SlideShare uma empresa Scribd logo
1 de 5
TRANSPOSIÇÃO DE FUSOS 
A questão da transposição de fusos tem sido um dos problemas cartográficos mais suscitandes de 
indagações por parte dos profissionais da engenharia da mensuração, quando dos trabalhos 
geodésicos de posicionamento com GPS ou numa poligonação eletrônica com transporte de 
coordenadas. 
1 - O que fazer quando estou levantando uma poligonal de uma fazenda, e o meu GPS acusa que 
mudei de fuso? 
2 - Como calcular a área e executar os desenhos no meu sistema CAD, se as coordenadas de 
vários pontos próximos uns dos outros, ora estão no fuso no qual iniciei a poligonal, ora estão no 
fuso contíguo? 
3 - Como calcular as coordenadas e editar o desenho de um eixo (Estrada, Oleoduto, Eletrificação 
etc.), que podem iniciar num fuso e terminar em out ro? 
4 - Como locar uma sequencia de pontos geodésicos de um mesmo projeto, (assentamento do 
INCRA, por exemplo), se o projeto está exatamente nos limites de um fuso? 
Estas questões nos tem chegado com muita frequëncia ao longo de nossa carreira como profes sor 
de geodésia e topografia, e, por isso, resolvemos colocar neste artigo, algumas das 
recomendações e até mesmo de soluções que temos oferecido. 
FUSO CARTOGRÁFICO 
Em primeiro lugar, existe uma certa confusão quanto ao verdadeiro entendimento do que seja 
"fuso", em termos cartográficos. 
O sistema de fusos é uma sub-divisão do equador terrestre em faixas de 6° de amplitude, 
contadas e numeradas a partir do anti-meridiano de Greenwich (180°), no sentido anti-horário e 
adotado pelo sistema UTM como base de orientação dos cálculos cartográficos, no que tange ao 
sistema de projeção e eixos plano-retangulares. 
São contados e numerados de 1 a 60 e identificados conforme o exemplo a seguir: 
Fuso 1 (180° a 174°) 
Fuso 2 (174° a 168°) 
-------------------- 
-------------------- 
Fuso 30 (6° a 0°) 
Fuso 31 (0° a 6°) 
-------------------- 
-------------------- 
Fuso 59 (168° a 174°) 
Fuso 60 (174° a 180°) 
O Brasil é coberto por 8 fusos, mais especificamente, pelos fusos 18 (78° a 72°) até o fuso 25 
(36° a 30°), perfazendo uma amplitude total de 48°. 
Existem muitas outras implicações para o entendimento do sistema de fusos cartográficos no que 
tange a sua história, sua relação com a "carta do mundo ao milionésico" e a história da 
cartografia brasileira, mas isto não é assunto para o momento. 
SISTEMA DE EIXOS 
O Brasil adota o sistema UTM para o desenvolvimento dos cálculos geodésicos e a projeção 
conforme de Gauss, como o sistema de projeção adequado para a cartografia brasileira. Isto 
porque o próprio sistema UTM foi desenvolvido para ser aplicado na projeção conforme de Gauss.
Com algumas pequenas adaptações, este é o nosso sistema de cálculos geodésicos e 
cartográficos. 
Uma das característica do sistema UTM e que nos interessa neste estudo, é a adoção dos 
meridianos centrais (MC) e do equador, como o sistema de eixos específico para cada fuso, ou 
seja, o fuso 22 (54° a 48°) tem como sistema de eixos, o seu meridiano central (51°) e o 
equador. 
Outra característca é a adoção dos valores 500000 ms (500 Kms), para o meridiano central e 
10000000 de metros (10000 Kms), para o equador, de tal forma que a orígem do sistema de 
eixos de cada fuso, fica no cruzamento do respectivo MC com o equador e já tem, como 
coordenadas de orígem, E=500000 e N=10000000), isto para ponto ao sul do equador. Para o 
emisfério norte, o valor de N não sofre incrementação, ou seja as coordenadas de origem são: E 
= 500000 e N = 0. 
E e N significam, "para ESTE" e "para NORTE", respctivamente. 
Desta forma, garantem-se as coordenadas sempre positivas, tanto do lado ESTE como OESTE do 
fuso, tanto no hemisfério sul quanto no hemisfério norte. 
Um ponto, portanto, a OESTE do MC de um fuso qualquer e a 120000 ms de distância (120 Kms) 
e ainda a 3000000 ms do equador (3000 Kms), teria suas coordenadas em E= 380000,000 e N= 
7000000,000. Este mesmo ponto do lado ESTE teria as coordenadas E=620000,000 e N= 
7000000,000. 
TRANSPOSIÇÃO DE FUSOS 
Cada posicionamento geodésico, portanto, deve estar referenciado ao sistema de eixo que lhe é 
correspondente, segundo o fuso ao qual pertença. 
Os sistemas de GPS, quando em uso no campo, automaticamente registram as coordenadas 
planas segundo o fuso dominante para cada momento, e quando estamos trabalhando nas 
extremidades de um fuso, este fato pode causar certo desconforto ao operador menos avisado. 
Ocorre na verdade, que o Sistema GPS registra o posicionamento em termos de coordenadas 
geográficas (Latitude e Longitude), mais especificamente em WGS_84, porém, devidamente 
configurado, apresenta estas coordenadas já convertidas para o nosso ambiente mais comum, 
qual seja, em coordenadas planas relacionadas ao fuso dominante, e no sistema SAD_69, 
ocorrendo daí, momentos em que as coordenadas planas apresentadas estão referenciadas ao 
fuso adjacente. 
Citamos o GPS, tendo em vista o seu uso mais generalizado, mas o mesmo fenômeno pode 
ocorrer no momento dos cálculos de uma poligonação com transporte de coordenadas, em 
que o calculista sabe que aquele ponto seguinte já pertence ao fuso contíguo. 
AO QUESTIONAMENTO MOTIVADOR DESTE ARTIGO... 
Em resposta às questões colocadas inicialmente, propomos as seguintes soluções: 
1 - O que fazer quando estou levantando uma poligonal de uma fazenda, e o meu GPS acusa que 
mudei de fuso? 
Nada. Continue trabalhando. No momento do pós-processamento, quando do cálculo das áreas , 
desenhos, edição de memoriais e relatórios, tenha em mente o conceito que acabamos de 
colocar. 
Para efeito de cálculos o fuso pode ser expandido em até 30´. 
Após os cálculos relacione os pontos sabidamente do fuso seguinte ao seu respect ivo MC.
2 - Como calcular a área e executar os desenhos no meu sistema CAD, se as coordenadas de 
vários pontos próximos uns dos outros, ora estão no fuso no qual iniciei a poligonal, ora estão no 
fuso contíguo? 
Se o problema for só a questão de áreas, desenhos e relatórios, proceda como descrito acima. 
3 - Como calcular as coordenadas e editar o desenho de um eixo (Estrada, Oleoduto, Eletrificação 
etc.), que podem iniciar num fuso e terminar em outro após longos quilômetros? 
No caso de uma poligonação elet rônica com transporte de coordenadas, onde o "caminhamento" 
ultrapassa em muitos quilômetros um fuso adjacente, deve-se trabalhar com transporte de 
coordenadas geográficas e, posteriormente, para efeito de relatórios, cada ponto pode ser 
transformado em coordenadas planas, segundo o sistema UTM e considerado o fuso ao qual 
pertença. 
4 - Como locar uma seqüência de pontos geodésicos de um mesmo projeto, (assentamento do 
INCRA, por exemplo), se o projeto está exatamente nos limites de um fuso? 
Para que o projeto tenha sido desenvolvido exatamente na extremidade de um fuso, 
forçosamente o projetista deve ter considerado a origens das coordenadas em função do fuso 
dominante. Dai, basta organizar o projeto de locação nestas condições. Se o projeto é 
apresentado, parte num fuso, parte no outro, para efeito de locação, as coordenadas do fuso 
adjacente devem ser convertidas para o fuso dominante 
EXEMPLO NUMÉRICO 
Sejam dois pontos dados pelas suas coordenadas geográficas, no caso, valores inteiros até o 
minutos para simplificar o entendimento. 
Ponto 1 
Latitude 
Longitude 
Altitude 
= 
= 
= 
24°58'00" Sul 
47°57'00" Wgr 
500 metros 
Ponto 2 
Latitude 
Longitude 
Altitude 
= 
= 
= 
25°00'00" Sul 
47°59'00" Wgr 
570 metros 
Os dois pontos, pela análise pura e simples de quem trabalha com geodésia, estão localizados a 
esquerda (OESTE) do meridiano central do FUSO 23. 
O calculo das coordenadas planas destes pontos, com relação ao FUSO 23, resulta: 
Ponto 1: E = 202149.7198 N = 7235495.2505 
Ponto 2: E = 198863.5349 N = 7231727.3877 
Os elementos técnicos desta base geodésica (1 para 2), resultam: 
Azimute plano...: 221°05´37",2645 
Azimute elips....: 42°20´26",0526 
Azimute geogr...: 222°20´26",0526 
Dist plana.........: 4.999,580 metros 
Dist elips..........: 4.996,043 metros 
Dist Topográfica: 4.996,953 metros (inclinada)
Fator K.............: 1.00070791618 
Ang. Red..........: 0°00´02",8703 
Convergência meridiana em 1 C = 1°14´45",9178 
Os mesmos dois pontos, por estarem próximos do meridiano de 48°, limítrofe entre os FUSOS 
(22 e 23), e talvez por força de projeto, podem ser referenciados ao FUSO 22, cujo MC vale 51°, 
resultando: 
Ponto 1: E = 807952.9810 N = 7235271.7674 
Ponto 2: E = 804503.1199 N = 7231652.8204 
Da mesma forma, os elementos técnicos desta base geodésica (1 para 2), nesta nova referência, 
resultam: 
Azimute plano...: 223°37´47",0904 
Azimute elips....: 42°20´26",0419 
Azimute geogr...: 222°20´26",0419 
Dist plana.........: 4.999,834 
Dist elips..........: 4.996,043 
Dist Topográfica: 4.996,953 
Fator K.............: 1.00075831537 
Ang. Red..........: -0°00´02",8292 
Convergência meridiana C = -1°17´18",2191 
Estudos: 
1 - Ao observador menos avisado, a primeira vista, ocorre um fenômeno interessante, qual seja, 
a diferença entre os azimutes planos da base, quando esta está referenciada a um ou outro 
FUSO. 
 Isto ocorre porque o azimute plano é decorrente da Convergência Meridiana (CM), bem 
como, do Ângulo de redução na base. 
 Para que o azimute geográfico permaneça inalterado, os valores da CM e do ângulo de 
redução variam, provocando uma alteração no Azimute Plano. Isto é consequencia da 
"Projeção conforme de Gauss", que por sua vez é variante da "Projeção Transversa de 
Mercator". 
 No caso dos cálculos geodésicos e cartográficos, segundo o sistema UTM, a projeção 
adotada é a "Projeção Conforme de Gauss". O sistema UTM é apenas uma metolologia de 
cálculos, não é um sistema de projeções. Por conseguinte, não existem coordenadas UTM, 
mas sim, "Coordenadas Plano Retangulares", calculadas, eventualmente, pelo sistema 
UTM. 
 Como o próprio nome diz, a projeção de Gauss é "Conforme", ou seja, os valores 
angulares (Azimutes, Ângulos entre alinhamentos, Rumos etc.), calculados a partir de 
coordenadas, guardam uma "conformidade" ou ainda, uma "igualdade", com os mesmos 
valores medidos no campo. As deformidades ficam por conta dos valores lineares, que são 
controlados pelos limites impostos para os FUSOS. 
2 - Uma observação seguinte fica por conta da diferença ocasional, entre os azimutes elipsóidicos 
e geográficos (Norte verdadeiro) que deveriam ser iguais nas duas situações. Esta diferença, da 
ordem de 0",0101 (Um centésimo de segundo sexagesimal), ocorre em função da "violação" das 
regras, ou seja, as equações dos cálculos geodésicos, segundo o sistema UTM para a projeção 
conforme de Gauss, foram desenvolvidas para o limite de fusos de 6°. Ao ultrapassarmos estes 
limites, mesmo que, no máximo, os 30´ permitidos, os efeitos, embora pequenos, se 
apresentam. 
3 - O valor da CM "aparenta" uma anulação porque existe a troca de sinais, mas isto é um 
engano. Embora o valor da convergência meridiana esteja diretamente agregado ao cálculo do
azimute plano, o que realmente interfere no resultado final é a inversão da curvatura da 
transformada representativa da meridiana local, além, é claro, da curvatura da transformada da 
base em questão (sempre voltadas para o MC do fuso dominante). 
4 - As distâncias variam, por sua vez, em função do plano de projeção. Quanto maior a distância 
da base com relação ao MC do fuso, maior a deformação. Observe-se, neste exercício, o fator K 
do fuso 22 que é maior do que o K do fuso 23. 
5 - O fato mais importante a ser observado, é o valor da distância topográfica inclinada, que 
permanece igual nas duas situações. Melhor dizendo, permanece inalterada em qualquer 
situação. 
Conclusões: 
Existem várias ocasiões no exercício da profissão do mensurador em que deparamos com 
a situação de transposição de fusos. Hoje, com o advento do computador e do GPS, isto se 
resolve facilmente, desde que o profissional seja realmente competente e conheça 
profundamente os preceitos geodésicos e cartográficos. 
Abre aspas (") 
A lei 10.267, prescreve, entre tantas outras coisas, a exigência de um 
profissional habilitado para o exercício do georreferenciamento de projetos 
referentes ao novo CNIR (Cadastro Nacional de Imóveis Rurais). Nada mais 
justo, porém, esta mesma lei impõe que o memorial descritivo seja elaborado a 
partir das coordenadas georreferenciadas. Isto é um erro, e temos combatido 
esta atrocidade no sentido de fazerem ver, quem de direito, que os valores 
lineares calculados a partir de coordenadas planas de projeção, a exemplo deste 
exercício, variam conforme a posição do projeto dentro do FUSO, ao passo que a 
distância topográfica permanece inalterada, não importando o posicionamento 
do projeto. 
Ao apresentarmos, em cartório, um memorial descritivo a partir das coordenadas 
planas de projeção cartográfica, estaremos mentindo, pasmem, amparados por 
lei. 
A obra em si pode e deve ser georreferenciada, em pelo menos um ponto, mas o 
memorial e consequentemente a área, jamais deverá ser elaborado a partir das 
coordenadas planas de projeção cartográfica. Esta é nossa posição. 
Fecha aspas(") 
Nos projetos de medições de glebas (poligonais fechadas), para os cálculos de distâncias e 
áreas e edição de memoriais, o profissional deve trabalhar sempre com a referência de um fuso, 
mesmo com relação à grafação dos valores das quadriculas na edição de uma carta 
georreferenciada. Se for necessário, por exigências do projeto, pode editar um relatório técnico 
contendo as coordenadas referenciadas aos FUSOS reais. 
Nos projetos de poligonais longitudinais (polígonos abertos), havendo a transposição de 
fusos por longos quilômetros, deve-se operar a técnica aqui mencionada para o momento da 
transição e continuar os cálculos considerando-se o novo FUSO. 
Djacir Ramos 
Eng. Agrimensor 
Consultor para assuntos geodésicos e de georreferenciamento.

Mais conteúdo relacionado

Mais procurados

Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com solução
Maíra Barros
 
Aula 8 métodos de levantamento de detalhes - avaliações de áreas(2)
Aula 8    métodos de levantamento de detalhes  - avaliações de áreas(2)Aula 8    métodos de levantamento de detalhes  - avaliações de áreas(2)
Aula 8 métodos de levantamento de detalhes - avaliações de áreas(2)
Felipe Serpa
 
Coordenadas Geográficas e Pesquisa de Campo
Coordenadas Geográficas  e Pesquisa de CampoCoordenadas Geográficas  e Pesquisa de Campo
Coordenadas Geográficas e Pesquisa de Campo
unesp
 
Calculo de rumos e azimutes2
Calculo de rumos e azimutes2Calculo de rumos e azimutes2
Calculo de rumos e azimutes2
botelho_19
 

Mais procurados (20)

3 curvas horizontais
3   curvas horizontais3   curvas horizontais
3 curvas horizontais
 
08 f simples tabelas
08 f simples tabelas08 f simples tabelas
08 f simples tabelas
 
Apostila ler3402007
Apostila ler3402007Apostila ler3402007
Apostila ler3402007
 
Topografia exercícios propostos com solução
Topografia    exercícios  propostos com soluçãoTopografia    exercícios  propostos com solução
Topografia exercícios propostos com solução
 
Topografia 2
Topografia 2Topografia 2
Topografia 2
 
Exercicios totografia 29 09-10
Exercicios totografia 29 09-10Exercicios totografia 29 09-10
Exercicios totografia 29 09-10
 
Apostila de topografia
Apostila de topografiaApostila de topografia
Apostila de topografia
 
Estradas
EstradasEstradas
Estradas
 
Apostila 3 topografia
Apostila 3 topografiaApostila 3 topografia
Apostila 3 topografia
 
Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)Glauco exercicios resolvidos (1)
Glauco exercicios resolvidos (1)
 
Volume2006a
Volume2006aVolume2006a
Volume2006a
 
Aula 8 métodos de levantamento de detalhes - avaliações de áreas(2)
Aula 8    métodos de levantamento de detalhes  - avaliações de áreas(2)Aula 8    métodos de levantamento de detalhes  - avaliações de áreas(2)
Aula 8 métodos de levantamento de detalhes - avaliações de áreas(2)
 
Exercícios de rumos e azimutes
Exercícios de rumos e azimutesExercícios de rumos e azimutes
Exercícios de rumos e azimutes
 
Coordenadas Geográficas e Pesquisa de Campo
Coordenadas Geográficas  e Pesquisa de CampoCoordenadas Geográficas  e Pesquisa de Campo
Coordenadas Geográficas e Pesquisa de Campo
 
Mat triangulo 003
Mat triangulo  003Mat triangulo  003
Mat triangulo 003
 
Topografia basica
Topografia basicaTopografia basica
Topografia basica
 
Calculo de rumos e azimutes2
Calculo de rumos e azimutes2Calculo de rumos e azimutes2
Calculo de rumos e azimutes2
 
Apostila 2 topografia
Apostila 2 topografiaApostila 2 topografia
Apostila 2 topografia
 
Aula 02 topografia UFPI 2018.1
Aula 02 topografia UFPI 2018.1Aula 02 topografia UFPI 2018.1
Aula 02 topografia UFPI 2018.1
 
Lista coseno seno
Lista coseno senoLista coseno seno
Lista coseno seno
 

Destaque

CSP_Kenneth Kaftan_13449
CSP_Kenneth Kaftan_13449CSP_Kenneth Kaftan_13449
CSP_Kenneth Kaftan_13449
Kenneth Kaftan
 
Jennifer lynn lópez
Jennifer lynn lópezJennifer lynn lópez
Jennifer lynn lópez
Brayan Fabian
 
Nos formamos como conductores copia
Nos formamos como conductores   copiaNos formamos como conductores   copia
Nos formamos como conductores copia
sandra-paty-adri
 

Destaque (16)

La Economía
La Economía La Economía
La Economía
 
Desarrollo Humano
Desarrollo Humano Desarrollo Humano
Desarrollo Humano
 
CSP_Kenneth Kaftan_13449
CSP_Kenneth Kaftan_13449CSP_Kenneth Kaftan_13449
CSP_Kenneth Kaftan_13449
 
Dados de Mercado de Seminovos e usados - Julho de 2015
Dados de Mercado de Seminovos e usados - Julho de 2015Dados de Mercado de Seminovos e usados - Julho de 2015
Dados de Mercado de Seminovos e usados - Julho de 2015
 
Tc ub2000 p-specification- www.ttbvs.com
Tc ub2000 p-specification- www.ttbvs.comTc ub2000 p-specification- www.ttbvs.com
Tc ub2000 p-specification- www.ttbvs.com
 
Pruebas
PruebasPruebas
Pruebas
 
Trabajo de imfo...
Trabajo de imfo...Trabajo de imfo...
Trabajo de imfo...
 
¥Coins: Your virtual currency for japan
¥Coins: Your virtual currency for japan¥Coins: Your virtual currency for japan
¥Coins: Your virtual currency for japan
 
Jennifer lynn lópez
Jennifer lynn lópezJennifer lynn lópez
Jennifer lynn lópez
 
Nos formamos como conductores copia
Nos formamos como conductores   copiaNos formamos como conductores   copia
Nos formamos como conductores copia
 
Emotional 150321094649-conversion-gate01
Emotional 150321094649-conversion-gate01Emotional 150321094649-conversion-gate01
Emotional 150321094649-conversion-gate01
 
Dietand feed final
Dietand feed finalDietand feed final
Dietand feed final
 
Comparing and superlatives
Comparing and superlativesComparing and superlatives
Comparing and superlatives
 
Tesoro much better
Tesoro much betterTesoro much better
Tesoro much better
 
Spring Deans List
Spring Deans ListSpring Deans List
Spring Deans List
 
Llamadas..
Llamadas.. Llamadas..
Llamadas..
 

Semelhante a Transposicao de-fusos

Noções de cartografia
Noções de cartografiaNoções de cartografia
Noções de cartografia
Agnobel Silva
 
Gps na sala de aula
Gps na sala de aulaGps na sala de aula
Gps na sala de aula
EASYMATICA
 
Cartografia aula 9 - sistemas de coordenadas - utm
Cartografia   aula 9 - sistemas de coordenadas - utmCartografia   aula 9 - sistemas de coordenadas - utm
Cartografia aula 9 - sistemas de coordenadas - utm
Fabrício Almeida
 
Pp 01 viagens com gps1 vff
Pp 01   viagens com gps1 vffPp 01   viagens com gps1 vff
Pp 01 viagens com gps1 vff
Binucha
 

Semelhante a Transposicao de-fusos (20)

Estudo utm
Estudo utmEstudo utm
Estudo utm
 
Estudo utm
Estudo utmEstudo utm
Estudo utm
 
Apostila de topografia
Apostila de topografiaApostila de topografia
Apostila de topografia
 
Topografia, topografia , topografia.....
Topografia, topografia , topografia.....Topografia, topografia , topografia.....
Topografia, topografia , topografia.....
 
5 levant top_planimet
5 levant top_planimet5 levant top_planimet
5 levant top_planimet
 
Levantamento Topografico Palnimetrico
Levantamento Topografico PalnimetricoLevantamento Topografico Palnimetrico
Levantamento Topografico Palnimetrico
 
Noções de cartografia
Noções de cartografiaNoções de cartografia
Noções de cartografia
 
Introdução Geoprocessamento e GPS
Introdução Geoprocessamento e GPSIntrodução Geoprocessamento e GPS
Introdução Geoprocessamento e GPS
 
RELATÓRIO  DE  ATIVIDADES  DE  CAMPO  DA  DISCIPLINA  DE  TOPOGRAFIA: Estação...
RELATÓRIO  DE  ATIVIDADES  DE  CAMPO  DA  DISCIPLINA  DE  TOPOGRAFIA: Estação...RELATÓRIO  DE  ATIVIDADES  DE  CAMPO  DA  DISCIPLINA  DE  TOPOGRAFIA: Estação...
RELATÓRIO  DE  ATIVIDADES  DE  CAMPO  DA  DISCIPLINA  DE  TOPOGRAFIA: Estação...
 
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMOCAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
CAPITULO_1_INTRODUÇÃO À TOPOGRAFIA, ESTUDO DE AZIMUTES , RUMO
 
Arcos e Ângulos
Arcos e Ângulos Arcos e Ângulos
Arcos e Ângulos
 
Utm
UtmUtm
Utm
 
Gps na sala de aula
Gps na sala de aulaGps na sala de aula
Gps na sala de aula
 
Módulo Cartografia.ppt
Módulo Cartografia.pptMódulo Cartografia.ppt
Módulo Cartografia.ppt
 
estacao_livre.pdf
estacao_livre.pdfestacao_livre.pdf
estacao_livre.pdf
 
Cartografia aula 9 - sistemas de coordenadas - utm
Cartografia   aula 9 - sistemas de coordenadas - utmCartografia   aula 9 - sistemas de coordenadas - utm
Cartografia aula 9 - sistemas de coordenadas - utm
 
Pp 01 viagens com gps1 vff
Pp 01   viagens com gps1 vffPp 01   viagens com gps1 vff
Pp 01 viagens com gps1 vff
 
Normas gps
Normas gpsNormas gps
Normas gps
 
TOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdfTOPOGRAFIA_II_APOSTILA.pdf
TOPOGRAFIA_II_APOSTILA.pdf
 
RELATÓRIO DE ATIVIDADES DE CAMPO SOBRE USO DO TEODOLITO
RELATÓRIO DE ATIVIDADES DE CAMPO SOBRE USO DO TEODOLITORELATÓRIO DE ATIVIDADES DE CAMPO SOBRE USO DO TEODOLITO
RELATÓRIO DE ATIVIDADES DE CAMPO SOBRE USO DO TEODOLITO
 

Último (6)

ATIVIDADE 1 - FSCE - FORMAÇÃO SOCIOCULTURAL E ÉTICA II - 52_2024.pdf
ATIVIDADE 1 - FSCE - FORMAÇÃO SOCIOCULTURAL E ÉTICA II - 52_2024.pdfATIVIDADE 1 - FSCE - FORMAÇÃO SOCIOCULTURAL E ÉTICA II - 52_2024.pdf
ATIVIDADE 1 - FSCE - FORMAÇÃO SOCIOCULTURAL E ÉTICA II - 52_2024.pdf
 
Proposta de dimensionamento. PROJETO DO CURSO 2023.pptx
Proposta de dimensionamento. PROJETO DO CURSO 2023.pptxProposta de dimensionamento. PROJETO DO CURSO 2023.pptx
Proposta de dimensionamento. PROJETO DO CURSO 2023.pptx
 
SEG NR 18 - SEGURANÇA E SAÚDE O TRABALHO NA INDUSTRIA DA COSTRUÇÃO CIVIL.pptx
SEG NR 18 - SEGURANÇA E SAÚDE O TRABALHO NA INDUSTRIA DA COSTRUÇÃO CIVIL.pptxSEG NR 18 - SEGURANÇA E SAÚDE O TRABALHO NA INDUSTRIA DA COSTRUÇÃO CIVIL.pptx
SEG NR 18 - SEGURANÇA E SAÚDE O TRABALHO NA INDUSTRIA DA COSTRUÇÃO CIVIL.pptx
 
treinamento de moldagem por injeção plástica
treinamento de moldagem por injeção plásticatreinamento de moldagem por injeção plástica
treinamento de moldagem por injeção plástica
 
CONCEITOS BÁSICOS DE CONFIABILIDADE COM EMBASAMENTO DE QUALIDADE
CONCEITOS BÁSICOS DE CONFIABILIDADE COM EMBASAMENTO DE QUALIDADECONCEITOS BÁSICOS DE CONFIABILIDADE COM EMBASAMENTO DE QUALIDADE
CONCEITOS BÁSICOS DE CONFIABILIDADE COM EMBASAMENTO DE QUALIDADE
 
ST 2024 Apresentação Comercial - VF.ppsx
ST 2024 Apresentação Comercial - VF.ppsxST 2024 Apresentação Comercial - VF.ppsx
ST 2024 Apresentação Comercial - VF.ppsx
 

Transposicao de-fusos

  • 1. TRANSPOSIÇÃO DE FUSOS A questão da transposição de fusos tem sido um dos problemas cartográficos mais suscitandes de indagações por parte dos profissionais da engenharia da mensuração, quando dos trabalhos geodésicos de posicionamento com GPS ou numa poligonação eletrônica com transporte de coordenadas. 1 - O que fazer quando estou levantando uma poligonal de uma fazenda, e o meu GPS acusa que mudei de fuso? 2 - Como calcular a área e executar os desenhos no meu sistema CAD, se as coordenadas de vários pontos próximos uns dos outros, ora estão no fuso no qual iniciei a poligonal, ora estão no fuso contíguo? 3 - Como calcular as coordenadas e editar o desenho de um eixo (Estrada, Oleoduto, Eletrificação etc.), que podem iniciar num fuso e terminar em out ro? 4 - Como locar uma sequencia de pontos geodésicos de um mesmo projeto, (assentamento do INCRA, por exemplo), se o projeto está exatamente nos limites de um fuso? Estas questões nos tem chegado com muita frequëncia ao longo de nossa carreira como profes sor de geodésia e topografia, e, por isso, resolvemos colocar neste artigo, algumas das recomendações e até mesmo de soluções que temos oferecido. FUSO CARTOGRÁFICO Em primeiro lugar, existe uma certa confusão quanto ao verdadeiro entendimento do que seja "fuso", em termos cartográficos. O sistema de fusos é uma sub-divisão do equador terrestre em faixas de 6° de amplitude, contadas e numeradas a partir do anti-meridiano de Greenwich (180°), no sentido anti-horário e adotado pelo sistema UTM como base de orientação dos cálculos cartográficos, no que tange ao sistema de projeção e eixos plano-retangulares. São contados e numerados de 1 a 60 e identificados conforme o exemplo a seguir: Fuso 1 (180° a 174°) Fuso 2 (174° a 168°) -------------------- -------------------- Fuso 30 (6° a 0°) Fuso 31 (0° a 6°) -------------------- -------------------- Fuso 59 (168° a 174°) Fuso 60 (174° a 180°) O Brasil é coberto por 8 fusos, mais especificamente, pelos fusos 18 (78° a 72°) até o fuso 25 (36° a 30°), perfazendo uma amplitude total de 48°. Existem muitas outras implicações para o entendimento do sistema de fusos cartográficos no que tange a sua história, sua relação com a "carta do mundo ao milionésico" e a história da cartografia brasileira, mas isto não é assunto para o momento. SISTEMA DE EIXOS O Brasil adota o sistema UTM para o desenvolvimento dos cálculos geodésicos e a projeção conforme de Gauss, como o sistema de projeção adequado para a cartografia brasileira. Isto porque o próprio sistema UTM foi desenvolvido para ser aplicado na projeção conforme de Gauss.
  • 2. Com algumas pequenas adaptações, este é o nosso sistema de cálculos geodésicos e cartográficos. Uma das característica do sistema UTM e que nos interessa neste estudo, é a adoção dos meridianos centrais (MC) e do equador, como o sistema de eixos específico para cada fuso, ou seja, o fuso 22 (54° a 48°) tem como sistema de eixos, o seu meridiano central (51°) e o equador. Outra característca é a adoção dos valores 500000 ms (500 Kms), para o meridiano central e 10000000 de metros (10000 Kms), para o equador, de tal forma que a orígem do sistema de eixos de cada fuso, fica no cruzamento do respectivo MC com o equador e já tem, como coordenadas de orígem, E=500000 e N=10000000), isto para ponto ao sul do equador. Para o emisfério norte, o valor de N não sofre incrementação, ou seja as coordenadas de origem são: E = 500000 e N = 0. E e N significam, "para ESTE" e "para NORTE", respctivamente. Desta forma, garantem-se as coordenadas sempre positivas, tanto do lado ESTE como OESTE do fuso, tanto no hemisfério sul quanto no hemisfério norte. Um ponto, portanto, a OESTE do MC de um fuso qualquer e a 120000 ms de distância (120 Kms) e ainda a 3000000 ms do equador (3000 Kms), teria suas coordenadas em E= 380000,000 e N= 7000000,000. Este mesmo ponto do lado ESTE teria as coordenadas E=620000,000 e N= 7000000,000. TRANSPOSIÇÃO DE FUSOS Cada posicionamento geodésico, portanto, deve estar referenciado ao sistema de eixo que lhe é correspondente, segundo o fuso ao qual pertença. Os sistemas de GPS, quando em uso no campo, automaticamente registram as coordenadas planas segundo o fuso dominante para cada momento, e quando estamos trabalhando nas extremidades de um fuso, este fato pode causar certo desconforto ao operador menos avisado. Ocorre na verdade, que o Sistema GPS registra o posicionamento em termos de coordenadas geográficas (Latitude e Longitude), mais especificamente em WGS_84, porém, devidamente configurado, apresenta estas coordenadas já convertidas para o nosso ambiente mais comum, qual seja, em coordenadas planas relacionadas ao fuso dominante, e no sistema SAD_69, ocorrendo daí, momentos em que as coordenadas planas apresentadas estão referenciadas ao fuso adjacente. Citamos o GPS, tendo em vista o seu uso mais generalizado, mas o mesmo fenômeno pode ocorrer no momento dos cálculos de uma poligonação com transporte de coordenadas, em que o calculista sabe que aquele ponto seguinte já pertence ao fuso contíguo. AO QUESTIONAMENTO MOTIVADOR DESTE ARTIGO... Em resposta às questões colocadas inicialmente, propomos as seguintes soluções: 1 - O que fazer quando estou levantando uma poligonal de uma fazenda, e o meu GPS acusa que mudei de fuso? Nada. Continue trabalhando. No momento do pós-processamento, quando do cálculo das áreas , desenhos, edição de memoriais e relatórios, tenha em mente o conceito que acabamos de colocar. Para efeito de cálculos o fuso pode ser expandido em até 30´. Após os cálculos relacione os pontos sabidamente do fuso seguinte ao seu respect ivo MC.
  • 3. 2 - Como calcular a área e executar os desenhos no meu sistema CAD, se as coordenadas de vários pontos próximos uns dos outros, ora estão no fuso no qual iniciei a poligonal, ora estão no fuso contíguo? Se o problema for só a questão de áreas, desenhos e relatórios, proceda como descrito acima. 3 - Como calcular as coordenadas e editar o desenho de um eixo (Estrada, Oleoduto, Eletrificação etc.), que podem iniciar num fuso e terminar em outro após longos quilômetros? No caso de uma poligonação elet rônica com transporte de coordenadas, onde o "caminhamento" ultrapassa em muitos quilômetros um fuso adjacente, deve-se trabalhar com transporte de coordenadas geográficas e, posteriormente, para efeito de relatórios, cada ponto pode ser transformado em coordenadas planas, segundo o sistema UTM e considerado o fuso ao qual pertença. 4 - Como locar uma seqüência de pontos geodésicos de um mesmo projeto, (assentamento do INCRA, por exemplo), se o projeto está exatamente nos limites de um fuso? Para que o projeto tenha sido desenvolvido exatamente na extremidade de um fuso, forçosamente o projetista deve ter considerado a origens das coordenadas em função do fuso dominante. Dai, basta organizar o projeto de locação nestas condições. Se o projeto é apresentado, parte num fuso, parte no outro, para efeito de locação, as coordenadas do fuso adjacente devem ser convertidas para o fuso dominante EXEMPLO NUMÉRICO Sejam dois pontos dados pelas suas coordenadas geográficas, no caso, valores inteiros até o minutos para simplificar o entendimento. Ponto 1 Latitude Longitude Altitude = = = 24°58'00" Sul 47°57'00" Wgr 500 metros Ponto 2 Latitude Longitude Altitude = = = 25°00'00" Sul 47°59'00" Wgr 570 metros Os dois pontos, pela análise pura e simples de quem trabalha com geodésia, estão localizados a esquerda (OESTE) do meridiano central do FUSO 23. O calculo das coordenadas planas destes pontos, com relação ao FUSO 23, resulta: Ponto 1: E = 202149.7198 N = 7235495.2505 Ponto 2: E = 198863.5349 N = 7231727.3877 Os elementos técnicos desta base geodésica (1 para 2), resultam: Azimute plano...: 221°05´37",2645 Azimute elips....: 42°20´26",0526 Azimute geogr...: 222°20´26",0526 Dist plana.........: 4.999,580 metros Dist elips..........: 4.996,043 metros Dist Topográfica: 4.996,953 metros (inclinada)
  • 4. Fator K.............: 1.00070791618 Ang. Red..........: 0°00´02",8703 Convergência meridiana em 1 C = 1°14´45",9178 Os mesmos dois pontos, por estarem próximos do meridiano de 48°, limítrofe entre os FUSOS (22 e 23), e talvez por força de projeto, podem ser referenciados ao FUSO 22, cujo MC vale 51°, resultando: Ponto 1: E = 807952.9810 N = 7235271.7674 Ponto 2: E = 804503.1199 N = 7231652.8204 Da mesma forma, os elementos técnicos desta base geodésica (1 para 2), nesta nova referência, resultam: Azimute plano...: 223°37´47",0904 Azimute elips....: 42°20´26",0419 Azimute geogr...: 222°20´26",0419 Dist plana.........: 4.999,834 Dist elips..........: 4.996,043 Dist Topográfica: 4.996,953 Fator K.............: 1.00075831537 Ang. Red..........: -0°00´02",8292 Convergência meridiana C = -1°17´18",2191 Estudos: 1 - Ao observador menos avisado, a primeira vista, ocorre um fenômeno interessante, qual seja, a diferença entre os azimutes planos da base, quando esta está referenciada a um ou outro FUSO.  Isto ocorre porque o azimute plano é decorrente da Convergência Meridiana (CM), bem como, do Ângulo de redução na base.  Para que o azimute geográfico permaneça inalterado, os valores da CM e do ângulo de redução variam, provocando uma alteração no Azimute Plano. Isto é consequencia da "Projeção conforme de Gauss", que por sua vez é variante da "Projeção Transversa de Mercator".  No caso dos cálculos geodésicos e cartográficos, segundo o sistema UTM, a projeção adotada é a "Projeção Conforme de Gauss". O sistema UTM é apenas uma metolologia de cálculos, não é um sistema de projeções. Por conseguinte, não existem coordenadas UTM, mas sim, "Coordenadas Plano Retangulares", calculadas, eventualmente, pelo sistema UTM.  Como o próprio nome diz, a projeção de Gauss é "Conforme", ou seja, os valores angulares (Azimutes, Ângulos entre alinhamentos, Rumos etc.), calculados a partir de coordenadas, guardam uma "conformidade" ou ainda, uma "igualdade", com os mesmos valores medidos no campo. As deformidades ficam por conta dos valores lineares, que são controlados pelos limites impostos para os FUSOS. 2 - Uma observação seguinte fica por conta da diferença ocasional, entre os azimutes elipsóidicos e geográficos (Norte verdadeiro) que deveriam ser iguais nas duas situações. Esta diferença, da ordem de 0",0101 (Um centésimo de segundo sexagesimal), ocorre em função da "violação" das regras, ou seja, as equações dos cálculos geodésicos, segundo o sistema UTM para a projeção conforme de Gauss, foram desenvolvidas para o limite de fusos de 6°. Ao ultrapassarmos estes limites, mesmo que, no máximo, os 30´ permitidos, os efeitos, embora pequenos, se apresentam. 3 - O valor da CM "aparenta" uma anulação porque existe a troca de sinais, mas isto é um engano. Embora o valor da convergência meridiana esteja diretamente agregado ao cálculo do
  • 5. azimute plano, o que realmente interfere no resultado final é a inversão da curvatura da transformada representativa da meridiana local, além, é claro, da curvatura da transformada da base em questão (sempre voltadas para o MC do fuso dominante). 4 - As distâncias variam, por sua vez, em função do plano de projeção. Quanto maior a distância da base com relação ao MC do fuso, maior a deformação. Observe-se, neste exercício, o fator K do fuso 22 que é maior do que o K do fuso 23. 5 - O fato mais importante a ser observado, é o valor da distância topográfica inclinada, que permanece igual nas duas situações. Melhor dizendo, permanece inalterada em qualquer situação. Conclusões: Existem várias ocasiões no exercício da profissão do mensurador em que deparamos com a situação de transposição de fusos. Hoje, com o advento do computador e do GPS, isto se resolve facilmente, desde que o profissional seja realmente competente e conheça profundamente os preceitos geodésicos e cartográficos. Abre aspas (") A lei 10.267, prescreve, entre tantas outras coisas, a exigência de um profissional habilitado para o exercício do georreferenciamento de projetos referentes ao novo CNIR (Cadastro Nacional de Imóveis Rurais). Nada mais justo, porém, esta mesma lei impõe que o memorial descritivo seja elaborado a partir das coordenadas georreferenciadas. Isto é um erro, e temos combatido esta atrocidade no sentido de fazerem ver, quem de direito, que os valores lineares calculados a partir de coordenadas planas de projeção, a exemplo deste exercício, variam conforme a posição do projeto dentro do FUSO, ao passo que a distância topográfica permanece inalterada, não importando o posicionamento do projeto. Ao apresentarmos, em cartório, um memorial descritivo a partir das coordenadas planas de projeção cartográfica, estaremos mentindo, pasmem, amparados por lei. A obra em si pode e deve ser georreferenciada, em pelo menos um ponto, mas o memorial e consequentemente a área, jamais deverá ser elaborado a partir das coordenadas planas de projeção cartográfica. Esta é nossa posição. Fecha aspas(") Nos projetos de medições de glebas (poligonais fechadas), para os cálculos de distâncias e áreas e edição de memoriais, o profissional deve trabalhar sempre com a referência de um fuso, mesmo com relação à grafação dos valores das quadriculas na edição de uma carta georreferenciada. Se for necessário, por exigências do projeto, pode editar um relatório técnico contendo as coordenadas referenciadas aos FUSOS reais. Nos projetos de poligonais longitudinais (polígonos abertos), havendo a transposição de fusos por longos quilômetros, deve-se operar a técnica aqui mencionada para o momento da transição e continuar os cálculos considerando-se o novo FUSO. Djacir Ramos Eng. Agrimensor Consultor para assuntos geodésicos e de georreferenciamento.