BA = MBC = 12.19 kN•m MCB = - 8.30 kN•m 3EI 4 EI (6)(6 2 ) + = 0 − − − (6 ) ( )θ B − 15 + 8 6 30 7.488 θB = EI 4 EI 2 EI θA + θ B − 10 8 8 − 23.74 θA = EI Substitute θ B in (1) : 0 = 33
  • 34. 10 kN 12.19 kN•m A 4m 4m B 6 kN/m C 12.19 kN•m 6m 8.30 kN•m MBA = - 12.19 kN•m, MBC = 12.19 kN•m, MCB = - 8.30 kN•m 2m 10 kN A 18 kN B B 12.19 kN•m 6 kN/m C 8.30 kN•m 12.19 kN•m Ay = 3.48 kN ByL = 6.52 kN ByR = 6.65 kN Cy = 11.35 kN 34
  • 35. 10 kN 6 kN/m C A 3.48 kN 4m 4m B 6m 11.35 kN 6.52 + 6.65 = 13.17 kN V (kN) 6.65 3.48 x (m) - 6.52 -11.35 14 M (kN•m) x (m) -12.2 Deflected shape − 23.74 θA = EI θB = 7.49 EI -8.3 x (m) 35
  • 36. Example 3 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 4 kN/m C A 2EI 4m B 4m 3EI 6m 36
  • 37. 10 kN 4 kN/m C A 2EI (10)(8)/8 (10)(8)/8 4m 4m 0 M AB 3EI B (4)(62)/12 6m (4)(62)/12 10 4(2 EI ) 2(2 EI ) (10)(8) = θA + θB + − − − (1) 8 8 8 10 M BA = 2(2 EI ) 4(2 EI ) (10)(8) θA + θB − 8 8 15 8 − − − (2) 2(2) − (1) 3(2 EI ) (3 / 2)(10)(8) : M BA = θB − − − − ( 2a ) 2 8 8 12 4(3EI ) (4)(6 2 ) θB + − − − (3) M BC = 6 12 37
  • 38. 10 kN 4 kN/m C A 3EI 2EI (3/2)(10)(8)/8 B (4)(62)/12 4m 6m 4m (4)(62)/12 15 3(2 EI ) (3 / 2)(10)(8) M BA = θB − − − − ( 2a ) 8 8 12 2 4(3EI ) (4)(6 ) θB + − − − (3) M BC = 6 12 − M BA − M BC = 0 : 2.75EIθ B = −12 + 15 = 3 θ B = 1.091 / EI 3(2 EI ) 1.091 ( ) − 15 = −14.18 kN • m 8 EI 4(3EI ) 1.091 ( ) − 12 = 14.18 kN • m = 6 EI 2(3EI ) = θ B − 12 = −10.91 kN • m 6 M BA = M BC M CB 38
  • 39. 10 kN A 2EI 14.18 4m 4 kN/m C 10.91 B 14.18 3EI 6m 4m MBA = - 14.18 kN•m, MBC = 14.18 kN•m, MCB = -10.91 kN•m 10 kN A 24 kN B 4 kN/m 14.18 kN•m 140.18 kN•m 10.91 kN•m C Ay = 3.23 kN ByL = 6.73 kN ByR = 12.55 kN Cy = 11.46 kN 39
  • 40. 10 kN 4 kN/m C 10.91 kN•m A 2EI 3.23 kN 4m V (kN) 3.23 B 3EI 11.46 kN 6m 4m 6.77 + 12.55 = 19.32 kN 12.55 2.86 + -6.73 + x (m) -11.46 12.91 M (kN•m) 5.53 + + - -10.91 -14.18 Deflected shape - x (m) θB = 1.091/EI x (m) 40
  • 41. Example 4 Draw the quantitative shear , bending moment diagrams and qualitative deflected curve for the beam shown. EI is constant. 10 kN 12 kN•m 4 kN/m C A 2EI 4m B 4m 3EI 6m 41
  • 42. 10 kN 12 kN•m 4 kN/m C A 2EI 3EI 2/12 = 12 1.5PL/8 = 15 B wL wL2/12 = 12 4m 6m 4m M BA = 3(2 EI ) θ B − 15 − − − (1) 8 M BC = 4(3EI ) θ B + 12 − − − (2) 6 2(3EI ) θ B − 12 − − − (3) 6 12 kN•m MBA MBA M CB = B MBC MBC Jo int B : − M BA − M BC − 12 = 0 -3.273/EI 4(2 EI ) 2(3EI ) (10)(8) θA + θB + M AB = 8 8 8 7.21 θA = − EI 3.273 M BA = 0.75 EI ( − ) − 15 = −17.45 kN • m EI 3.273 M BC = 2 EI (− ) + 12 = 5.45 kN • m EI 3.273 M CB = EI (− ) − 12 = −15.27 kN • m EI 0 − (0.75 EI − 15) − (2 EIθ B + 12) − 12 = 0 θB = − 3.273 EI 42
  • 43. 3.273 ) − 15 = −17.45 kN • m EI 3.273 M BC = 2 EI (− ) + 12 = 5.45 kN • m EI 3.273 M CB = EI ( − ) − 12 = −15.27 kN • m EI M BA = 0.75EI ( − 24 kN 10 kN 4 kN/m A 5.45 kN•m B 2.82 kN 17.45 kN•m 7.18 kN C 10.36 kN 10 kN 12 kN•m 2.82 kN B 17.54 kN 13.64 kN 4 kN/m C A 15.27 kN•m 15.27 kN•m 13.64 kN 43
  • 44. 10 kN 12 kN•m 4 kN/m C 15.27 kN•m A 2.82 kN 4m 3EI 2EI 7.21 EI 3.273 θB = − EI B 17.54 kN 6m 4m 13.64 kN θ A = − 10.36 V (kN) 2.82 + + 3.41 m - - -7.18 M (kN•m) -13.64 11.28 7.98 + + - x (m) - -5.45 -15.27 -17.45 Deflected shape − 7.21 θA = EI x (m) x (m) θB = 3.273 EI 44
  • 45. Example 5 Draw the quantitative shear, bending moment diagrams, and qualitative deflected curve for the beam shown. Support B settles 10 mm, and EI is constant. Take E = 200 GPa, I = 200x106 mm4. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m 45
  • 46. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 6 EI∆ L2 4m 4m A P B 6 EI∆ L2 [FEM]∆ PL 8 6 EI∆ L2 6m 6 EI∆ L2 ∆ PL 8 10 mm 2 wL 30 ∆ B w C wL2 30 [FEM]load -12 4(2 EI ) 2(2 EI ) 6(2 EI )(0.01) (10)(8) M AB = θA + θB + + − − − (1) 8 8 82 8 2(2 EI ) 4(2 EI ) 6(2 EI )(0.01) (10)(8) M BA = θA + θB + − − − − ( 2) 8 8 82 8 0 4(3EI ) 2(3EI ) 6(3EI )(0.01) (6)(6 2 ) M BC = θB + θC − + − − − (3) 6 6 62 30 0 2(3EI ) 4(3EI ) 6(3EI )(0.01) (6)(6) 2 M CB = θB + θC − − − − − (4) 2 6 6 6 30 46
  • 47. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m 4(2 EI ) 2(2 EI ) 6(2 EI )(0.01) (10)(8) θA + θB + + − − − (1) 8 8 82 8 2(2 EI ) 4(2 EI ) 6(2 EI )(0.01) (10)(8) = θA + θB + − − − − ( 2) 8 8 82 8 M AB = M BA Substitute EI = (200x106 kPa)(200x10-6 m4) = 200x200 kN• m2 : 4(2 EI ) 2(2 EI ) θA + θ B + 75 + 10 − − − (1) 8 8 2(2 EI ) 4(2 EI ) = θA + θ B + 75 − 10 − − − (2) 8 8 16.5 M AB = M BA 2(2) − (1) 3(2 EI ) : M BA = θ B + 75 − (75 / 2) − 10 − (10 / 2) − 12 / 2 − − − (2a ) 8 2 47
  • 48. 10 kN 12 kN•m 6 kN/m B C A 3EI 2EI 4m 4m 10 mm 6m MBA = (3/4)(2EI)θB + 16.5 MBC = (4/6)(3EI)θB - 192.8 + ΣMB = 0: - MBA - MBC = 0 MBA MBC B (3/4 + 2)EIθB + 16.5 - 192.8 = 0 θB = 64.109/ EI Substitute θB in (1): θA = -129.06/EI Substitute θA and θB in (5), (3), (4): MBA = 64.58 kN•m, MBC = -64.58 kN•m MCB = -146.69 kN•m 48
  • 49. 10 kN 12 kN•m 6 kN/m B 146.69 kN•m C A 64.58 kN•m 4m 4m 64.58 kN•m 6m MBA = 64.58 kN•m, MBC = -64.58 kN•m 2m MCB = -146.69 kN•m 12 kN•m 18 kN 10 kN A 64.58 kN•m B 146.69 kN•m B Ay = 11.57 kN ByL = -1.57 kN 6 kN/m 64.58 kN•m ByR = -29.21 kN C Cy = 47.21 kN 49
  • 50. 10 kN 12 kN•m 6 kN/m C A 2EI 11.57 kN 3EI B 4m 47.21 kN 6m 4m θA = -129.06/EI θB = 64.109/ EI 1.57 + 29.21 = 30.78 kN 11.57 + V (kN) 1.57 x (m) - -29.21 M (kN•m) 12 58.29 146.69 kN•m -47.21 64.58 + x (m) -146.69 Deflected shape x (m) θA = -129.06/EI 10 mm θB = 64.109/ EI 50
  • 51. Example 6 For the beam shown, support A settles 10 mm downward, use the slope-deflection method to (a)Determine all the slopes at supports (b)Determine all the reactions at supports (c)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. (3 points) Take E= 200 GPa, I = 50(106) mm4. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 51
  • 52. 6 kN/m B C 2EI 3m 6(32 ) = 4.5 12 6(1.5 × 200 × 50)(0.01) 32 = 100 kN • m 12 kN•m A 1.5EI 10 mm 3m 6 kN/m 4.5 C C MFw A 0.01 m MF∆ 100 kN • m A M CB = 4(2 EI ) θC 3 M CA = 4(1.5EI ) 2(1.5 EI ) θC + θ A + 4.5 + 100 − − − (2) 3 3 12 M AC = − − − (1) 2(1.5EI ) 4(1.5 EI ) θC + θ A − 4.5 + 100 − − − (3) 3 3 2(2) − (2) 3(1.5EI ) 3(4.5) 100 12 : M CA = θC + + + 3 2 2 2 2 − − − ( 2a ) 52
  • 53. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 4(2 EI ) θ C − − − (1) 3 3(1.5 EI ) 3(4.5) 100 12 = θC + + + 3 2 2 2 M CB = M CA MCB MCA − − − ( 2a ) • Equilibrium equation: M CB + M CA = 0 (8 + 4.5) EI 3(4.5) 100 12 θC + + + =0 C 3 2 2 2 − 15.06 θC = = −0.0015 rad EI 2(1.5 EI ) − 15.06 4(1.5 EI ) Substitute θC in eq.(3) 12 = ( )+ θ A − 4.5 + 100 − − − (3) EI 3 3 − 34.22 θA = = −0.0034 rad EI 53
  • 54. 6 kN/m B C 2EI 12 kN•m 1.5EI 3m A 10 mm 3m − 15.06 − 34.22 = −0.0015 rad θ A = = −0.0034 rad EI EI 2(2 EI ) 2( 2 EI ) − 15.06 = θC = ( ) = −20.08 kN • m 3 3 EI 4(2 EI ) 4(2 EI ) − 15.06 = θC = ( ) = −40.16 kN • m 3 3 EI θC = M BC M CB 20.08 kN•m B 20.08 kN C 40.16 kN•m 40.16 + 20.08 = 20.08 kN 3 18 kN 6 kN/m 40.16 kN•m C 26.39 kN 12 kN•m A 8.39 kN 54
  • 55. 12 kN•m 6 kN/m θ C = −0.0015 rad B θ A = −0.0034 rad C 2EI 3m B 40.16 kN•m C 20.08 kN 40.16 kN•m V (kN) 6 kN/m C 26.39 kN 26.39 12 kN•m A - Deflected shape -20.08 20.08 12 -40.16 θ C = 0.0015 rad 8.39 kN 8.39 x (m) + M (kN•m) 10 mm 3m 20.08 kN•m 20.08 kN A 1.5EI x (m) x (m) θ A = 0.0034 rad 55
  • 56. Example 7 For the beam shown, support A settles 10 mm downward, use the slope-deflection method to (a)Determine all the slopes at supports (b)Determine all the reactions at supports (c)Draw its quantitative shear, bending moment diagrams, and qualitative deflected shape. Take E= 200 GPa, I = 50(106) mm4. 6 kN/m B 2EI 3m C 1.5EI 12 kN•m A 10 mm 3m 56
  • 57. 12 kN•m 6 kN/m B C 2EI 3m C B ∆C 6( 2 EI )∆ C 4 EI∆ C = 2 3 3 M BC M CB M CA = 2(2 EI ) 4 EI = θC − ∆C 3 3 4(2 EI ) 4 EI = θC − ∆C 3 3 A 1.5EI 10 mm 3m EI∆ C C ∆C 4 EI∆ C 3 A 6 kN/m 4.5 100 − − − (1) C A C − − − (2) 0.01 m A 6(1.5 EI ) ∆ C = EI∆ C 2 3 6(32 ) = 4.5 12 6(1.5 × 200 × 50)(0.01) 32 = 100 kN • m 4(1.5 EI ) 2(1.5EI ) θC + θ A + EI∆ C + 4.5 + 100 − −(3) 3 3 12 2(1.5 EI ) 4(1.5 EI ) M AC = θC + θ A + EI∆ C − 4.5 + 100 − −(4) 3 3 2(3) − (4) 3(1.5 EI ) EI 3(4.5) 100 12 : M CA = θ C + ∆C + + + − − − (3a) 2 3 2 2 2 2 57
  • 58. 12 kN•m 6 kN/m B C 2EI 3m A 1.5EI 3m 18 kN • Equilibrium equation: 6 kN/m MBC B By C (C y ) CB = −( MCB MCA C M BC + M CB (C y ) CA ) 3 MCB MCA (Cy)CB 10 mm C 12 kN•m A Ay M + 12 + 18(1.5) M CA + 39 = CA = 3 3 ΣM C = 0 : M CB + M CA = 0 − − − (1*) ΣC y = 0 : (C y ) CB + (C y ) CA = 0 − − − (2*) (Cy)CA Substitute in (1*) 4.167 EIθ C − 0.8333EI∆ C = −62.15 − − − (5) Substitute in ( 2*) − 2.5 EIθ C + 3.167 EI∆ C = −101.75 − − − (6) From (5) and (6) θ C = −25.51 / EI = −0.00255 rad ∆ C = −52.27 / EI = −5.227 mm 58
  • 59. 6 kN/m B 2EI C 3m 1.5EI 12 kN•m A 10 mm 3m • Solve equation θC = − 25.51 = −0.00255 rad EI Substitute θC and ∆C in (1), (2) and (3a) M BC = 35.68 kN • m − 52.27 ∆C = = −5.227 mm EI M CB = 1.67 kN • m Substitute θC and ∆C in (4) θA = M CA = −1.67 kN • m − 2.86 = −0.000286 rad EI 6 kN/m 35.68 kN•m B B y = 18 − 5.55 = 12.45 kN 2EI 3m C 1.5EI 3m 12 kN•m A 18(4.5) − 12 − 35.68 6 = 5.55 kN Ay = 59
  • 60. 6 kN/m 35.68 kN•m B C 2EI 12.45 kN 3m 12 kN•m A 1.5EI 10 mm 5.55 kN 3m V (kN) 12.45 θ C = −0.00255 rad + 0.925 m x (m) ∆ C = −5.227 mm -5.55 θ A = −0.000286 rad M (kN•m) 1.67 14.57 + 12 - x (m) -35.68 Deflected shape ∆ C = 5.227 mm θ C = 0.00255 rad x (m) θ A = 0.000286 rad 60
  • 61. Example of Frame: No Sidesway 61
  • 62. Example 6 For the frame shown, use the slope-deflection method to (a) Determine the end moments of each member and reactions at supports (b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame. 10 kN 12 kN/m C 3m B 3EI 40 kN 3m 2EI A 1m 6m 62
  • 63. 10 kN 36/2 = 18 12 kN/m • Equilibrium equations C B 3m 40 kN 3m A 1m 2EI 2 36 (wL /12 ) =36 PL/8 = 30 3EI PL/8 = 30 6m • Slope-Deflection Equations M AB = M BA = M BC 10 MBC MBA 10 − M BA − M BC = 0 − − − (1*) Substitute (2) and (3) in (1*) 10 − 3EIθ B + 30 − 54 = 0 − 14 − 4.667 = (3EI ) EI 2(3EI ) θ B + 30 − − − (1) 6 θB = 4(3EI ) θ B − 30 − − − (2) 6 Substitute θ B = 3( 2 EI ) θ B + 36 + 18 − − − (3) = 6 − 4.667 in (1) to (3) EI M AB = 25.33 kN • m M BA = −39.33 kN • m M BC = 49.33 kN • m 63
  • 64. 10 kN 12 kN/m 20.58 C 3m B 49.33 39.33 3EI 40 kN 3m 25.33 A 1m 2EI 10 -39.3 -49.33 MAB = 25.33 kN•m 27.7 MBA = -39.33 kN•m -25.33 MBC = 49.33 kN•m 6m Bending moment diagram 12 kN/m B B C θB 49.33 39.33 27.78 kN θB θB = -4.667/EI 40 kN A 17.67 kN 25.33 Deflected curve 64
  • 65. Example 7 Draw the quantitative shear, bending moment diagrams and qualitative deflected curve for the frame shown. E = 200 GPa. 25 kN 5 kN/m B 240(106) mm4 5m 180(106) C 120(106) mm4 60(106) mm4 A E D 3m 3m 4m 65
  • 66. 25 kN PL/8 = 18.75 18.75 B 240(106) mm4 C 5m 5 kN/m 180(106) 6.667+ 3.333 120(106) mm4 (wL2/12 ) = 6.667 60(106) mm4 A E D 3m 3m 0 4(2 EI ) 2(2 EI ) M AB = θA + θB 5 5 0 2(2 EI ) 4(2 EI ) M BA = θA + θB 5 5 4( 4 EI ) 2(4 EI ) M BC = θB + θ C + 18.75 6 6 2(4 EI ) 4(4 EI ) M CB = θB + θ C − 18.75 6 6 3( EI ) θC M CD = 5 3(3EI ) M CE = θ C + 10 4 4m M BA + M BC = 0 8 16 8 ( + ) EIθ B + ( ) EIθ C = −18.75 − − − (1) 5 6 6 M CB + M CD + M CE = 0 16 3 9 8 ( ) EIθ B + ( + + ) EIθ C = 8.75 − − − (2) 6 5 4 6 From (1) and (2) : θ B = − 5.29 EI θC = 2.86 EI 66
  • 67. Substitute θB = -1.11/EI, θc = -20.59/EI below 4(2 EI ) 0 2(2 EI ) M AB = θA + θB 5 5 0 2(2 EI ) 4(2 EI ) M BA = θA + θB 5 5 4( 4 EI ) 2(4 EI ) M BC = θB + θ C + 18.75 6 6 2(4 EI ) 4(4 EI ) θB + θ C − 18.75 M CB = 6 6 3( EI ) θC M CD = 5 3(3EI ) θ C + 10 M CE = 4 MAB = −4.23 kN•m MBA = −8.46 kN•m MBC = 8.46 kN•m MCB = −18.18 kN•m MCD = 1.72 kN•m MCE = 16.44 kN•m 67
  • 68. MAB = -4.23 kN•m, MBA = -8.46 kN•m, MBC = 8.46 kN•m, MCB = -18.18 kN•m, MCD = 1.72 kN•m, MCE = 16.44 kN•m 20 kN 25 kN 16.44 kN•m 3m 3m C C 2.54 kN B 2.54 kN 2.54-0.34 =2.2 kN 8.46 kN•m 18.18 kN•m (20(2)+16.44)/4 (25(3)+8.46-18.18)/6 14.12 kN = 14.11 kN = 10.88 kN 10.88 kN B 8.46 kN•m (8.46 + 4.23)/5 = 2.54 kN 5m A E 2.2 kN 5.89 kN 14.12+14.11=28.23 kN 1.72 kN•m (1.72)/5 = 0.34 kN B 5m 2.54 kN A 0.34 kN 4.23 kN•m 10.88 kN 28.23 kN 68
  • 69. 24.18 1.29 m 2.33 m 14.11 10.88 1.18 m + + -2.54 2.82 m - -14.12 - -2.54 + 0.78 m - -8.46 -5.89 -8.46 + - -18.18 0.34 4.23 Shear diagram 0.78 m + 3.46 1.72 + - 1.18 m -16.44 1.67m Moment diagram 1.29 m 2.33 m θB = −5.29/EI 1.18 m θC = 2.86/EI 1.67m Deflected curve 69
  • 70. Example of Frames: Sidesway 70
  • 71. Example 8 Determine the moments at each joint of the frame and draw the quantitative bending moment diagrams and qualitative deflected curve . The joints at A and D are fixed and joint C is assumed pin-connected. EI is constant for each member 3m 1m B 10 kN C 3m A D 71
  • 72. • Overview • Unknowns C B 1m 10 kN θB and ∆ • Boundary Conditions 3m MAB Ax 3m A Ay θA = θD = 0 MDC D D • Equilibrium Conditions x - Joint B Dy B MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*) 72
  • 73. ∆ ∆ (0.375EI∆)∆ 1m B 10 kN (5.625)load MAB C (0.375EI∆)∆ 10 kN C B 4m 4m 3m (1.875)load A (0.375EI∆)∆ (1/2)(0.375EI∆)∆ (0.375EI∆)∆ A D Ax D Dx 3m MBA • Slope-Deflection Equations 5.625 0.375EI∆ 2( EI ) 10(3)(12 ) 6 EI∆ M AB = θB + + 2 − − − (1) 4 42 4 5.625 0.375EI∆ 2 4( EI ) 10(3 )(1) 6 EI∆ M BA = θB − + 2 − − − (2) 4 42 4 M BC = 3( EI ) θB 3 − − − (3) 1 M DC = 0.375EI∆ − 0.375EI∆ = 0.1875EI∆ − − − (4) 2 MDC + ΣM B = 0 : ( M AB + M BA ) 4 Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5) Ax = + ΣM C = 0 : Dx = M DC = 0.0468EI∆ − − − (6) 4 73
  • 74. Equilibrium Conditions: M BA + M BC = 0 − − − (1*) 10 − Ax − Dx = 0 − − − (2*) • Solve equation Substitute (2) and (3) in (1*) 2EI θB + 0.375EI ∆ = 5.625 ----(7) Slope-Deflection Equations: Substitute (5) and (6) in (2*) 2( EI ) M AB = θ B + 5.625 + 0.375EI∆ − − − (1) − 0.375EIθ B − 0.235EI∆ = −8.437 − − − (8) 4 4( EI ) M BA = θ B − 5.625 + 0.375EI∆ − − − (2) From (7) and (8) can solve; 4 − 5.6 44.8 3( EI ) θB = ∆= M BC = θ B − − − (3) EI EI 3 − 5.6 44.8 M DC = 0.1875EI∆ − − − (4) Substituteθ B = and ∆ = in (1)to (6) EI EI Horizontal reaction at supports: Ax = 0.375EIθ B + 0.1875EI∆ + 1.563 − − − (5) Dx = 0.0468EI∆ − − − (6) MAB = 15.88 kN•m MBA = 5.6 kN•m MBC = -5.6 kN•m MDC = 8.42 kN•m Ax = 7.9 kN Dx = 2.1 kN 74
  • 75. C B 1m 10 kN MAB = 15.88 kN•m, MBA = 5.6 kN•m, MBC = -5.6 kN•m, MDC = 8.42 kN•m, Ax = 7.9 kN, Dx = 2.1 kN, 5.6 3m 8.42 D 2.1 kN 15.88 7.9 kN 3m A 5.6 C B B 7.8 A ∆ = 44.8/EI C ∆ = 44.8/EI 5.6 15.88 D 8.42 Bending moment diagram A θB = -5.6/EI D Deflected curve 75
  • 76. Example 9 From the frame shown use the slope-deflection method to: (a) Determine the end moments of each member and reactions at supports (b) Draw the quantitative bending moment diagram, and also draw the qualitative deflected shape of the entire frame. B C 2 EI 10 kN 2m pin 4m 2.5 EI EI A D 4m 3m 76
  • 77. • Overview B ∆ 2EI B´ 10 kN 2m A EI MAB Ax Ay 4m ∆ CD C C´ ∆BC ∆ 2.5EI • Unknowns θB and ∆ MDC • Boundary Conditions Dx D 3m 4m θA = θD = 0 Dy • Equilibrium Conditions - Joint B B MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 10 − Ax − Dx = 0 − − − (2*) 77
  • 78. • Slope-Deflection Equation C´ B ∆ ∆ CD ∆BC 5 B´ 2EI C ∆ 10 kN 36.87° 4m 2.5EI EI 2m PL/8 = 5 D A 4m 3m 0.375EI∆ B ∆´ B´ = ∆ / cos 36.87° = 1.25 ∆ C´ ∆CD ∆BC = ∆ tan 36.87° = 0.75 ∆ 36.87° ∆ C 2( EI ) θ B + 0.375EI∆ + 5 − − − (1) 4 (6)(2.5EI)(1.25∆)/(5)2 = 0.75EI∆ 4( EI ) M BA = θ B + 0.375EI∆ − 5 − − − (2) C´ 4 ∆CD= 1.25 ∆ 3(2 EI ) C M BC = θ B − 0.2813EI∆ − − − (3) 4 M AB = M DC = 0.375EI∆ − − − (4) A D 0.75EI∆ 6EI∆/(4) 2= 0.375EI∆ 0.5625EI∆ B B´ (1/2) 0.5625EI∆ C´ C (1/2) 0.75EI∆ (6)(2EI)(0.75∆)/(4) 2 = 0.5625EI∆ ∆BC= 0.75 ∆ 78
  • 79. • Horizontal reactions B 2 EI pin C 10 kN 2m 4m 2.5 EI EI A D 4m 3m MBC MBA B B 10 kN C MBC MBC 4 4 C A Ax = (MBA+ MAB-20)/4 -----(5) MAB D Dx= (MDC-(3/4)MBC)/4 ---(6) MDC MBC/4 79
  • 80. Equilibrium Conditions: M BA + M BC = 0 − − − (1*) 10 − Ax − Dx = 0 − − − (2*) Slope-Deflection Equation: • Solve equations Substitute (2) and (3) in (1*) 2.5EIθ B + 0.0938 EI∆ − 5 = 0 − − − (7) Substitute (5) and (6) in (2*) 2( EI ) 6 EI∆ 0.0938EIθ B + 0.334EI∆ − 5 = 0 − − − (8) θB + 5 + 2 − − − (1) 4 4 From (7) and (8) can solve; 6 EI∆ 4( EI ) M BA = θB −5 + 2 − − − (2) 4 4 1.45 − 14.56 θB = ∆= 3(2 EI ) 3(2 EI )(0.75∆) EI EI M BC = θB − − − − (3) 2 4 4 1.45 − 14.56 3(2.5EI )(1.25∆) Substituteθ B = and ∆ = in (1)to (6) M DC = − − − (4) EI EI 52 Horizontal reactions at supports: MAB = 15.88 kN•m MBA = 5.6 kN•m ( M BA + M AB − 20) − − − (5) Ax = MBC = -5.6 kN•m 4 MDC = 8.42 kN•m 3 Ax = 7.9 kN M DC − M BC 4 Dx = − − − (6) Dx = 2.1 kN 4 80 M AB =
  • 81. 1.91 1.91 B 2 EI A pin C 10 kN 2m MAB = 11.19 kN•m MBA = 1.91 kN•m MBC = -1.91 kN•m 2.5 EI EI 11.19 kN•m 8.27 kN 0.478 kN 4m 5.46 4m 1.73 D MDC = 5.46 kN•m Ax = 8.28 kN•m Dx = 1.72 kN•m 0.478 kN 3m ∆ ∆ B 1.91 1.91 B C C 5.35 A θB=1.45/EI θB=1.45/EI 11.19 5.46 D Bending-moment diagram A D Deflected shape 81
  • 82. Example 10 From the frame shown use the moment distribution method to: (a) Determine all the reactions at supports, and also (b) Draw its quantitative shear and bending moment diagrams, and qualitative deflected curve. 3m 20 kN/m B pin C 3EI 3m 2EI 4m 4EI A D 82
  • 83. • Overview • Unknowns ∆ ∆ 3m 20 kN/m B 3EI 2EI θB and ∆ C • Boundary Conditions 4EI θA = θD = 0 4m • Equilibrium Conditions - Joint B A [FEM]load D B 3m MBA MBC ΣM B = 0 : M BA + M BC = 0 − − − (1*) - Entire Frame + → ΣFx = 0 : 60 − Ax − Dx = 0 − − − (2*) 83
  • 84. • Slope-Deflection Equation B 20 kN/m B 3m 6(2EI∆)/(3) = 1.333EI∆ 2 C 3EI = 15 wL2/12 2EI 4EI 6(2EI∆)/(3) 2 = 1.333EI∆ A A [FEM]load D 0 M BA 1.5EI∆ 4m wL2/12 = 15 M AB ∆ C ∆ 3m (1/2)(1.5EI∆) 6(4EI∆)/(4) 2 = 1.5EI∆ [FEM]∆ D 4(2 EI ) 2(2 EI ) = θA + θ B + 15 + 1.333EI∆ = 1.333EIθ B + 15 + 1.333EI∆ ----------(1) 3 3 0 2( 2 EI ) 4(2 EI ) = θA + θ B − 15 + 1.333EI∆ = 2.667 EIθ B − 15 + 1.333EI∆ ----------(2) 3 3 3(3EI ) θ B = 3EIθ B ----------(3) 3 0 3( 4 EI ) = θ D + 0.75 EI∆ = 0.75 EI∆ ----------(4) 4 M BC = M DC 84
  • 85. • Horizontal reactions MAB C B 1.5 m + ΣM B = 0 : 60 kN 4m 1.5 m M BA + M AB + 60(1.5) 3 Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5) Ax = A Ax MBA D Dx MDC + ΣMC = 0: Dx = M DC = 0.188EI∆ − − − (6) 4 85
  • 86. Equilibrium Conditions M BA + M BC = 0 − − − (1*) 60 − Ax − Dx = 0 − − − (2*) Equation of moment M AB = 1.333EIθ B + 15 + 1.333EI∆ − − − (1) M BA = 2.667 EIθ B − 15 + 1.333EI∆ − − − (2) M BC = 3EIθ B − − − (3) M DC = 0.75 EI∆ − − − ( 4) Horizontal reaction at support Ax = 1.333EIθ B + 0.889 EI∆ + 30 − − − (5) Dx = 0.188EI∆ − − − (6) • Solve equation Substitute (2) and (3) in (1*) 5.667 EIθ B + 1.333EI∆ = 15 − − − (7) Substitute (5) and (6) in (2*) − 1.333EIθ B − 1.077 EI∆ = −30 − − − (8) From (7) and (8), solve equations; θB = − 5.51 EI ∆= 34.67 EI 34.67 − 5.51 and ∆ = EI EI M AB = 53.87 kN • m M BA = 16.52 kN • m M BC = −16.52 kN • m Substituteθ B = in (1)to (6) M DC = 26.0 kN • m Ax = 53.48 kN Dx = 6.52 kN 86
  • 87. B 3m 20 kN/m C 3m M AB = 53.87 kN • m M BA = 16.52 kN • m M BC = −16.52 kN • m 53.87 kN•m 4m M DC = 26.0 kN • m 16.52 kN•m Ax = 53.48 kN 53.48 kN A D 5.55 kN 26 kN•m Dx = 6.52 kN 6.52 kN 5.55 kN ∆ 16.52 C B ∆ B 16.52 C 53.87 A Moment diagram 26. D A Deflected shape D 87