Anúncio
Yormary Navas matematica unidad II
Yormary Navas matematica unidad II
Yormary Navas matematica unidad II
Yormary Navas matematica unidad II
Anúncio
Yormary Navas matematica unidad II
Yormary Navas matematica unidad II
Yormary Navas matematica unidad II
Próximos SlideShares
Conjuntos.  Operaciones con conjuntosConjuntos. Operaciones con conjuntos
Carregando em ... 3
1 de 7
Anúncio

Mais conteúdo relacionado

Anúncio

Yormary Navas matematica unidad II

  1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Universidad Andrés Eloy Blanco Barquisimeto -Estado Lara UNIDAD II Operaciones con Conjuntos - Números Reales Autora: YORMARY NAVAS PNF ADMINISTRACIÓN Trayecto inicial
  2. Un conjunto es un grupo de elementos u objetos especificados en tal forma que se puede afirmar con certeza si cualquier objeto dado pertenece o no a la agrupación. Para denotar a los conjuntos, se usan letras mayúsculas. Cuando un elemento x1 pertenece a un conjunto A se expresa de forma simbólica como: x1∈A . En caso de que un elemento y1 no pertenezca a este mismo conjunto se utiliza la notación: y1∉A Existen cuatro formas de enunciar a los conjuntos: 1) Por extensión o enumeración: los elementos son encerrados entre llaves y separados por comas. Es decir, el conjunto se describe listando todos sus elementos entre llaves. 2) Por comprensión: los elementos se determinan a través de una condición que se establece entre llaves. En este caso se emplea el símbolo | que significa “tal que". En forma simbólica es: A = { xP(x) }= {x1,x2 ,x3 ,⋅⋅⋅,xn } Es habitual representar los conjuntos mediante los llamados diagrama de Venn en, en los que se delimitan porciones de plano mediante líneas cerradas. OPERACIONES CON CONJUNTOS. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos los siguientes unión, intersección, diferencia, diferencia simétrica y complemento. UNIÓN O REUNIÓN DE CONJUNTOS. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪
  3. INTERSECCIÓN DE CONJUNTOS. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluido. El símbolo que se usa para indicar la operación de intersección es el siguiente: ∩. DIFERENCIA DE CONJUNTOS. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. F-B DIFERENCIA DE SIMÉTRICA DE CONJUNTOS. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. COMPLEMENTO DE UN CONJUNTO. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que está incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto
  4. formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. NÚMEROS REALES Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlo en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Además de las características particulares de cada conjunto que compone el superconjunto de los números reales, Todos los números reales tienen un orden Los números reales se representan mediante la letra R ↓ R.
  5. DESIGUALDAD MATEMÁTICA Desigualdad matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que ≠, mayor que >, menor que <, menor o igual que ≤, así como mayor o igual que ≥, resultando ambas expresiones de valores distintos. Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores desiguales. Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean:  mayor que >  Menor que <  Menor o igual que ≤  Mayor o igual que ≥ Propiedades de la desigualdad matemática  Si se multiplica ambos miembros de la expresión por el mismo valor, la desigualdad se mantiene.  Si dividimos ambos miembros de la expresión por el mismo valor, la desigualdad se mantiene.  Si restamos el mismo valor a ambos miembros de expresión, la desigualdad se mantiene.  Si sumamos el mismo valor a ambos miembros de la expresión, la desigualdad se mantiene. Hay que tener presente que las desigualdades matemáticas poseen también las siguientes propiedades:  Si se multiplica ambos miembros de la expresión por un número negativo, la desigualdad cambia de sentido.  Si se divide ambos miembros de la expresión por un número negativo, la desigualdad cambia de sentido. Para terminar, hemos de destacar que desigualdad matemática e inecuación son diferentes. Una inecuación se genera mediante una desigualdad, pero podría no tener solución o ser incongruente
  6. VALOR ABSOLUTO El valor absoluto representa la distancia desde el origen o cero de una recta numérica hasta un número o un punto. Geométricamente los valores absolutos de |x| son números reales de x y es un valor geométrico sin tener en cuenta su signo, sea este positivo (+) o negativo (-). Así, por ejemplo, 5 es el valor absoluto de +5 y de -5. Los valores absolutos están representados por dos líneas verticales, tales como |x| (el cual se lee como módulo de x).
  7. El valor absoluto se representa como |A| , donde A es el número cuyo valor absoluto tiene que ser determinado. Desigualdades de valor absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es XI -4<X<4
Anúncio