Anúncio
a. ConvolutionB. using character ristic functions Let X, Y be i.i..pdf
Próximos SlideShares
a. If n is even, show that (3^n-1)2 is always divisible by 4, so it.pdfa. If n is even, show that (3^n-1)2 is always divisible by 4, so it.pdf
Carregando em ... 3
1 de 1
Anúncio

Mais conteúdo relacionado

Mais de aimarenterprises(20)

Anúncio

a. ConvolutionB. using character ristic functions Let X, Y be i.i..pdf

  1. a. Convolution B. using character ristic functions Let X, Y be i.i.d. r.v. with common distribution exp(lambda). Prove that W = X + Y has a gamma distribution with parameters (2, lambda) by using the following methods: Solution (a) ( P(X+Y=z) = sum_{x=0}^z P(X=x) * P(Y=z-x) = sum_{x=0}^z lambda^2 e^{-lambda x} e^{-lambda(z-x)} ) ( P(X+Y=z) = z lambda^2 e^{-lambda z} ) which is indeed gamma with ( (2,lambda) ) (b) ( Phi_{X+Y}(t) = E(e^{itX})E(e^{itY})=(1-it/lambda)^{-2} ) Which is indeeed the characteristic function of the gamma distribution with parameteters ( (2,lambda) )
Anúncio