Atualizámos a nossa política de privacidade. Clique aqui para ver os detalhes. Toque aqui para ver os detalhes.
Ative o seu período de avaliaçõo gratuito de 30 dias para desbloquear leituras ilimitadas.
Ative o seu teste gratuito de 30 dias para continuar a ler.
Baixar para ler offline
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
The relative roles of individual forcings on large-scale climate variability remain difficult to disentangle within fully-coupled global climate model simulations. Here, we train an artificial neural network (ANN) to classify the climate forcings of a new set of CESM1 initial-condition large ensembles that are forced by different combinations of aerosol (industrial and biomass burning), greenhouse gas, and land-use/land-cover forcings. As a result of learning the regional responses of internal variability to the different external forcings, the ANN is able to successfully classify the dominant forcing for each model simulation. Using recently developed explainable AI methods, such as layerwise relevance propagation, we then compare the patterns of climate variability identified by the ANN between different external climate forcings that are learned by the neural network. Further, we apply this ANN architecture on additional climate simulations from the multi-model large ensemble archive, which include all anthropogenic and natural radiative forcings. From this collection of initial-condition ensembles, the ANN is also able to detect changes in atmospheric internal variability between the 20th and 21st centuries by training on climate fields after the mean forced signal has already been removed. This ANN framework and its associated visualization tools provide a novel approach to extract complex patterns of observable and projected climate variability and trends in Earth system models. (from https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/379553)
Parece que você já adicionou este slide ao painel
Você recortou seu primeiro slide!
Recortar slides é uma maneira fácil de colecionar slides importantes para acessar mais tarde. Agora, personalize o nome do seu painel de recortes.A família SlideShare acabou de crescer. Desfrute do acesso a milhões de ebooks, áudiolivros, revistas e muito mais a partir do Scribd.
Cancele a qualquer momento.Leitura ilimitada
Aprenda de forma mais rápida e inteligente com os maiores especialistas
Transferências ilimitadas
Faça transferências para ler em qualquer lugar e em movimento
Também terá acesso gratuito ao Scribd!
Acesso instantâneo a milhões de e-books, audiolivros, revistas, podcasts e muito mais.
Leia e ouça offline com qualquer dispositivo.
Acesso gratuito a serviços premium como Tuneln, Mubi e muito mais.
Atualizámos a nossa política de privacidade de modo a estarmos em conformidade com os regulamentos de privacidade em constante mutação a nível mundial e para lhe fornecer uma visão sobre as formas limitadas de utilização dos seus dados.
Pode ler os detalhes abaixo. Ao aceitar, está a concordar com a política de privacidade atualizada.
Obrigado!