SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 1
FECHA: MAYO 2011
SOLUCIÓN NUMÉRICA PÉNDULO ELÁSTICO OSCILANTE CON RUNGE KUTTA 4 EN
MATLAB
Ccarita Cruz Fredy Alan, Hugo Reymundo Alvarez
Profesor: Mgt. Roy Sánchez Gutiérrez
Pontificia Universidad Católica del Perú, Maestría en Ingeniería Mecánica, Métodos
Matemáticos y Numéricos para Ingeniería
Lima: 27.05.2011
RESUMEN
En este estudio sobre péndulo elástico muelle-masa que se investiga. Con el fin de
resolver un sistema de ecuaciones diferenciales no lineales que se obtienen de la
aplicación de la segunda ley de newton que representan el fenómeno físico y que no es
posible determinar la solución por los métodos analíticos, considerando solucionarlo y
demostrar que si es posible con los métodos numéricos y en este caso utilizaremos el
método numérico de Runge Kutta 4 para sistemas con ayuda del software Matlab, se hará
la demostración para dos variaciones de longitud del péndulo y ver que eventos se
producen por estas variaciones, los resultados se compararan con otros trabajos para
verificar los mismo, al final quedamos conforme con el trabajo porque lo dicho
anteriormente ha podido ser demostrado.
Palabras claves: péndulo elástico, la oscilación no lineal, la técnica de simulación,
Matlab, Runge - Kutta
ABSTRACT
In this study of elastic spring-mass pendulum is investigated. In order to solve a system of
nonlinear differential equations obtained from the application of Newton's second law to
represent the physical phenomenon and it is not possible to determine the solution by
analytical methods, considering solutions and demonstrate that it is possible with
numerical methods and in this case we use the numerical method of Runge Kutta 4 for
systems using the Matlab software, will show for two variations of length of the pendulum
and see what events are produced by these variations, the results were compared with
other papers for the same in the end we were satisfied with the work because of the above
has been demonstrated
.
Keywords: elastic pendulum, nonlinear oscillation, the technique of simulation, Matlab,
Runge – Kutta 4
1. INTRODUCION
La aplicación de las ecuaciones
diferenciales dentro de la ingeniería
Mecanica para determinar las ecuaciones
que gobiernan los fenómenos físicos de
estudio son muchísimas por no decir
infinitas, pero la gran mayoría de estas no
tienen solución numérica es por esa razón
que se ha hecho necesario solucionar de
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 2
FECHA: MAYO 2011
alguna manera estas ecuaciones
diferenciales, razón por la cual hoy en día
hay muchos métodos como el Método de
Elementos Finitos (FEM), Diferencias
Finitas (FDM), Método de Variación
Iteracional (VIM), Método de Perturbación
Homotropica (HPM) etc etc, para nuestro
caso utilizaremos el método de Runge
Kutta 4 en Matlab.
2. ECUACIONES QUE GOBIERNAN EL
SISTEMA
Aplicando la segunda ley de Newton y
trabajando en coordenadas cilíndricas
(r,θ) tendríamos lo siguiente:
Ahora podemos escribir
Σ : − sin = (1)
: = 2 ̇ ̇ + ̇ (2)
− sinθ = m 2 ̇ ̇ + ̈
− = 2 ̇ ̇ + ̈
̈ = − − 2 ̇ ̇
̈ =
− − 2 ̇ ̇
(3)
Σ : cos − = (4)
: = − ( − ) (5)
= ̈ − ̇ (6)
− [− ( − )] =
+ ( − ) = ̈ − ̇
− ( − ) = ̈ − ̇
̈ = ̇ + − ( − )
Figura 1 . Diagrama de cuerpo libre péndulo elástico en el punto 2
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 3
FECHA: MAYO 2011
̈ = ̇ + − ( − ) (7)
De donde:
L : Longitud sin deformar.
r : Radio.
̇ : Velocidad radial.
̈ : Asceleración radial.
: Posición angular.
̇ : Velocidad Angular.
̈ : Asceleración Angular.
k : Constante de Rigidez
m : Masa.
g : gravedad.
t : tiempo.
El sistema es conservador porque no hay
amortiguación. Por lo tanto la energía
total (energía cinética y energía potencial)
del sistema es siempre constante y el
tiempo invariante (holonómica).
Con el fin de investigar los
comportamientos de la elástica del
péndulo, algunos parámetros se deben
dar. Por esta razón, la frecuencia natural
del resorte y el péndulo respectivamente,
como sigue:
= = 12.64; = = 19.61
Por otra parte determinaremos una
constante:
= = = 0.35
3. SOLUCIÓN NUMÉRICA
Para la solución numérica con Runge
Kutta 4 para sistemas, debemos de utilizar
las ecuaciones (3) y (7), pero antes
debemos de trasformar estas ecuaciones
a un sistema de ecuaciones diferenciales:
Creación de la matriz μ
=
̇
̇
′
=
̇
̈
̇
̈
′
=
+ ( ) − ( − )
−2
−
( )
Para la solución de este problema
debemos de dar los siguientes datos:
g=9.80665 m/s2
; k=40N/m; L=0.5m,
m=0.25Kg
Tendremos lo siguiente:
′
=
+ 9.80665 ( ) − 160 + 80
−2
−
9.80665 ( )
Con las siguientes condiciones iniciales:
=
0.5
0
3
0
=
̇
̇
Una vez reemplazado las variables ahora
debemos de utilizar el método de Runge
Kutta 4 para sistemas:
RUNGE-KUTTA 4 PARA SISTEMAS
"POR FILAS" DE ECUACIONES
DIFERENCIALES
Function A=rks4M(F,a,b,Za,M)
%Datos: F es la función vectorial, el
intervalo [a b]
%Za=[x1(a)...xn(a)] es la condición inicial y
M es el número de pasos.
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 4
FECHA: MAYO 2011
%Resultados: T, vector de los nodos,
Z=[x1(t)... xn(t)],las aproximaciones
h=(b-a)/M;
T=zeros(1,M+1);
Z=zeros(M+1,length(Za));
T=a:h:b;
Z(1,:)=Za;
for j=1:M
k1=h*feval(F,T(j),Z(j,:));
k2=h*feval(F,T(j)+h/2,Z(j,:)+k1/2);
k3=h*feval(F,T(j)+h/2,Z(j,:)+k2/2);
k4=h*feval(F,T(j)+h,Z(j,:)+k3);
Z(j+1,:)=Z(j,:)+(k1+2*k2+2*k3+k4)/6;
end
A=[T' Z];
End
Antes de ello debemos de definir lo
siguiente F,a,b,Za,M
F
function Z=Fs5(t,Z)
a=Z(1);
b=Z(2);
c=Z(3);
d=Z(4);
Z=[b a*d.^2+9.80665*cos(c)-160*a+80 d -
2*b*d./a-9.80665*sin(c)./a];
a=0 ; b=0.5 ; Za=
0.5
0
3
0
; M=100
Por lo tanto tendríamos:
A=rks4M('Fs5',0,0.5,[0.5 0 pi/3 0],100)
Que resulta:
A =
t r ̇ ̇
0 0.5000 0 1.0472 0
0.0050 0.5001 0.0245 1.0470 -0.0849
0.0100 0.5002 0.0490 1.0463 -0.1697
0.0150 0.5006 0.0734 1.0453 -0.2542
0.0200 0.5010 0.0976 1.0438 -0.3384
0.0250 0.5015 0.1217 1.0419 -0.4221
0.0300 0.5022 0.1455 1.0396 -0.5051
0.0350 0.5030 0.1691 1.0369 -0.5875
0.0400 0.5039 0.1924 1.0337 -0.6690
0.0450 0.5049 0.2153 1.0302 -0.7495
0.0500 0.5060 0.2378 1.0262 -0.8291
0.0550 0.5073 0.2599 1.0219 -0.9075
0.0600 0.5086 0.2815 1.0171 -0.9847
0.0650 0.5101 0.3026 1.0120 -1.0605
0.0700 0.5117 0.3231 1.0065 -1.1351
0.0750 0.5133 0.3429 1.0007 -1.2081
0.0800 0.5151 0.3621 0.9945 -1.2797
0.0850 0.5169 0.3807 0.9879 -1.3498
0.0900 0.5189 0.3984 0.9810 -1.4182
0.0950 0.5209 0.4154 0.9737 -1.4850
0.1000 0.5230 0.4315 0.9661 -1.5502
0.1050 0.5252 0.4468 0.9582 -1.6137
0.1100 0.5275 0.4612 0.9500 -1.6755
0.1150 0.5299 0.4746 0.9415 -1.7356
0.1200 0.5323 0.4871 0.9326 -1.7940
0.1250 0.5347 0.4986 0.9235 -1.8508
0.1300 0.5372 0.5090 0.9141 -1.9058
0.1350 0.5398 0.5184 0.9045 -1.9592
0.1400 0.5424 0.5266 0.8945 -2.0110
0.1450 0.5451 0.5338 0.8844 -2.0612
0.1500 0.5478 0.5398 0.8739 -2.1098
0.1550 0.5505 0.5447 0.8633 -2.1569
0.1600 0.5532 0.5484 0.8524 -2.2025
0.1650 0.5560 0.5509 0.8412 -2.2467
0.1700 0.5587 0.5523 0.8299 -2.2895
0.1750 0.5615 0.5525 0.8183 -2.3310
0.1800 0.5642 0.5515 0.8066 -2.3712
0.1850 0.5670 0.5493 0.7946 -2.4101
0.1900 0.5697 0.5459 0.7825 -2.4479
0.1950 0.5724 0.5414 0.7702 -2.4846
0.2000 0.5751 0.5358 0.7576 -2.5202
0.2050 0.5778 0.5290 0.7450 -2.5548
0.2100 0.5804 0.5211 0.7321 -2.5885
0.2150 0.5830 0.5121 0.7191 -2.6213
0.2200 0.5855 0.5021 0.7059 -2.6533
0.2250 0.5880 0.4911 0.6925 -2.6845
0.2300 0.5905 0.4791 0.6790 -2.7149
0.2350 0.5928 0.4662 0.6654 -2.7447
0.2400 0.5951 0.4525 0.6516 -2.7739
0.2450 0.5973 0.4378 0.6377 -2.8025
0.2500 0.5995 0.4224 0.6236 -2.8306
0.2550 0.6016 0.4063 0.6094 -2.8582
0.2600 0.6036 0.3895 0.5950 -2.8853
0.2650 0.6055 0.3721 0.5805 -2.9120
0.2700 0.6073 0.3541 0.5659 -2.9383
0.2750 0.6090 0.3357 0.5511 -2.9643
0.2800 0.6106 0.3168 0.5362 -2.9900
0.2850 0.6122 0.2976 0.5212 -3.0153
0.2900 0.6136 0.2781 0.5061 -3.0404
0.2950 0.6149 0.2583 0.4908 -3.0653
0.3000 0.6162 0.2385 0.4754 -3.0899
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 5
FECHA: MAYO 2011
0.3050 0.6173 0.2185 0.4599 -3.1142
0.3100 0.6184 0.1985 0.4443 -3.1383
0.3150 0.6193 0.1786 0.4285 -3.1622
0.3200 0.6202 0.1587 0.4127 -3.1859
0.3250 0.6209 0.1391 0.3967 -3.2093
0.3300 0.6216 0.1197 0.3806 -3.2325
0.3350 0.6221 0.1006 0.3644 -3.2555
0.3400 0.6226 0.0819 0.3480 -3.2782
0.3450 0.6229 0.0636 0.3316 -3.3006
0.3500 0.6232 0.0458 0.3150 -3.3227
0.3550 0.6234 0.0286 0.2983 -3.3444
0.3600 0.6235 0.0119 0.2816 -3.3658
0.3650 0.6235 -0.0041 0.2647 -3.3868
0.3700 0.6234 -0.0195 0.2477 -3.4074
0.3750 0.6233 -0.0342 0.2306 -3.4275
0.3800 0.6231 -0.0481 0.2134 -3.4471
0.3850 0.6228 -0.0612 0.1961 -3.4662
0.3900 0.6225 -0.0736 0.1788 -3.4846
0.3950 0.6221 -0.0851 0.1613 -3.5024
0.4000 0.6216 -0.0958 0.1437 -3.5195
0.4050 0.6211 -0.1057 0.1261 -3.5358
0.4100 0.6206 -0.1147 0.1084 -3.5514
0.4150 0.6200 -0.1229 0.0906 -3.5660
0.4200 0.6194 -0.1302 0.0727 -3.5798
0.4250 0.6187 -0.1367 0.0548 -3.5926
0.4300 0.6180 -0.1423 0.0368 -3.6043
0.4350 0.6173 -0.1472 0.0188 -3.6150
0.4400 0.6165 -0.1513 0.0007 -3.6245
0.4450 0.6158 -0.1546 -0.0175 -3.6329
0.4500 0.6150 -0.1572 -0.0357 -3.6400
0.4550 0.6142 -0.1591 -0.0539 -3.6458
0.4600 0.6134 -0.1603 -0.0721 -3.6502
0.4650 0.6126 -0.1610 -0.0904 -3.6533
0.4700 0.6118 -0.1611 -0.1087 -3.6550
0.4750 0.6110 -0.1606 -0.1269 -3.6552
0.4800 0.6102 -0.1597 -0.1452 -3.6539
0.4850 0.6094 -0.1584 -0.1635 -3.6510
0.4900 0.6086 -0.1568 -0.1817 -3.6466
0.4950 0.6078 -0.1548 -0.1999 -3.6407
0.5000 0.6070 -0.1526 -0.2181 -3.6331
>> plot(A(:,1),180*A(:,4)/pi,'r')
(Tiempo * Grados sexagecimales)
grid on
axis on
>> plot(A(:,1),A(:,2),'r')
xlabel('tiempo')
ylabel('radio')
Figura 2 . Diagrama de Posición en función del tiempo – Péndulo Elástico
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 6
FECHA: MAYO 2011
Si deseamos saber la posición de r
cuando el péndulo llega a 0°, se tendría lo
siguiente:
El tiempo que la masa del péndulo llega a
la posición:
Θ=0° t=0.44 s.
Figura 3. Diagrama de radio en función del tiempo – Péndulo Elástico.
Figura 4. Diagrama para determinar el tiempo cuando Θ=0°
MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 7
FECHA: MAYO 2011
4. CONCLUSIONES
En este trabajo, se pudo demostrar que si
es posible solucionar ecuaciones
diferenciales por métodos numéricos que
en este caso el Runge Kutta 4, aplicado al
péndulo elástico, también se demostró
que cuando se hace la variación de la
longitud “L”, la intensidad del movimiento
oscilatorio aumenta con una mayor
elongación de la cuerda elástica, dentro
del campo de las vibraciones este péndulo
se consideraría como un sistema con dos
grados de libertar clasificado como una
vibración libre debido por solo a la
presencia de las fuerzas gravitatorias y
elásticas,
5. REFERENCIAS
Zekeyra Girgin, Ersin Demir 2008,
Investigation of elastic pendulum
oscillations by simulation technique, 81-
86.
Jorge Rodriguez Hernandez, 2010,
Dinamica, Cap II, Cap X
Chang, C.L and Lee 2004, Applyng the
double side method to solution no linear
pendulum problem, Appl. Math Comput
149, 613-624
Georgiou, I. T. 1999. On the global
geometric
structure of the dynamics of the elastic
pendulum, Nonlinear Dynam. 18, 51-68
.
Girgin, Z. 2008. Combining differential
quadrature method with simulation
technique to solve nonlinear differential
equations, Int. J. Numer. Meth. Eng. 75
(6), 722-734.
Figura 5. Diagrama de comparación – para dos casos de L (L1=0.5m y L2=0.575m)

Mais conteúdo relacionado

Mais procurados

Matematica iv proyecto de aplicacion
Matematica iv proyecto de aplicacionMatematica iv proyecto de aplicacion
Matematica iv proyecto de aplicacionValentino Crocetta
 
1.1 historia del control automatico
1.1 historia del control automatico1.1 historia del control automatico
1.1 historia del control automaticoMarco Moncayo
 
Coeficientes indeterminados
Coeficientes indeterminadosCoeficientes indeterminados
Coeficientes indeterminadosgermane123
 
Formulario para ecuaciones diferenciales de primer orden
Formulario para ecuaciones diferenciales de primer ordenFormulario para ecuaciones diferenciales de primer orden
Formulario para ecuaciones diferenciales de primer ordenMiguel Ángel Hernández Trejo
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes IndeterminadosGabriel
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1Utp arequipa
 
Introduccion metodo secante en excel
Introduccion metodo secante en excelIntroduccion metodo secante en excel
Introduccion metodo secante en excelJeimer Jimenez
 
Métodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasMétodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasJaime Martínez Verdú
 
Ecuaciones diferenciales aplicadas a la ingeniería civil
Ecuaciones diferenciales aplicadas a la ingeniería civilEcuaciones diferenciales aplicadas a la ingeniería civil
Ecuaciones diferenciales aplicadas a la ingeniería civilAndreaa Sierra
 
Propiedades de las sumatorias
Propiedades de las sumatoriasPropiedades de las sumatorias
Propiedades de las sumatoriasRubens Diaz Pulli
 
47427701 ejercicios-cinematica-soluciones
47427701 ejercicios-cinematica-soluciones47427701 ejercicios-cinematica-soluciones
47427701 ejercicios-cinematica-solucionespedreroguadarramaerik
 

Mais procurados (20)

T1 introduccion
T1 introduccionT1 introduccion
T1 introduccion
 
Matematica iv proyecto de aplicacion
Matematica iv proyecto de aplicacionMatematica iv proyecto de aplicacion
Matematica iv proyecto de aplicacion
 
Series de taylor
Series de taylorSeries de taylor
Series de taylor
 
1.1 historia del control automatico
1.1 historia del control automatico1.1 historia del control automatico
1.1 historia del control automatico
 
Coeficientes indeterminados
Coeficientes indeterminadosCoeficientes indeterminados
Coeficientes indeterminados
 
V fasor
V fasorV fasor
V fasor
 
Ejercicio de PLC y GRAFCET numero 8
Ejercicio de PLC y GRAFCET numero 8Ejercicio de PLC y GRAFCET numero 8
Ejercicio de PLC y GRAFCET numero 8
 
Formulario para ecuaciones diferenciales de primer orden
Formulario para ecuaciones diferenciales de primer ordenFormulario para ecuaciones diferenciales de primer orden
Formulario para ecuaciones diferenciales de primer orden
 
Coeficientes Indeterminados
Coeficientes IndeterminadosCoeficientes Indeterminados
Coeficientes Indeterminados
 
Derivacion e integracion numéricas
Derivacion e integracion numéricasDerivacion e integracion numéricas
Derivacion e integracion numéricas
 
Transformadas de laplace 1
Transformadas de laplace 1Transformadas de laplace 1
Transformadas de laplace 1
 
Metodos numericos act_3
Metodos numericos act_3Metodos numericos act_3
Metodos numericos act_3
 
Gauss con pivoteo
Gauss con pivoteoGauss con pivoteo
Gauss con pivoteo
 
Introduccion metodo secante en excel
Introduccion metodo secante en excelIntroduccion metodo secante en excel
Introduccion metodo secante en excel
 
Métodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinariasMétodos numéricos para ecuaciones diferenciales ordinarias
Métodos numéricos para ecuaciones diferenciales ordinarias
 
Historia metodo de newton
Historia metodo de newtonHistoria metodo de newton
Historia metodo de newton
 
Metodo de Runge Kutta en Matlab
Metodo de Runge Kutta en Matlab Metodo de Runge Kutta en Matlab
Metodo de Runge Kutta en Matlab
 
Ecuaciones diferenciales aplicadas a la ingeniería civil
Ecuaciones diferenciales aplicadas a la ingeniería civilEcuaciones diferenciales aplicadas a la ingeniería civil
Ecuaciones diferenciales aplicadas a la ingeniería civil
 
Propiedades de las sumatorias
Propiedades de las sumatoriasPropiedades de las sumatorias
Propiedades de las sumatorias
 
47427701 ejercicios-cinematica-soluciones
47427701 ejercicios-cinematica-soluciones47427701 ejercicios-cinematica-soluciones
47427701 ejercicios-cinematica-soluciones
 

Destaque

M.a.s péndulo elástico
M.a.s péndulo elásticoM.a.s péndulo elástico
M.a.s péndulo elásticopanickdiego
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleGabito2603
 
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación AplicadaMétodo Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicadamarticalu001
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorioJuan Sanmartin
 
100412 125 trabajo colaborativo fase_2
100412 125 trabajo colaborativo fase_2100412 125 trabajo colaborativo fase_2
100412 125 trabajo colaborativo fase_2Rodrigo Sanabria
 
Ecuaciones no homogéneas
Ecuaciones no homogéneasEcuaciones no homogéneas
Ecuaciones no homogéneasMIguel Tenezaca
 
Ecuaciones EDO de 2° Orden no Homogeneas
Ecuaciones EDO de 2° Orden no HomogeneasEcuaciones EDO de 2° Orden no Homogeneas
Ecuaciones EDO de 2° Orden no HomogeneasHenry
 
DISEÑO DE UN SILO - ESTRUCTURA METALICA
DISEÑO DE UN SILO - ESTRUCTURA METALICADISEÑO DE UN SILO - ESTRUCTURA METALICA
DISEÑO DE UN SILO - ESTRUCTURA METALICACcarita Cruz
 
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Lizeth Maritza Pena Pena
 

Destaque (9)

M.a.s péndulo elástico
M.a.s péndulo elásticoM.a.s péndulo elástico
M.a.s péndulo elástico
 
Movimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simpleMovimiento armónico simple y pendulo simple
Movimiento armónico simple y pendulo simple
 
Método Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación AplicadaMétodo Runge Kutta. Computación Aplicada
Método Runge Kutta. Computación Aplicada
 
Movimiento oscilatorio
Movimiento oscilatorioMovimiento oscilatorio
Movimiento oscilatorio
 
100412 125 trabajo colaborativo fase_2
100412 125 trabajo colaborativo fase_2100412 125 trabajo colaborativo fase_2
100412 125 trabajo colaborativo fase_2
 
Ecuaciones no homogéneas
Ecuaciones no homogéneasEcuaciones no homogéneas
Ecuaciones no homogéneas
 
Ecuaciones EDO de 2° Orden no Homogeneas
Ecuaciones EDO de 2° Orden no HomogeneasEcuaciones EDO de 2° Orden no Homogeneas
Ecuaciones EDO de 2° Orden no Homogeneas
 
DISEÑO DE UN SILO - ESTRUCTURA METALICA
DISEÑO DE UN SILO - ESTRUCTURA METALICADISEÑO DE UN SILO - ESTRUCTURA METALICA
DISEÑO DE UN SILO - ESTRUCTURA METALICA
 
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
Ejercicios solucionados de oscilaciones y ondas unidad ondas electromagnetica...
 

Semelhante a PENDULO ELASTICO METODO RUNGE KUTTA 4 CON MATLAB

Informe oscilaciones armonicas
Informe oscilaciones armonicasInforme oscilaciones armonicas
Informe oscilaciones armonicasAidee Leon Almeida
 
Solucionario hidraulica de tuberías alexis lópez
Solucionario hidraulica de tuberías alexis lópezSolucionario hidraulica de tuberías alexis lópez
Solucionario hidraulica de tuberías alexis lópezalexisl1234
 
Practica 5 sistema masa-resorte
Practica 5 sistema masa-resortePractica 5 sistema masa-resorte
Practica 5 sistema masa-resorte20_masambriento
 
Lab n° 1 medición y teoria de errores.
Lab n° 1   medición y teoria de errores.Lab n° 1   medición y teoria de errores.
Lab n° 1 medición y teoria de errores.joe vila adauto
 
Informe ondas y particulas: MOVIMIENTOS OSCILATORIOS
Informe ondas y particulas:  MOVIMIENTOS OSCILATORIOSInforme ondas y particulas:  MOVIMIENTOS OSCILATORIOS
Informe ondas y particulas: MOVIMIENTOS OSCILATORIOSLAURA RIAÑO
 
Práctica 1 longitud de entrada y perfil de velocidad
Práctica 1 longitud de entrada y perfil de velocidadPráctica 1 longitud de entrada y perfil de velocidad
Práctica 1 longitud de entrada y perfil de velocidadGeovanny Panchana
 
simulación de campos eléctricos para electrodos sumergidos en aceite
simulación de campos eléctricos para electrodos sumergidos en aceitesimulación de campos eléctricos para electrodos sumergidos en aceite
simulación de campos eléctricos para electrodos sumergidos en aceitesahal666
 
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdf
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdfEcuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdf
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdfEdgarValcarcel1
 
estudio a estrcutura dinamica-v6
estudio a estrcutura dinamica-v6estudio a estrcutura dinamica-v6
estudio a estrcutura dinamica-v6Macarena Paz Saez
 
Laboratrio no.3dinamicaaplicada
Laboratrio no.3dinamicaaplicadaLaboratrio no.3dinamicaaplicada
Laboratrio no.3dinamicaaplicadaEladio CASTRO
 
Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Noe Limon
 
Diseños y cornstrucción deuna maquina de golberg
Diseños y cornstrucción deuna maquina de golberg Diseños y cornstrucción deuna maquina de golberg
Diseños y cornstrucción deuna maquina de golberg ANGIEBEATRIZBRAVOMON
 
Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Jennifer Jimenez
 

Semelhante a PENDULO ELASTICO METODO RUNGE KUTTA 4 CON MATLAB (20)

Metodo ven te-chow
Metodo ven te-chowMetodo ven te-chow
Metodo ven te-chow
 
Informe oscilaciones armonicas
Informe oscilaciones armonicasInforme oscilaciones armonicas
Informe oscilaciones armonicas
 
Solucionario hidraulica de tuberías alexis lópez
Solucionario hidraulica de tuberías alexis lópezSolucionario hidraulica de tuberías alexis lópez
Solucionario hidraulica de tuberías alexis lópez
 
Practica 5 sistema masa-resorte
Practica 5 sistema masa-resortePractica 5 sistema masa-resorte
Practica 5 sistema masa-resorte
 
datos experimentales
datos experimentalesdatos experimentales
datos experimentales
 
Lab n° 1 medición y teoria de errores.
Lab n° 1   medición y teoria de errores.Lab n° 1   medición y teoria de errores.
Lab n° 1 medición y teoria de errores.
 
E book
E bookE book
E book
 
Informe ondas y particulas: MOVIMIENTOS OSCILATORIOS
Informe ondas y particulas:  MOVIMIENTOS OSCILATORIOSInforme ondas y particulas:  MOVIMIENTOS OSCILATORIOS
Informe ondas y particulas: MOVIMIENTOS OSCILATORIOS
 
Práctica 1 longitud de entrada y perfil de velocidad
Práctica 1 longitud de entrada y perfil de velocidadPráctica 1 longitud de entrada y perfil de velocidad
Práctica 1 longitud de entrada y perfil de velocidad
 
Reporte reactor-cstr
Reporte reactor-cstrReporte reactor-cstr
Reporte reactor-cstr
 
simulación de campos eléctricos para electrodos sumergidos en aceite
simulación de campos eléctricos para electrodos sumergidos en aceitesimulación de campos eléctricos para electrodos sumergidos en aceite
simulación de campos eléctricos para electrodos sumergidos en aceite
 
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdf
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdfEcuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdf
Ecuaciones_Diferenciales_(MURRAY_R._SPIEGEL).pdf
 
estudio a estrcutura dinamica-v6
estudio a estrcutura dinamica-v6estudio a estrcutura dinamica-v6
estudio a estrcutura dinamica-v6
 
lab2.pdf
lab2.pdflab2.pdf
lab2.pdf
 
Laboratrio no.3dinamicaaplicada
Laboratrio no.3dinamicaaplicadaLaboratrio no.3dinamicaaplicada
Laboratrio no.3dinamicaaplicada
 
Informe de fissica lab 4 mru
Informe de fissica lab 4   mruInforme de fissica lab 4   mru
Informe de fissica lab 4 mru
 
Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire Coeficiente de Amortiguamiento del Aire
Coeficiente de Amortiguamiento del Aire
 
fisiexp1-Final.pdf
fisiexp1-Final.pdffisiexp1-Final.pdf
fisiexp1-Final.pdf
 
Diseños y cornstrucción deuna maquina de golberg
Diseños y cornstrucción deuna maquina de golberg Diseños y cornstrucción deuna maquina de golberg
Diseños y cornstrucción deuna maquina de golberg
 
Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)Informe n°4 péndulo simple (Laboratorio de Física)
Informe n°4 péndulo simple (Laboratorio de Física)
 

Último

CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptxluiscisnerosayala23
 
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdf
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdfFORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdf
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdfEfrain Yungan
 
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfPPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfDarwinJPaulino
 
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTACUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTAvanessaecharry2511
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasAhmedMontaoSnchez1
 
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfINSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfautomatechcv
 
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLucindaMy
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticas
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticasEJERCICIOS DE -LEY-DE-OHM aplicaciones prácticas
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticasEfrain Yungan
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxPATRICIAKARIMESTELAL
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesRamonCortez4
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdffredyflores58
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industriesbarom
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptxJOSLUISCALLATAENRIQU
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOCamiloSaavedra30
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 
Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaLissetteMorejonLeon
 

Último (20)

CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
 
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdf
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdfFORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdf
FORMACION-INTEGRAL-DE-LINIEROS modelo de curso.pdf
 
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdfPPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
PPT - MODIFICACIONES PRESUPUESTARIAS - Anexo II VF.pdf
 
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTACUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
CUENCAS HIDROGRAFICAS CARACTERIZACION GEOMORFOLOGIAS DE LA CUENTA
 
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
Linea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptxLinea del tiempo de la inteligencia artificial.pptx
Linea del tiempo de la inteligencia artificial.pptx
 
Procedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnasProcedimientos constructivos superestructura, columnas
Procedimientos constructivos superestructura, columnas
 
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdfINSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
INSTRUCTIVO_NNNNNNNNNNNNNNSART2 iess.pdf
 
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptxLICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
LICENCIA DE CONSTRUCCION, Y EDIFICACIONES RESPECTO A LA LEY 29090.pptx
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticas
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticasEJERCICIOS DE -LEY-DE-OHM aplicaciones prácticas
EJERCICIOS DE -LEY-DE-OHM aplicaciones prácticas
 
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptxI LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
I LINEAMIENTOS Y CRITERIOS DE INFRAESTRUCTURA DE RIEGO.pptx
 
Estudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras vialesEstudio de materiales asfalticos para utilizar en obras viales
Estudio de materiales asfalticos para utilizar en obras viales
 
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdfS454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
S454444444444444444_CONTROL_SET_A_GEOMN1204.pdf
 
lean manufacturing and its definition for industries
lean manufacturing and its definition for industrieslean manufacturing and its definition for industries
lean manufacturing and its definition for industries
 
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx5. MATERIAL COMPLEMENTARIO - PPT  de la Sesión 02.pptx
5. MATERIAL COMPLEMENTARIO - PPT de la Sesión 02.pptx
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 
Tema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieriaTema 7 Plantas Industriales (2).pptx ingenieria
Tema 7 Plantas Industriales (2).pptx ingenieria
 

PENDULO ELASTICO METODO RUNGE KUTTA 4 CON MATLAB

  • 1. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 1 FECHA: MAYO 2011 SOLUCIÓN NUMÉRICA PÉNDULO ELÁSTICO OSCILANTE CON RUNGE KUTTA 4 EN MATLAB Ccarita Cruz Fredy Alan, Hugo Reymundo Alvarez Profesor: Mgt. Roy Sánchez Gutiérrez Pontificia Universidad Católica del Perú, Maestría en Ingeniería Mecánica, Métodos Matemáticos y Numéricos para Ingeniería Lima: 27.05.2011 RESUMEN En este estudio sobre péndulo elástico muelle-masa que se investiga. Con el fin de resolver un sistema de ecuaciones diferenciales no lineales que se obtienen de la aplicación de la segunda ley de newton que representan el fenómeno físico y que no es posible determinar la solución por los métodos analíticos, considerando solucionarlo y demostrar que si es posible con los métodos numéricos y en este caso utilizaremos el método numérico de Runge Kutta 4 para sistemas con ayuda del software Matlab, se hará la demostración para dos variaciones de longitud del péndulo y ver que eventos se producen por estas variaciones, los resultados se compararan con otros trabajos para verificar los mismo, al final quedamos conforme con el trabajo porque lo dicho anteriormente ha podido ser demostrado. Palabras claves: péndulo elástico, la oscilación no lineal, la técnica de simulación, Matlab, Runge - Kutta ABSTRACT In this study of elastic spring-mass pendulum is investigated. In order to solve a system of nonlinear differential equations obtained from the application of Newton's second law to represent the physical phenomenon and it is not possible to determine the solution by analytical methods, considering solutions and demonstrate that it is possible with numerical methods and in this case we use the numerical method of Runge Kutta 4 for systems using the Matlab software, will show for two variations of length of the pendulum and see what events are produced by these variations, the results were compared with other papers for the same in the end we were satisfied with the work because of the above has been demonstrated . Keywords: elastic pendulum, nonlinear oscillation, the technique of simulation, Matlab, Runge – Kutta 4 1. INTRODUCION La aplicación de las ecuaciones diferenciales dentro de la ingeniería Mecanica para determinar las ecuaciones que gobiernan los fenómenos físicos de estudio son muchísimas por no decir infinitas, pero la gran mayoría de estas no tienen solución numérica es por esa razón que se ha hecho necesario solucionar de
  • 2. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 2 FECHA: MAYO 2011 alguna manera estas ecuaciones diferenciales, razón por la cual hoy en día hay muchos métodos como el Método de Elementos Finitos (FEM), Diferencias Finitas (FDM), Método de Variación Iteracional (VIM), Método de Perturbación Homotropica (HPM) etc etc, para nuestro caso utilizaremos el método de Runge Kutta 4 en Matlab. 2. ECUACIONES QUE GOBIERNAN EL SISTEMA Aplicando la segunda ley de Newton y trabajando en coordenadas cilíndricas (r,θ) tendríamos lo siguiente: Ahora podemos escribir Σ : − sin = (1) : = 2 ̇ ̇ + ̇ (2) − sinθ = m 2 ̇ ̇ + ̈ − = 2 ̇ ̇ + ̈ ̈ = − − 2 ̇ ̇ ̈ = − − 2 ̇ ̇ (3) Σ : cos − = (4) : = − ( − ) (5) = ̈ − ̇ (6) − [− ( − )] = + ( − ) = ̈ − ̇ − ( − ) = ̈ − ̇ ̈ = ̇ + − ( − ) Figura 1 . Diagrama de cuerpo libre péndulo elástico en el punto 2
  • 3. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 3 FECHA: MAYO 2011 ̈ = ̇ + − ( − ) (7) De donde: L : Longitud sin deformar. r : Radio. ̇ : Velocidad radial. ̈ : Asceleración radial. : Posición angular. ̇ : Velocidad Angular. ̈ : Asceleración Angular. k : Constante de Rigidez m : Masa. g : gravedad. t : tiempo. El sistema es conservador porque no hay amortiguación. Por lo tanto la energía total (energía cinética y energía potencial) del sistema es siempre constante y el tiempo invariante (holonómica). Con el fin de investigar los comportamientos de la elástica del péndulo, algunos parámetros se deben dar. Por esta razón, la frecuencia natural del resorte y el péndulo respectivamente, como sigue: = = 12.64; = = 19.61 Por otra parte determinaremos una constante: = = = 0.35 3. SOLUCIÓN NUMÉRICA Para la solución numérica con Runge Kutta 4 para sistemas, debemos de utilizar las ecuaciones (3) y (7), pero antes debemos de trasformar estas ecuaciones a un sistema de ecuaciones diferenciales: Creación de la matriz μ = ̇ ̇ ′ = ̇ ̈ ̇ ̈ ′ = + ( ) − ( − ) −2 − ( ) Para la solución de este problema debemos de dar los siguientes datos: g=9.80665 m/s2 ; k=40N/m; L=0.5m, m=0.25Kg Tendremos lo siguiente: ′ = + 9.80665 ( ) − 160 + 80 −2 − 9.80665 ( ) Con las siguientes condiciones iniciales: = 0.5 0 3 0 = ̇ ̇ Una vez reemplazado las variables ahora debemos de utilizar el método de Runge Kutta 4 para sistemas: RUNGE-KUTTA 4 PARA SISTEMAS "POR FILAS" DE ECUACIONES DIFERENCIALES Function A=rks4M(F,a,b,Za,M) %Datos: F es la función vectorial, el intervalo [a b] %Za=[x1(a)...xn(a)] es la condición inicial y M es el número de pasos.
  • 4. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 4 FECHA: MAYO 2011 %Resultados: T, vector de los nodos, Z=[x1(t)... xn(t)],las aproximaciones h=(b-a)/M; T=zeros(1,M+1); Z=zeros(M+1,length(Za)); T=a:h:b; Z(1,:)=Za; for j=1:M k1=h*feval(F,T(j),Z(j,:)); k2=h*feval(F,T(j)+h/2,Z(j,:)+k1/2); k3=h*feval(F,T(j)+h/2,Z(j,:)+k2/2); k4=h*feval(F,T(j)+h,Z(j,:)+k3); Z(j+1,:)=Z(j,:)+(k1+2*k2+2*k3+k4)/6; end A=[T' Z]; End Antes de ello debemos de definir lo siguiente F,a,b,Za,M F function Z=Fs5(t,Z) a=Z(1); b=Z(2); c=Z(3); d=Z(4); Z=[b a*d.^2+9.80665*cos(c)-160*a+80 d - 2*b*d./a-9.80665*sin(c)./a]; a=0 ; b=0.5 ; Za= 0.5 0 3 0 ; M=100 Por lo tanto tendríamos: A=rks4M('Fs5',0,0.5,[0.5 0 pi/3 0],100) Que resulta: A = t r ̇ ̇ 0 0.5000 0 1.0472 0 0.0050 0.5001 0.0245 1.0470 -0.0849 0.0100 0.5002 0.0490 1.0463 -0.1697 0.0150 0.5006 0.0734 1.0453 -0.2542 0.0200 0.5010 0.0976 1.0438 -0.3384 0.0250 0.5015 0.1217 1.0419 -0.4221 0.0300 0.5022 0.1455 1.0396 -0.5051 0.0350 0.5030 0.1691 1.0369 -0.5875 0.0400 0.5039 0.1924 1.0337 -0.6690 0.0450 0.5049 0.2153 1.0302 -0.7495 0.0500 0.5060 0.2378 1.0262 -0.8291 0.0550 0.5073 0.2599 1.0219 -0.9075 0.0600 0.5086 0.2815 1.0171 -0.9847 0.0650 0.5101 0.3026 1.0120 -1.0605 0.0700 0.5117 0.3231 1.0065 -1.1351 0.0750 0.5133 0.3429 1.0007 -1.2081 0.0800 0.5151 0.3621 0.9945 -1.2797 0.0850 0.5169 0.3807 0.9879 -1.3498 0.0900 0.5189 0.3984 0.9810 -1.4182 0.0950 0.5209 0.4154 0.9737 -1.4850 0.1000 0.5230 0.4315 0.9661 -1.5502 0.1050 0.5252 0.4468 0.9582 -1.6137 0.1100 0.5275 0.4612 0.9500 -1.6755 0.1150 0.5299 0.4746 0.9415 -1.7356 0.1200 0.5323 0.4871 0.9326 -1.7940 0.1250 0.5347 0.4986 0.9235 -1.8508 0.1300 0.5372 0.5090 0.9141 -1.9058 0.1350 0.5398 0.5184 0.9045 -1.9592 0.1400 0.5424 0.5266 0.8945 -2.0110 0.1450 0.5451 0.5338 0.8844 -2.0612 0.1500 0.5478 0.5398 0.8739 -2.1098 0.1550 0.5505 0.5447 0.8633 -2.1569 0.1600 0.5532 0.5484 0.8524 -2.2025 0.1650 0.5560 0.5509 0.8412 -2.2467 0.1700 0.5587 0.5523 0.8299 -2.2895 0.1750 0.5615 0.5525 0.8183 -2.3310 0.1800 0.5642 0.5515 0.8066 -2.3712 0.1850 0.5670 0.5493 0.7946 -2.4101 0.1900 0.5697 0.5459 0.7825 -2.4479 0.1950 0.5724 0.5414 0.7702 -2.4846 0.2000 0.5751 0.5358 0.7576 -2.5202 0.2050 0.5778 0.5290 0.7450 -2.5548 0.2100 0.5804 0.5211 0.7321 -2.5885 0.2150 0.5830 0.5121 0.7191 -2.6213 0.2200 0.5855 0.5021 0.7059 -2.6533 0.2250 0.5880 0.4911 0.6925 -2.6845 0.2300 0.5905 0.4791 0.6790 -2.7149 0.2350 0.5928 0.4662 0.6654 -2.7447 0.2400 0.5951 0.4525 0.6516 -2.7739 0.2450 0.5973 0.4378 0.6377 -2.8025 0.2500 0.5995 0.4224 0.6236 -2.8306 0.2550 0.6016 0.4063 0.6094 -2.8582 0.2600 0.6036 0.3895 0.5950 -2.8853 0.2650 0.6055 0.3721 0.5805 -2.9120 0.2700 0.6073 0.3541 0.5659 -2.9383 0.2750 0.6090 0.3357 0.5511 -2.9643 0.2800 0.6106 0.3168 0.5362 -2.9900 0.2850 0.6122 0.2976 0.5212 -3.0153 0.2900 0.6136 0.2781 0.5061 -3.0404 0.2950 0.6149 0.2583 0.4908 -3.0653 0.3000 0.6162 0.2385 0.4754 -3.0899
  • 5. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 5 FECHA: MAYO 2011 0.3050 0.6173 0.2185 0.4599 -3.1142 0.3100 0.6184 0.1985 0.4443 -3.1383 0.3150 0.6193 0.1786 0.4285 -3.1622 0.3200 0.6202 0.1587 0.4127 -3.1859 0.3250 0.6209 0.1391 0.3967 -3.2093 0.3300 0.6216 0.1197 0.3806 -3.2325 0.3350 0.6221 0.1006 0.3644 -3.2555 0.3400 0.6226 0.0819 0.3480 -3.2782 0.3450 0.6229 0.0636 0.3316 -3.3006 0.3500 0.6232 0.0458 0.3150 -3.3227 0.3550 0.6234 0.0286 0.2983 -3.3444 0.3600 0.6235 0.0119 0.2816 -3.3658 0.3650 0.6235 -0.0041 0.2647 -3.3868 0.3700 0.6234 -0.0195 0.2477 -3.4074 0.3750 0.6233 -0.0342 0.2306 -3.4275 0.3800 0.6231 -0.0481 0.2134 -3.4471 0.3850 0.6228 -0.0612 0.1961 -3.4662 0.3900 0.6225 -0.0736 0.1788 -3.4846 0.3950 0.6221 -0.0851 0.1613 -3.5024 0.4000 0.6216 -0.0958 0.1437 -3.5195 0.4050 0.6211 -0.1057 0.1261 -3.5358 0.4100 0.6206 -0.1147 0.1084 -3.5514 0.4150 0.6200 -0.1229 0.0906 -3.5660 0.4200 0.6194 -0.1302 0.0727 -3.5798 0.4250 0.6187 -0.1367 0.0548 -3.5926 0.4300 0.6180 -0.1423 0.0368 -3.6043 0.4350 0.6173 -0.1472 0.0188 -3.6150 0.4400 0.6165 -0.1513 0.0007 -3.6245 0.4450 0.6158 -0.1546 -0.0175 -3.6329 0.4500 0.6150 -0.1572 -0.0357 -3.6400 0.4550 0.6142 -0.1591 -0.0539 -3.6458 0.4600 0.6134 -0.1603 -0.0721 -3.6502 0.4650 0.6126 -0.1610 -0.0904 -3.6533 0.4700 0.6118 -0.1611 -0.1087 -3.6550 0.4750 0.6110 -0.1606 -0.1269 -3.6552 0.4800 0.6102 -0.1597 -0.1452 -3.6539 0.4850 0.6094 -0.1584 -0.1635 -3.6510 0.4900 0.6086 -0.1568 -0.1817 -3.6466 0.4950 0.6078 -0.1548 -0.1999 -3.6407 0.5000 0.6070 -0.1526 -0.2181 -3.6331 >> plot(A(:,1),180*A(:,4)/pi,'r') (Tiempo * Grados sexagecimales) grid on axis on >> plot(A(:,1),A(:,2),'r') xlabel('tiempo') ylabel('radio') Figura 2 . Diagrama de Posición en función del tiempo – Péndulo Elástico
  • 6. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 6 FECHA: MAYO 2011 Si deseamos saber la posición de r cuando el péndulo llega a 0°, se tendría lo siguiente: El tiempo que la masa del péndulo llega a la posición: Θ=0° t=0.44 s. Figura 3. Diagrama de radio en función del tiempo – Péndulo Elástico. Figura 4. Diagrama para determinar el tiempo cuando Θ=0°
  • 7. MÉTODOS MATEMÁTICOS Y NUMÉRICOS PARA INGENIERÍA 7 FECHA: MAYO 2011 4. CONCLUSIONES En este trabajo, se pudo demostrar que si es posible solucionar ecuaciones diferenciales por métodos numéricos que en este caso el Runge Kutta 4, aplicado al péndulo elástico, también se demostró que cuando se hace la variación de la longitud “L”, la intensidad del movimiento oscilatorio aumenta con una mayor elongación de la cuerda elástica, dentro del campo de las vibraciones este péndulo se consideraría como un sistema con dos grados de libertar clasificado como una vibración libre debido por solo a la presencia de las fuerzas gravitatorias y elásticas, 5. REFERENCIAS Zekeyra Girgin, Ersin Demir 2008, Investigation of elastic pendulum oscillations by simulation technique, 81- 86. Jorge Rodriguez Hernandez, 2010, Dinamica, Cap II, Cap X Chang, C.L and Lee 2004, Applyng the double side method to solution no linear pendulum problem, Appl. Math Comput 149, 613-624 Georgiou, I. T. 1999. On the global geometric structure of the dynamics of the elastic pendulum, Nonlinear Dynam. 18, 51-68 . Girgin, Z. 2008. Combining differential quadrature method with simulation technique to solve nonlinear differential equations, Int. J. Numer. Meth. Eng. 75 (6), 722-734. Figura 5. Diagrama de comparación – para dos casos de L (L1=0.5m y L2=0.575m)