SlideShare a Scribd company logo
1 of 14
Download to read offline
 
 
Greenhouse gas emissions and 
nitrogen pollution in U.S. agriculture:  
An assessment of current emissions, projections, and 
mitigation strategies 
 
 
 
 
  
A report for the David and Lucile Packard Foundation  
April 2012  
   
2 
 
In early 2012, California Environmental Associates conducted a literature review and data synthesis on 
the topics of nitrogen pollution and greenhouse gas emissions stemming from US agriculture. 
Specifically, the report sought to answer the following questions: What are the main agricultural sources 
of greenhouse gas and nitrogen pollution in the US? How are those sources changing, and what 
trajectory are we on in terms of future emissions? What appear to be the most promising mitigation 
opportunities available for both greenhouse gas emissions and nitrogen pollution, and what can we say 
about their cost and feasibility?  
The following write‐up is a summary of the report, which was submitted to the Packard Foundation in 
April, 2012. The full report is available upon request. Contact: Amy Dickie – amy@ceaconsulting.com 
 
Introduction 
Agriculture has reshaped the face of the planet. Over the past few centuries, as the population has 
grown to over seven billion people, we have converted over a third of the earth’s terrestrial surface into 
cultivated or grazing land.1
 Moreover, in the past half‐century, we have dramatically intensified our use 
of this land, increasing phosphate fertilizer use two‐fold, nitrogen fertilizer six‐fold, and pesticides use 
more than eight‐fold.2
 This intensification, combined with more irrigated land and better crop varieties, 
has more than doubled average crop yields,3
 but it has also dramatically altered the earth’s natural 
environment, threatening a range of natural resources. Biodiversity loss, freshwater pollution, air 
pollution, and aquifer depletion are often accompanied by an expansion or intensification of agriculture. 
 
The United States is one of the world’s most important agricultural producers. The US leads the world in 
beef, corn, and soybean production, and is among the top producers of dairy products, wheat, and 
poultry.4
 Many of the country’s natural ecosystems have been transformed thanks to agricultural 
expansion over the last few generations. And despite decades of production efficiency improvements 
and increasing resources dedicated to conservation practices, the US agricultural sector is still a 
significant contributor to national greenhouse gas emissions and, in most regions of the country, 
represents the leading contributor to nitrogen pollution.  
 
The science around mitigation opportunities for both agricultural greenhouse gas emissions and 
nitrogen pollution in the US is improving but remains highly uncertain. The complex nature of 
agricultural systems makes measurement of emissions and mitigation potential difficult, costly, and 
often unreliable. Further, while the greenhouse gas mitigation potential in US agriculture appears fairly 
significant – in the range of 300 to 800 Mt CO2e/year – achieving mitigation in this sector has proven 
difficult because of its diffuse nature, the behavioral changes required, and the reality that conservation 
practices are not always in the economic best interest of producers.  Agricultural nitrogen pollution 
mitigation practices face the same challenges.  
                                                            
1
 Stienfeld et al. 2006.  
2
 Green et al. 2005.  
3
 Green et al. 2005 
4
 FAO, 2010. 
3 
 
 
That said, many agricultural mitigation options, for both greenhouse gases and nitrogen, cost less than 
opportunities to reduce emissions from other sectors. And while these options are distributed across 
many individual actors, they are also fairly concentrated geographically and by commodity. Continued 
efforts by the conservation community, researchers, and industry associations to shift the agricultural 
sector towards production practices that reduce greenhouse gas and nitrogen pollution on a per unit 
basis may prove to be a worthwhile investment.  
 
Greenhouse gas emissions  
The U.S agricultural sector emitted 430 Mt CO2e in 20095
, approximately 6% of total US greenhouse gas 
emissions. Agriculture’s share of emissions has been fairly constant for the last few decades. 
Greenhouse gas emissions from US agriculture have been rising at a modest pace in recent years: less 
than 1% growth per year from 1990‐2009. Most recent projections for US agricultural emissions over the 
next few decades forecast a comparable growth rate, even when accounting for increases in biofuel 
production.  
 
At the national level, agricultural emissions are split roughly 60/40 between livestock and crops. The 
biggest component of livestock emissions is methane released from the digestive function of animals, 
particularly cattle, a process called enteric fermentation. Enteric fermentation accounts for about 30% 
of all US agricultural emissions. In addition, emissions from manure and grazed lands each account for 
another 14% of total emissions. Cropland emissions are almost entirely driven by releases of nitrous 
oxide, about 33% of total US agricultural emissions, stemming from synthetic fertilizer application and 
crop biological fixation. Emissions from rice cultivation are insignificant in the US because rice acreage is 
very small.  
 
Soil carbon in cropped and grazed lands can function as either a source or a sink, depending on weather, 
usage patterns, and management of the land. Soil carbon from croplands is believed to have served as a 
small net sink in recent years, reducing overall agricultural emissions by approximately 5% per year in 
the last decade. Manure management has been the only sub‐segment of agricultural emissions that has 
seen notable growth in recent years, growing approximately 42% from 1990‐2009. The growth in 
manure emissions is due to a shift from pasture‐based operations to large scale confinements for both 
dairy and swine. 
 
Geographic distribution 
Dividing national agricultural emissions by region and commodity reveals some noteworthy hot spots. 
Texas, California, and Iowa lead the country in terms of state agricultural emissions, accounting for 10%, 
7%, and 7% of US emissions respectively. Emissions in Texas are mainly tied to enteric fermentation 
from its large beef cattle population. In Iowa, emissions are split fairly evenly between cropland 
emissions and emissions from livestock, both from swine and beef cattle. Approximately two thirds of 
California’s emissions are attributable to the dairy cattle industry, both enteric fermentation and 
                                                            
5
 EPA Greenhouse Gas Inventory – Note: does not include carbon fluxes 
4 
 
manure, with the remaining third is from nitrous oxide emissions from croplands. Together the 
Midwestern states account for about 30% of all agricultural greenhouse gas emissions.  
 
Figure 1: Agricultural greenhouse gas emissions by state (2008)  
 
 
Livestock emissions 
Livestock emissions are dominated by cattle – approximately 60% of livestock emissions are from beef 
cattle and another 25% are from dairy cattle. Of the remaining 15% of livestock emissions, two thirds 
(10%) are from swine. On a per head basis, dairy cattle have by far the largest emissions because they 
are more commonly housed in feedlots (vs. grazed systems for beef), and on average are much larger, 
productive animals (larger animals eat more and therefore create more methane and more manure). 
Livestock that are kept in confinement have higher manure emissions because manure is often stored 
on site. The larger the confinement system, the more likely it is to manage manure with a wet system, 
thus rising the methane emissions of the manure. Conversely, manure that falls onto grazed lands 
generates very little emissions. Dairy cattle emissions are more than two times that of beef cattle on a 
per head basis. Beef cattle populations, however, dwarf those of dairy cattle and thus dominate 
aggregate emissions (see chart below). Interestingly, California’s emissions per head for dairy cattle 
appear to be much higher than that of other dairy states (e.g. Wisconsin), both because warmer 
temperatures lead to higher methane emissions from stored manure, and because Wisconsin relies 
more heavily on pasture systems than feedlot systems. Note also that poultry are left off of the chart 
5 
 
because their large population numbers would change the scale. Poultry emissions in the aggregate are 
approximately 4.5 Mt CO2e per year, less than horses. As expected, their emissions on a per head basis 
are infinitesimal.  
 
Figure 2: Comparative greenhouse gas emissions by animal type (2008) 
 
 
Livestock emissions per head (x‐axis), total head (y‐axis) and total emissions (bubble size). 
 
 
Cropland emissions 
Approximately 40% of all cropland emissions are attributable to corn, roughly 20% to soybeans, and 
about 18% to “non major crops” (i.e. specialty crops). Cropland emissions are dominated by corn due 
both its high fertilizer requirement – corn receives nearly 45% of all nitrogen fertilizer in the US, but only 
accounts for around 25% of all cropland – and the fact that it accounts for more acres of cropland than 
any other crop. The dominance of corn leads to a predictable concentration of cropland emissions in the 
Midwest, though California ranks high as well on a state‐by‐state comparison.   
 
 
 
140
65
23
6
0
20
40
60
80
100
120
0 1 2 3 4 5 6
Total Head (in Millions)
Emissions per Head (Mt CO2e) 
Beef Cattle
Dairy Cattle
Swine
Horses
Sheep
Goats
6 
 
Figure 3: Comparative greenhouse gas emissions by crop (2008) 
 
Crop emissions per area (x‐axis), total acres planted (y‐axis) and total emissions (bubble size). 
 
 
Greenhouse gas mitigation options 
The current technical mitigation potential in agriculture is quite large. It probably exceeds the total 
emissions from the sector thanks to untapped potential to sequester high levels of carbon in agricultural 
soils.  The literature defines a range of approximately 300 to 800 Mt CO2e per year, with the majority of 
the opportunity in soil carbon sequestration (see Figure 4, below). These numbers may be even higher if 
the full potential of biochar is considered. Opportunities to reduce emissions from livestock seem to be 
below 100 Mt CO2e per year, although research and development efforts around diet and feed additives 
for livestock may able to expand the technical potential in this area. Similarly, the potential to reduce 
emissions from nitrous oxide through more efficient application of fertilizers is probably in the 100 Mt 
CO2e per year range. Soil carbon sequestration, both in croplands and grasslands is likely in the 300 to 
500 Mt CO2e per year range. Although in the aggregate the mitigation potential of agriculture is quite 
compelling, progress is slow because of the distributed nature of the emissions and the lack of 
regulatory levers to work through.  
 
 
 
 
 
 
 
 
 
 
56
29
20
24
3
2
‐5
0
5
10
15
20
25
30
35
40
45
0.0 0.5 1.0 1.5 2.0
Millions of Hectares
Mt CO2e  per Millon Hectares
Corn
Soy
Wheat
Hay
Cotton
Sorghum
7 
 
Figure 4: The mitigation potential of agriculture  
 
 
There are many different conceptual ways to approach agricultural mitigation opportunities (see Figure 
5, below). We have identified four overarching approaches: 1) reduce or change consumptions patterns, 
2) reduce US agricultural production, 3) shift US agricultural production toward less carbon intensive 
commodities, and 4) reduce the greenhouse gas footprint of current production systems. 
 Reduce or change consumptions patterns – This approach focuses on reducing the demand for 
carbon intensive agricultural commodities through efforts to discourage red meat consumption, 
encourage vegetarianism, or reduce food waste. The challenge with these approaches is that 
this is an incredibly diffuse problem that largely defies regulation and lacks obvious leverage 
points.  
 Reduce US agricultural production ‐ The second approach would be a simple attack on the 
supply side of the equation, reducing overall agricultural commodity production through 
mechanisms like expanding the Conservation Reserve Program or implementing a production 
tax. In addition to the challenges of doing this at scale, the main risk involved here is that 
without a simultaneous reduction in demand, production is likely to shift to other parts of the 
world, typically to less efficient regions, potentially causing a net rise in agricultural greenhouse 
gas emissions, particularly when land use change is factored in.  
 Shift production to less greenhouse gas intensive commodities ‐ This approach could be 
triggered by economic incentives that support an increase in the use of perennials, the 
conversion of cropland to pastureland, or simply more diverse crop rotations. Such changes 
0
100
200
300
400
500
600
700
800
900
all measures
cropland 
soil carbon
grassland 
soil carbon
Land 
conversion, 
soil carbon livestock
Mt CO2e / yr
8 
 
might lead to a net reduction in emissions, but without a careful assessment of their impact on 
commodity markets, it is difficult to state conclusively whether such changes would have a 
positive or negative impact. A negative impact is possible if production of the more greenhouse 
gas intensive commodities simply move elsewhere.  
 Reduce the greenhouse gas intensity of production – With this approach, we can keep the same 
production patterns, but reduce the associated emissions by incentivizing practices such as 
conservation tillage, winter cover crops, nutrient use efficiency, better management of grazed 
lands, and improved manure management. This approach seems to be the obvious place to 
focus efforts, and has been the main area of investigation within the scientific literature. While it 
is not without its challenges, it seems to have the least risk of unintended consequences, and 
also some of the lowest implementation costs.  
 
An extensive literature is emerging around the issue of agricultural greenhouse gas mitigation. Research 
is split roughly into two basic categories: 1) studies that document the mitigation potential of specific 
practices in specific locations, typically of a per hectare basis and usually derived from field level studies, 
and 2) research that applies sectoral economic models to determine the economic potential of different 
broad categories of practices (e.g., afforestation, conservation management practices, nutrient 
management, biofuel production), depending on different prices of carbon. The former tend to be 
difficult to apply widely, and the latter are often too aggregated in their application to assess the 
nationwide biophysical potential of some individual practices. 
 
The recent publication of the Nicholas Institute’s (T‐AGG) “Greenhouse Gas Mitigation Potential of 
Agricultural Land Management in the United States: A Synthesis of the Literature” provides an extremely 
useful data set. This report provides mean estimates as well as high and low ranges for the soil carbon 
sequestration potential, and methane, nitrous oxide, and process and upstream emissions reductions 
potential on a per hectare basis for 42 mitigation practices, as well as an assessment of the maximum 
area available for each mitigation practice. This data set is the most comprehensive available in 
documenting the biophysical potential of a range of practices on a per hectare basis. Unfortunately, to 
date an economic analysis at a comparable level of detail does not exist.  
 
The most promising practices are those that combine the following characteristics: 1) have a high 
biophysical potential on a per hectare basis, 2) can be widely applicable, and 3) have a low 
implementation cost. According to this synthesis report the practices with the highest biophysical 
potential (CO2e per hectare) include the set aside and management of histosol cropland (i.e. protecting 
organic soils), application of biochar, restoring wetlands, switching to short‐rotation woody crops, and 
agroforestry. Unfortunately, there is not great overlap between those high intensity opportunities and 
those that are most widely applicable. The opportunities that are widely applicable include conservation 
tillage, winter cover crops, and grazing lands management. In the aggregate, the later set of 
opportunities appear more compelling, though their per hectare potential is lower. There are many 
important considerations when choosing individual or sets of mitigation practices to promote.  
9 
 
Figure 5: Agricultural greenhouse gas emissions mitigation logic model  
Category   Sub‐category   Intervention options   Risks, limitations & co‐benefits  
Reduce demand for carbon 
intensive agricultural 
commodities  
• Reduce per capita meat 
consumption 
• Reduce % of food waste  
• Vegetarianism campaign
• Food service campaign 
• Change in expiration date 
protocols  
• Solutions difficult to scale
• Difficult to develop mandates or 
incentives  
Reduce agricultural 
commodity production  
• Afforestation 
• Restoration of wetlands, organic 
soils  
• Convert land to set‐asides or 
buffers  
• Production tax
• Expand CRP 
• No grazing on fed lands 
• Stricter CWA regulations  
• Decrease commodity subsidies  
• End biofuels subsidies 
• Pay farmers not to farm  
• Leakage: Although these 
measures will reduce emissions 
regionally or nationally, without 
a simultaneous shift in demand, 
production will likely just shift 
elsewhere, possibly to a less 
carbon efficient location.  
Shift production to less 
greenhouse gas intensive 
commodities  
• Use more perennials 
• Increase production of woody 
crops, agroforestry 
• Convert cropland to pastureland 
• Diversify crop rotation  
• Subsidize the lowest 
greenhouse gas crops 
• Revenue neutral tax on top 
greenhouse gas agricultural 
products (e.g. dairy and corn)  
• May also be a risk of leakage 
with these interventions. The 
dynamics of specific changes in 
production patterns would need 
to be modeled.  
Change practices to reduce 
greenhouse gas intensity of 
production  
• Improve productivity and 
management of grazed lands  
• Improve productivity and 
management of croplands  (e.g. 
tillage, cover crops, nutrient use 
efficiency)  
• Improve livestock efficiency  
• Improved manure management  
• USDA programs 
• Supply chain pressure 
• Carbon markets 
• Other PES markets  
• Some of the practices in this 
category may increase intensity 
(positive leakage effects) and/or 
have positive environmental co‐
benefits.  
• Some may have negative 
impacts on other environmental 
resources (e.g. water, toxics).  
10 
 
 Opportunity costs ‐ Practices are economically viable if they have low opportunity and low 
transaction costs. Practices that take land out of production (e.g., set‐asides) and/or significantly 
change cropping patterns (e.g., agroforestry, short rotation woody crops, perennials) generally 
have a high opportunity cost and are usually not widely viable unless there is some form of 
economic compensation, such as a high price for carbon or tax incentive. If the price of carbon 
gets high enough, these options, and others including afforestation and biofuel production 
become rational, at least conceptually.  
 Indirect land use change – Although opportunities that take land out of production in the US are 
compelling in terms of the greenhouse gas mitigation potential they can offer domestically, 
these options may not be beneficial on a net global greenhouse gas basis. Baker et al. 2011 finds 
that “climate mitigation opportunities increase the demand for land for nonfood benefits, 
reduce commodity supply, and result in significant commodity market impacts.” Recent studies 
from both Iowa State University (Elobeid et al. 2011) and Nicholas Institute (Mosnier et al. 2012) 
find that taking land out of food production or diminishing yields in the US can lead to a net gain 
in greenhouse gas emissions on a global basis because the demand for agricultural commodities 
is fairly inelastic and production moves elsewhere. Mitigation practices that do not change land 
use or cropping patterns, but rather change the greenhouse gas intensity of production, are 
almost certainly the options with lowest risk of unintended consequences. 
 Transaction costs - Transaction costs are lowest for those practices that are easily monitored 
and widely applicable (e.g., tillage, winter cover crops, fallow mgmt.) That said, opportunities 
that are widely distributed and have a smaller per hectare opportunity may be more difficult, 
and more costly, to implement.  
 Soil carbon sequestration ‐ The potential to sequester more carbon in agricultural soils, both on 
cropland and grazed land, provides a greater mitigation opportunity than reducing nitrous oxide 
or methane emissions. However, soil carbon sequestration has complexities that need to be 
understood and controlled for when designing agricultural mitigation or offset programs. Soil 
carbon sequestration is reversible, meaning that a change in practice can release, or begin to 
release, carbon that has been stored up over several years. Secondly, there is a limit to the 
amount of carbon that can be stored in our agricultural soils, meaning that over a 30 – 50 year 
time horizon, soils will become saturated and the annual mitigation opportunity it provides will 
decline, and eventually disappear entirely.  
 Scientific certainty – There is a high level of uncertainty with a number of the mitigation 
practices currently being explored. Biochar application is one practice that ranks very high both 
in terms of its per hectare potential and applicable hectares, however there is still great 
uncertainty associated with this opportunity. Basic questions persist regarding longevity and 
mitigation potential, lifecycle concerns and economic factors that require further research.  
Grazing land management is another set of practices with very high mitigation potential and a 
great deal of scientific uncertainty. These practices also deserve further research.  
 Additionality ‐ Virtually all agricultural emissions face a common challenge with respect to 
regulated or voluntary offset markets; determining baselines and additionality. Common 
practices vary greatly by region, and even by producer. They are also always changing. 
Determining what constitutes baseline conditions or practices, and, conversely, what level of 
11 
 
adoption of mitigation practices are additional, is a serious challenge, and risks keeping some 
agricultural mitigation opportunities from being included in carbon markets.  
 
 
Nitrogen pollution 
Agricultural nitrogen is the largest source of new reactive nitrogen annually in the US. Agricultural 
nitrogen is split approximately 60/40 between synthetic fertilizers and crop biological fixation. After 
steep growth in the 1960s and 70s, synthetic fertilizer use has leveled off dramatically and is now 
growing at ~1% per year. This growth rate is not expected to increase materially even with the current 
biofuels mandate. Corn is the largest user of nitrogen fertilizer in the U.S., accounting for over 40% of 
use. However, on a per acre basis, some of the specialty crops are bigger nitrogen users.  
 
Crop biological fixation is growing at about 2.5 times the rate of the synthetic fertilizers (2.4% and 0.9% 
per year respectively). Soybeans account for about 40% of nitrogen from crop biological fixation, and are 
the major crop that has grown the fastest over the last 20 years in terms of planted acreage. We did not 
study the relative impact on nitrogen between various crop rotations, so cannot say whether the growth 
in soy acres is a positive or negative trend with respect to nitrogen fluxes and nitrous oxide emissions. 
Further inquiry is advised.  
 
Once nitrogen is applied to fields, its pathway is difficult to track and measure, and varies greatly by 
region and specific site. Some nitrogen is used by crops and turned into food for humans and livestock 
as well as crop residues. Other nitrogen is neutralized in the denitrification process. But a significant 
amount of nitrogen causes air and water pollution. In many parts of the country as much as 20‐30% of 
applied agricultural nitrogen ends up in aquatic systems. Only ~1% is released as nitrous oxide, but it is 
such a potent greenhouse gas (~300 times more impact per unit weight than CO2) that these small 
volumes have very a very big impact. The Mississippi River Basin is one watershed with particularly high 
fluxes of nitrate into the river system, in part due to the tiling system the drains much of the 
Midwestern agricultural lands. As much as 59% of the spring nitrate loading in the Mississippi River 
Basin is due to fertilizer run off.6
 
 
Nitrogen mitigation 
The approaches to nitrogen pollution mitigation largely follow the same logic as those available for 
agricultural greenhouse gas mitigation:  
 Reduce or change consumptions patterns ‐ Nitrogen pollution can be reduced by shifting human 
diet to commodities that convert feed to food more efficiently and thus make better use of 
nitrogen applied to feed. The same challenges to modifying human behavior apply here as with 
the effort to reduce demand for greenhouse gas intensive food commodities – few obvious 
points of leverage.  
                                                            
6
 Booth et al. 2007. 
12 
 
 Take “leaky” land out of production ‐ Cropland that is most susceptible to nitrogen loss can be 
taken out of production. The risk here is that this land may be highly productive, so not a good 
choice for set‐asides. 
 Shift production to less nitrogen intensive commodities ‐ Cropping patterns could shift to less 
nitrogen intensive crops. Depending on the level of intervention necessary, this approach could 
lead to indirect land use change and a rise in net greenhouse gas emissions. However, some 
studies suggest that just a small amount of perennials integrated into major crops can have a 
significant impact on nitrogen losses.  
 Reduce the nitrogen intensity of production ‐ Nitrogen losses could be decreased by enhancing 
the efficiency of fertilizer use. This approach is promising because it does not require a change in 
production patterns and in many cases should lead to economic gains for the producers. 
However, it requires a behavioral change which may be difficult to scale quickly.  
 Adoption of conservation practices ‐ Nitrogen losses could be decreased through an increased 
use of conservation practices that filter nitrogen (e.g., buffer strips, tile bioreactors, wetlands, 
grassed waterways). These practices can be very effective at reducing nitrogen losses, but are 
generally not economically advantageous to the producers and require voluntary actions by a 
large number of actors.  
 
 
Progress to date  
The last two approaches, increasing nutrient use efficiency through best management practices for 
fertilizer management and increasing the use of conservation measures that filter nitrogen, are 
commonly championed by conservation groups, and supported by a number of USDA programs. Efforts 
to date have achieved some success in reducing nitrogen losses, but there is still plenty of room for 
further improvement.  
 
The USDA’s Conservation Effects Assessment Project (CEAP) studied the impact of voluntary adoption of 
conservation measures by producers across the US from 2003‐2006 in the Upper Mississippi River Basin, 
the Great Lakes Region, and the Chesapeake Bay. The CEAP found that nitrogen losses have been 
reduced by 18‐29% during these years, with result varying by region. It further determined that 
additional reductions of 27‐41% are possible by increasing the level of treatment, particularly to acres 
that are the most vulnerable to nitrogen losses.  
 
There is likewise a great opportunity to reduce nitrogen losses through increased nutrient use efficiency 
with respect to fertilizer application. Many producers apply more fertilizer than is necessary for crop 
growth thanks to a combination of two primary factors: 1) it is a low‐cost way to hedge against the risk 
of low yields, and 2) the information provided by extension agents and crop advisors is often not 
tailored to specific sites so producers lack sufficient information to manage fertilizers in an adaptive and 
precise manner. A recent study by the USDA’s Economic Research Service finds that a majority of acres 
planted in major commodity crops do not adhere to best management practices, as defined by the 
USDA, leading to hundreds of thousands of tons of excess nitrogen application, primarily concentrated 
in the Midwest. The study further found that some of the most vulnerable land, tile drained land in the 
13 
 
Midwest, are the least likely to comply with best management practices. In fact, data indicate that over 
70% of tiled acres do not meet all three nitrogen management criteria (rate, timing, and method of 
application), which, together, define best management practices.7
 
 
Lessons from Europe 
The European experience shows that controlling agricultural nitrogen application, through both better 
management of manures and the reduced use of synthetic fertilizers, can greatly improve air and water 
quality. These measures have lead to a ~20‐30% reduction in nitrogen losses to the environment in the 
both Denmark and the Netherlands.8
  
 
Though Denmark and the Netherlands have had good success in reducing nitrogen pollution through 
better control of agricultural nitrogen over a relatively short time period, other research in Europe 
shows that in large, complex watersheds with deep ground water systems, the response time can be 
very slow. Historical data from the Thames River in demonstrates that a large step change in nitrogen 
loading in the years 1940 – 1945 from a dramatic rise in fertilizer use was followed by a large step 
change in nitrate concentrations in the river in the 1970s, indicating a response time of ~30 years. The 
reaction time in Denmark and the Netherlands was much faster because neither country has a deep 
ground water system.  
 
Conclusions  
Years of intensification of agricultural productivity and efficiency, along with the promotion of 
conservation best practices, have slowed the growth rate of agricultural greenhouse gas emissions and 
nitrogen pollution over the last decades to almost zero. Still, agriculture remains the leading source of 
nitrogen pollution in most parts of the country and is a notable contributor to US greenhouse gas 
emissions. Further mitigation of agricultural greenhouse gas emissions and nitrogen pollution poses 
major challenges: the opportunities are diffuse, not always economically attractive, generally difficult to 
measure, and largely unregulated. However, the ability of agricultural soils to store additional carbon 
makes the sector’s mitigation potential disproportionately significant compared with its share of 
emissions.  And certain practices are already gaining traction (e.g. conservation tillage), providing 
welcome encouragement to researchers, conservation practitioners, and producers working to lessen 
the environmental footprint of agriculture. Continued efforts to encourage and support research, 
experimentation, and market adoption, as well as creative efforts to attack the problem in new ways 
(e.g. shifting consumption patterns), should prove worthwhile.  
 
 
   
                                                            
7
 USDA, 2011. Nitrogen in Agricultural Systems: Implications for Conservation Policy 
8
 Erisman et al. 2005. 
14 
 
Bibliography 
1) Baker et al., “Net Farm Income and Land Use under a U.S. Greenhouse Gas Cap and Trade,” 
Policy Issues (2010). 
2) Booth and Campbell, “Spring Nitrate Flux in the Mississippi River Basin: A Landscape Model with 
Conservation Applications,” Environmental Science and Technology (2007). 
3) Davidson et al., “Excess Nitrogen in the U.S. Environment: Trends, Risks, and Solutions,” Issues in 
Ecology 15 (2011). 
4) Eagle et al., “Addressing Greenhouse Gas Mitigation Potential of Agricultural Land Management 
in the United States: A Synthesis of the Literature,” Nicholas Institute (2012). 
5) Elobeid et al., “Greenhouse Gas and Nitrogen Fertilizer Scenarios for U.S. Agriculture and Global 
Biofuels,” Iowa State University (2011). 
6) Environmental Protection Agency, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 
1990‐2009,” 2011.  
7) Environmental Protection Agency Science Advisory Board, “Reactive Nitrogen in the United 
States: An Analysis of Inputs, Flows, Consequences, and Management Options,” (2011). 
8) Erisman et al., “The Dutch Nitrogen Cascade in the European Perspective,” Science in China 
(2005).  
9) Food and Agriculture Organization of the United Nations – FAOSTAT 
10) Green et al., “Farming and the Fate of Wild Nature,” Nature (2005) 307: 550‐555. 
11) Howden et al., “Nitrate pollution in intensively farmed regions,” Water Resources Research Vol. 
47 (2011).   
12) McKinsey & Company, “Greenhouse Gas Abatement Cost Curves,” (2009). 
13) Mosnier et al., “The Net Global Effects of Alternative U.S. Biofuel Mandates,” Nicholas Institute, 
(2012). 
14) Murray et al., “Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture,” 
Environmental Protection Agency (2005). 
15) NRCS, “Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Upper 
Mississippi River Basin,” (2010). 
16) NRCS, “Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Great 
Lakes Region,” (2011). 
17) NRCS, “Assessment of the Effects of Conservation Practices on Cultivated Cropland in the 
Chesapeake Bay,” (2011). 
18) Paustian et al., “Agriculture’s Role in Greenhouse Gas Mitigation,” Pew Center on Global Climate 
Change (2006).  
19) Smith et al. “Greenhouse Gas Mitigation in Agriculture,” Philosophical Transactions of the Royal 
Society (2008) 363, 789–813 
20) Stienfeld et al., “Livestock’s Long Shadow,” FAO (2006). 
21) Tomich, T., T. Rosenstock, D. Liptzin, S. Scow, R. Dahlgren, D. Sumner, S. Brodt, K. Thomas, A. 
White, C. Bishop. California Nitrogen Assessment. Unpublished data. Agricultural Sustainability 
Institute, University of California, Davis.  
22) USDA, “Nitrogen in Agricultural Systems: Implications for Conservation Policy,” (2011). 

More Related Content

What's hot

Chelsea Gondeck - Final Thesis
Chelsea Gondeck - Final ThesisChelsea Gondeck - Final Thesis
Chelsea Gondeck - Final ThesisChelsea Gondeck
 
Rudolph: Climate Change, Health & Health Inequities
Rudolph: Climate Change, Health & Health InequitiesRudolph: Climate Change, Health & Health Inequities
Rudolph: Climate Change, Health & Health InequitiesClimateHealthCx
 
The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...Nitin Sukh
 
Resource efficiency is key to resilient local governments
Resource efficiency is key to resilient local governmentsResource efficiency is key to resilient local governments
Resource efficiency is key to resilient local governmentsjdalphond
 
The impact of energy on health
The impact of energy on healthThe impact of energy on health
The impact of energy on healthEenovators Ltd
 
Overcoming Obstacles to High Penetration Renewable Energy in the United States
Overcoming Obstacles to High Penetration Renewable Energy in the United StatesOvercoming Obstacles to High Penetration Renewable Energy in the United States
Overcoming Obstacles to High Penetration Renewable Energy in the United StatesBruce Cohen
 
LEED & the Triple Bottom Line in WV
LEED & the Triple Bottom Line in WVLEED & the Triple Bottom Line in WV
LEED & the Triple Bottom Line in WVZMM, Inc.
 
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 Deadline
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 DeadlineJLCNY Letter to Gov. Cuomo on Missing the Nov. 29 Deadline
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 DeadlineMarcellus Drilling News
 
Food & Water Watch: The Urgent Case for a Ban on Fracking
Food & Water Watch: The Urgent Case for a Ban on FrackingFood & Water Watch: The Urgent Case for a Ban on Fracking
Food & Water Watch: The Urgent Case for a Ban on FrackingMarcellus Drilling News
 
Renewable Energy final paper, Cordell-Hedin-Krahenbuhl
Renewable Energy final paper, Cordell-Hedin-KrahenbuhlRenewable Energy final paper, Cordell-Hedin-Krahenbuhl
Renewable Energy final paper, Cordell-Hedin-KrahenbuhlPancakes
 
Macro overview by Global Fund Exchange
Macro overview by Global Fund ExchangeMacro overview by Global Fund Exchange
Macro overview by Global Fund ExchangeAnric Blatt
 
Clarifying societies’ need for understanding sustainable systems
Clarifying societies’ need for understanding sustainable systemsClarifying societies’ need for understanding sustainable systems
Clarifying societies’ need for understanding sustainable systemsMaurice Dawson
 
Stewart m bio30643_final_
Stewart m bio30643_final_Stewart m bio30643_final_
Stewart m bio30643_final_Melody444
 

What's hot (20)

The Biophilic City Flinders
The Biophilic City   FlindersThe Biophilic City   Flinders
The Biophilic City Flinders
 
Chelsea Gondeck - Final Thesis
Chelsea Gondeck - Final ThesisChelsea Gondeck - Final Thesis
Chelsea Gondeck - Final Thesis
 
March envt
March envtMarch envt
March envt
 
Rudolph: Climate Change, Health & Health Inequities
Rudolph: Climate Change, Health & Health InequitiesRudolph: Climate Change, Health & Health Inequities
Rudolph: Climate Change, Health & Health Inequities
 
The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...The fourth energy paradigm - A case for including water security in the energ...
The fourth energy paradigm - A case for including water security in the energ...
 
Resource efficiency is key to resilient local governments
Resource efficiency is key to resilient local governmentsResource efficiency is key to resilient local governments
Resource efficiency is key to resilient local governments
 
The impact of energy on health
The impact of energy on healthThe impact of energy on health
The impact of energy on health
 
Health and Energy
Health and EnergyHealth and Energy
Health and Energy
 
Overcoming Obstacles to High Penetration Renewable Energy in the United States
Overcoming Obstacles to High Penetration Renewable Energy in the United StatesOvercoming Obstacles to High Penetration Renewable Energy in the United States
Overcoming Obstacles to High Penetration Renewable Energy in the United States
 
Responding to climate change in Northeast Ohio
Responding to climate change in Northeast OhioResponding to climate change in Northeast Ohio
Responding to climate change in Northeast Ohio
 
Topic 8
Topic 8Topic 8
Topic 8
 
LEED & the Triple Bottom Line in WV
LEED & the Triple Bottom Line in WVLEED & the Triple Bottom Line in WV
LEED & the Triple Bottom Line in WV
 
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 Deadline
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 DeadlineJLCNY Letter to Gov. Cuomo on Missing the Nov. 29 Deadline
JLCNY Letter to Gov. Cuomo on Missing the Nov. 29 Deadline
 
Food & Water Watch: The Urgent Case for a Ban on Fracking
Food & Water Watch: The Urgent Case for a Ban on FrackingFood & Water Watch: The Urgent Case for a Ban on Fracking
Food & Water Watch: The Urgent Case for a Ban on Fracking
 
Renewable Energy final paper, Cordell-Hedin-Krahenbuhl
Renewable Energy final paper, Cordell-Hedin-KrahenbuhlRenewable Energy final paper, Cordell-Hedin-Krahenbuhl
Renewable Energy final paper, Cordell-Hedin-Krahenbuhl
 
Macro overview by Global Fund Exchange
Macro overview by Global Fund ExchangeMacro overview by Global Fund Exchange
Macro overview by Global Fund Exchange
 
Fracking_Paper
Fracking_PaperFracking_Paper
Fracking_Paper
 
ObamaEnvironmentDCD
ObamaEnvironmentDCDObamaEnvironmentDCD
ObamaEnvironmentDCD
 
Clarifying societies’ need for understanding sustainable systems
Clarifying societies’ need for understanding sustainable systemsClarifying societies’ need for understanding sustainable systems
Clarifying societies’ need for understanding sustainable systems
 
Stewart m bio30643_final_
Stewart m bio30643_final_Stewart m bio30643_final_
Stewart m bio30643_final_
 

Viewers also liked

Trivia julia (2)
Trivia julia (2)Trivia julia (2)
Trivia julia (2)Niggosom
 
Cea agricultural ghg and n report summary 2012
Cea agricultural ghg and n report summary 2012Cea agricultural ghg and n report summary 2012
Cea agricultural ghg and n report summary 2012allenhopper
 
Present continuous
Present continuousPresent continuous
Present continuousRodrigo Caro
 
The first conditional
The first conditionalThe first conditional
The first conditionalRodrigo Caro
 
Trivia edu (2)
Trivia edu (2)Trivia edu (2)
Trivia edu (2)Niggosom
 
Guided writting júlia martinez
Guided writting júlia martinezGuided writting júlia martinez
Guided writting júlia martinezNiggosom
 
Second conditional
Second conditionalSecond conditional
Second conditionalRodrigo Caro
 
Vigilancia ambiental
Vigilancia ambientalVigilancia ambiental
Vigilancia ambientalJose Roberto
 
Saúde mental no sus (1)
Saúde mental no sus (1)Saúde mental no sus (1)
Saúde mental no sus (1)Jose Roberto
 
Enfermagem psiquiatrica
Enfermagem psiquiatricaEnfermagem psiquiatrica
Enfermagem psiquiatricaJose Roberto
 
Comparison of adjectives
Comparison of adjectivesComparison of adjectives
Comparison of adjectivesRodrigo Caro
 

Viewers also liked (16)

Trivia julia (2)
Trivia julia (2)Trivia julia (2)
Trivia julia (2)
 
Cea agricultural ghg and n report summary 2012
Cea agricultural ghg and n report summary 2012Cea agricultural ghg and n report summary 2012
Cea agricultural ghg and n report summary 2012
 
Present continuous
Present continuousPresent continuous
Present continuous
 
The first conditional
The first conditionalThe first conditional
The first conditional
 
Adverbs worksheet
Adverbs worksheetAdverbs worksheet
Adverbs worksheet
 
Trivia edu (2)
Trivia edu (2)Trivia edu (2)
Trivia edu (2)
 
Guided writting júlia martinez
Guided writting júlia martinezGuided writting júlia martinez
Guided writting júlia martinez
 
Present simple
Present simplePresent simple
Present simple
 
Zero conditional
Zero conditionalZero conditional
Zero conditional
 
Dst e Aids
Dst e AidsDst e Aids
Dst e Aids
 
Second conditional
Second conditionalSecond conditional
Second conditional
 
Vigilancia ambiental
Vigilancia ambientalVigilancia ambiental
Vigilancia ambiental
 
Present perfect
Present perfectPresent perfect
Present perfect
 
Saúde mental no sus (1)
Saúde mental no sus (1)Saúde mental no sus (1)
Saúde mental no sus (1)
 
Enfermagem psiquiatrica
Enfermagem psiquiatricaEnfermagem psiquiatrica
Enfermagem psiquiatrica
 
Comparison of adjectives
Comparison of adjectivesComparison of adjectives
Comparison of adjectives
 

Similar to TESTING DOCUMENT WOOO

Cea agricultural ghg and n report 2012 public
Cea agricultural ghg and n report 2012 publicCea agricultural ghg and n report 2012 public
Cea agricultural ghg and n report 2012 publicallenhopper
 
The Negative Effects Of Renewable Energy
The Negative Effects Of Renewable EnergyThe Negative Effects Of Renewable Energy
The Negative Effects Of Renewable EnergyJulie Gonzalez
 
coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012Coralie Rigaud
 
Ecological Footprint and Biospherical límits
Ecological Footprint and Biospherical límitsEcological Footprint and Biospherical límits
Ecological Footprint and Biospherical límitsMauricio Osorio
 
Huella Ecológica y Límites Biosféricos
Huella Ecológica y Límites BiosféricosHuella Ecológica y Límites Biosféricos
Huella Ecológica y Límites BiosféricosMauricio Osorio
 
Kenner, 2016. Reducing inequality and carbon footprints within countries
Kenner, 2016. Reducing inequality and carbon footprints within countriesKenner, 2016. Reducing inequality and carbon footprints within countries
Kenner, 2016. Reducing inequality and carbon footprints within countriesDario Kenner
 
Environmental Science.pdf
Environmental Science.pdfEnvironmental Science.pdf
Environmental Science.pdfAnkitDutta44
 
Air Pollution In The Us Essay
Air Pollution In The Us EssayAir Pollution In The Us Essay
Air Pollution In The Us EssayHeather Bjugan
 
The Role Of Climate Change In Canada
The Role Of Climate Change In CanadaThe Role Of Climate Change In Canada
The Role Of Climate Change In CanadaChelsea Porter
 
Environmental problems around the world - Contemporary Social Issues
Environmental problems around the world - Contemporary Social IssuesEnvironmental problems around the world - Contemporary Social Issues
Environmental problems around the world - Contemporary Social Issuesdomwright93
 
State of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationState of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationAmanda Diep (Short)
 
State of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationState of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationKatelin Breck
 
IntroductionWelcome to the year 2050. Where there are no more .docx
IntroductionWelcome to the year 2050. Where there are no more .docxIntroductionWelcome to the year 2050. Where there are no more .docx
IntroductionWelcome to the year 2050. Where there are no more .docxvrickens
 
Environmentalism in Popular Culture
Environmentalism in Popular CultureEnvironmentalism in Popular Culture
Environmentalism in Popular Cultureijtsrd
 

Similar to TESTING DOCUMENT WOOO (20)

Cea agricultural ghg and n report 2012 public
Cea agricultural ghg and n report 2012 publicCea agricultural ghg and n report 2012 public
Cea agricultural ghg and n report 2012 public
 
Macro Environment Essays
Macro Environment EssaysMacro Environment Essays
Macro Environment Essays
 
The Negative Effects Of Renewable Energy
The Negative Effects Of Renewable EnergyThe Negative Effects Of Renewable Energy
The Negative Effects Of Renewable Energy
 
What Is Environmental Degradation
What Is Environmental DegradationWhat Is Environmental Degradation
What Is Environmental Degradation
 
coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012coralie-rigaud-DDO9-memoire-2012
coralie-rigaud-DDO9-memoire-2012
 
Climate Change And Environmental Issues
Climate Change And Environmental IssuesClimate Change And Environmental Issues
Climate Change And Environmental Issues
 
Ecological Footprint and Biospherical límits
Ecological Footprint and Biospherical límitsEcological Footprint and Biospherical límits
Ecological Footprint and Biospherical límits
 
Huella Ecológica y Límites Biosféricos
Huella Ecológica y Límites BiosféricosHuella Ecológica y Límites Biosféricos
Huella Ecológica y Límites Biosféricos
 
Kenner, 2016. Reducing inequality and carbon footprints within countries
Kenner, 2016. Reducing inequality and carbon footprints within countriesKenner, 2016. Reducing inequality and carbon footprints within countries
Kenner, 2016. Reducing inequality and carbon footprints within countries
 
Climate Change Essays
Climate Change EssaysClimate Change Essays
Climate Change Essays
 
Amazon Rainforest Essay
Amazon Rainforest EssayAmazon Rainforest Essay
Amazon Rainforest Essay
 
Environmental Science.pdf
Environmental Science.pdfEnvironmental Science.pdf
Environmental Science.pdf
 
Air Pollution In The Us Essay
Air Pollution In The Us EssayAir Pollution In The Us Essay
Air Pollution In The Us Essay
 
The Role Of Climate Change In Canada
The Role Of Climate Change In CanadaThe Role Of Climate Change In Canada
The Role Of Climate Change In Canada
 
Environmental problems around the world - Contemporary Social Issues
Environmental problems around the world - Contemporary Social IssuesEnvironmental problems around the world - Contemporary Social Issues
Environmental problems around the world - Contemporary Social Issues
 
State of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationState of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nation
 
State of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nationState of the States Report: A new perspective on the wealth of our nation
State of the States Report: A new perspective on the wealth of our nation
 
IntroductionWelcome to the year 2050. Where there are no more .docx
IntroductionWelcome to the year 2050. Where there are no more .docxIntroductionWelcome to the year 2050. Where there are no more .docx
IntroductionWelcome to the year 2050. Where there are no more .docx
 
Environmental Problem Essay
Environmental Problem EssayEnvironmental Problem Essay
Environmental Problem Essay
 
Environmentalism in Popular Culture
Environmentalism in Popular CultureEnvironmentalism in Popular Culture
Environmentalism in Popular Culture
 

Recently uploaded

GenAI and AI GCC State of AI_Object Automation Inc
GenAI and AI GCC State of AI_Object Automation IncGenAI and AI GCC State of AI_Object Automation Inc
GenAI and AI GCC State of AI_Object Automation IncObject Automation
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfinfogdgmi
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesDavid Newbury
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationIES VE
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxMatsuo Lab
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IES VE
 
Bird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemBird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemAsko Soukka
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.YounusS2
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024D Cloud Solutions
 
NIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopNIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopBachir Benyammi
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfAijun Zhang
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureEric D. Schabell
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Adtran
 
Spring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfSpring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfAnna Loughnan Colquhoun
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding TeamAdam Moalla
 
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdfJamie (Taka) Wang
 
RAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIRAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIUdaiappa Ramachandran
 

Recently uploaded (20)

GenAI and AI GCC State of AI_Object Automation Inc
GenAI and AI GCC State of AI_Object Automation IncGenAI and AI GCC State of AI_Object Automation Inc
GenAI and AI GCC State of AI_Object Automation Inc
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdf
 
Linked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond OntologiesLinked Data in Production: Moving Beyond Ontologies
Linked Data in Production: Moving Beyond Ontologies
 
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve DecarbonizationUsing IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
Using IESVE for Loads, Sizing and Heat Pump Modeling to Achieve Decarbonization
 
Introduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptxIntroduction to Matsuo Laboratory (ENG).pptx
Introduction to Matsuo Laboratory (ENG).pptx
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
 
Bird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemBird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystem
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024
 
NIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 WorkshopNIST Cybersecurity Framework (CSF) 2.0 Workshop
NIST Cybersecurity Framework (CSF) 2.0 Workshop
 
Machine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdfMachine Learning Model Validation (Aijun Zhang 2024).pdf
Machine Learning Model Validation (Aijun Zhang 2024).pdf
 
OpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability AdventureOpenShift Commons Paris - Choose Your Own Observability Adventure
OpenShift Commons Paris - Choose Your Own Observability Adventure
 
Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™Meet the new FSP 3000 M-Flex800™
Meet the new FSP 3000 M-Flex800™
 
Spring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdfSpring24-Release Overview - Wellingtion User Group-1.pdf
Spring24-Release Overview - Wellingtion User Group-1.pdf
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 
9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team9 Steps For Building Winning Founding Team
9 Steps For Building Winning Founding Team
 
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
20200723_insight_release_plan_v6.pdf20200723_insight_release_plan_v6.pdf
 
RAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AIRAG Patterns and Vector Search in Generative AI
RAG Patterns and Vector Search in Generative AI
 

TESTING DOCUMENT WOOO