HA17741/PS
General-Purpose Operational Amplifier
(Frequency Compensated)
Description
The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is
appropriate for use in a wide range of applications in the test and control fields.
Features
• High voltage gain : 106 dB (Typ)
• Wide output amplitude : ±13 V (Typ) (at RL ≥ 2 kΩ)
• Shorted output protection
• Adjustable offset voltage
• Internal phase compensation
Ordering Information
Application Type No. Package
Industrial use HA17741PS DP-8
Commercial use HA17741
Pin Arrangement
−
+
1
2
3
4
8
7
6
5
NC
VCC
Vout
Offset
Null
Offset
Null
Vin(−)
Vin(+)
VEE
(Top view)
HA17741/PS
2
Circuit Structure
VCC
Vout
VEE
To VCCTo VCC
Offset Null
Vin(+)
Vin(−)
Pin5Pin1
Absolute Maximum Ratings (Ta = 25°C)
Ratings
Item Symbol HA17741PS HA17741 Unit
Power-supply voltage VCC +18 +18 V
VEE –18 –18 V
Input voltage Vin ±15 ±15 V
Differential input voltage Vin(diff) ±30 ±30 V
Allowable power dissipation PT 670 * 670 * mW
Operating temperature Topr –20 to +75 –20 to +75 °C
Storage temperature Tstg –55 to +125 –55 to +125 °C
Note: These are the allowable values up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.
HA17741/PS
3
Electrical Characteristics
Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C)
Item Symbol Min Typ Max Unit Test Condition
Input offset voltage VIO — 1.0 6.0 mV RS ≤ 10 kΩ
Input offset current IIO — 18 200 nA
Input bias current IIB — 75 500 nA
Power-supply ∆VIO/∆VCC — 30 150 µV/V RS ≤ 10 kΩ
rejection ratio ∆VIO/∆VEE — 30 150 µV/V RS ≤ 10 kΩ
Voltage gain AVD 86 106 — dB RL ≥ 2 kΩ, Vout = ±10 V
Common-mode
rejection ratio
CMR 70 90 — dB RS ≤ 10 kΩ
Common-mode input
voltage range
VCM ±12 ±13 — V RS ≤ 10 kΩ
Maximum output VOP-P ±12 ±14 — V RL ≥ 10 kΩ
voltage amplitude ±10 ±13 — V RL ≥ 2 kΩ
Power dissipation Pd — 65 100 mW No load
Slew rate SR — 1.0 — V/µs RL ≥ 2 kΩ
Rise time tr — 0.3 — µs Vin = 20 mV, RL = 2 kΩ,
Overshoot Vover — 5.0 — % CL = 100 pF
Input resistance Rin 0.3 1.0 — MΩ
Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C)
Item Symbol Min Typ Max Unit Test Condition
Input offset voltage VIO — — 9.0 mV RS ≤ 10 kΩ
Input offset current IIO — — 400 nA
Input bias current IIB — — 1,100 nA
Voltage gain AVD 80 — — dB RL ≥ 2 kΩ, Vout = ±10 V
Maximum output
voltage amplitude
VOP-P ±10 — — V RL ≥ 2 kΩ
HA17741/PS
4
IC Operational Amplifier Application Examples
Multivibrator
A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate
the waveform. Multivibrators are widely used as the square wave source in such applications as power
supplies and electronic switches.
Multivibrators are classified into three types, astable multivibrators, which have no stable states,
monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable
states.
1. Astable Multivibrator
−
+
R3
VCC
VEE
Vout
R1
R2
RL
Vin(−)
Vin(+)
C1
Figure 1 Astable Multivibrator Operating Circuit
Vin(+) 0
Vin(−) 0
Vout 0
Vertical:
Horizontal:
Circuit constants
R1 = 8 kΩ, R2 = 4 kΩ
R3 = 100 kΩ, C1 = 0.1 µF
RL = ∞
VCC = 15 V, VEE = −15 V
5 V/div
2 ms/div
Figure 2 HA17741 Astable Multivibrator Operating Waveform
HA17741/PS
6
Trigger input 0
Vin(+) 0
Vout 0
Vertical:
Horizontal:
Circuit constants
5 V/div
2 ms/div
R1 = 10 kΩ, R2 = 2 kΩ
C = 0.0068 µF
RL = ∞
VCC = 15 V, VEE = −15 V
Figure 6 HA17741 Bistable Multivibrator Operating Waveform
Wien Bridge Sine Wave Oscillator
−
+
R4
470 kΩ
1 MΩ
1S2074 H
R3C3
2SK16 H
500 Ω Rin
C2 R2 C1
R1
5.1 kΩ
RS
RL
50 kΩ
Vout
Figure 7 Wien Bridge Sine Wave Oscillator
VCC = 15 V,
VEE = −15 V
C1 = C2/10
R1 = 110 kΩ,
R2 = 11 kΩ
VOP-P = 2 V
VOP-P = 20 V
30 k
10 k
3 k
1 k
300
100
30
10
30 p 100 p 300 p 1,000 p 3,000 p 0.01 µ 0.03 µ 0.1 µ
C1 Capacitance (F)
OscillatorFrequencyf(Hz)
Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics
HA17741/PS
7
Vertical:
Horizontal:
Test circuit condition
5 V/div
0.5 ms/div
VCC = 15 V, VEE = −15 V
R1 = 110 kΩ, R2 = 11 kΩ
C1 = 0.0015 µF, C2 = 0.015 µF
Test results
f = 929.7 Hz, T.H.P = 0.06%
Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform
Quadrature Oscillator
−
+
A2
−
+
A1
V4
R11
R22
R44
R33
V8
D1
D2
Cos outSin out
CT2
RT2
CT1
RT1 C1
R1
Figure 10 Quadrature Sine Wave Oscillator
Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two
integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is,
it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter
circuit.
HA17741/PS
8
30
10
CT1 = 102 pF
CT2 = 99 pF
C1 = 106 pF
VCC = −VEE = 15 V
RT1 = 150 kΩ, RT2 = 150 kΩ
R1 = 151.2 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 15 kΩ, R44 = 10 kΩ
CT1, CT2, C1 → 1,000 pF
Use a Mylar capacitor.
With VOP-P = 21 VP-P and
R22 = R44 = 10 kΩ
the frequency of the sine
wave will be under 10 kHz.
Sin out
Cos out
3
1.0
0.3
0.1
0.03
0.01
100 p 1,000 p 0.01 µ 0.1 µ
CT1, CT2, C1 (F)
Figure 11 HA17741 Quadrature Sine Wave Oscillator
f−CT1, CT2, C1 Characteristics
Vertical:
Horizontal:
Circuit constants
5 V/div
0.2 ms/div
CT1 = 1000 pF (990), CT2 = 1000 pF (990)
RT1 = 150 kΩ, RT2 = 150 kΩ
C1 = 1000 pF (990), R1 = 160 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 16 V, R44 = 10 kΩ
VCC = 15 V, VEE = −15 V
← Sin out
0
← Cos out
Figure 12 Sine and Cosine Output Waveforms
Triangular Wave Generator
−
+
A1
−
+
A2
D1 R3
D2 R4
C
R1
R2
Vout2
VA
R1/R2
Vout1
Hysteresis comparator
Integrator
Figure 13 Triangular Wave Generator Operating Circuit
HA17741/PS
10
Characteristic Curves
2
3
1
5
6
±3 ±6 ±12 ±15
20
16
12
8
4
0
InputoffsetcurrentIIO(nA)
Power-supply voltage VCC, VEE (V)
Input Offset Current vs.
Power-Supply Voltage Characteristics
±9 ±18
R1
R2
R2
R1
R
a = 100%a = 0%
VEE
Voltage Offset Adjustment Circuit
±3 ±6 ±12 ±15
100
80
60
40
20
0
PowerdissipationPd(mW)
Power-supply voltage VCC, VEE (V)
Power Dissipation vs.
Power-Supply Voltage Characteristics
±9 ±18 ±3 ±6 ±12 ±15
120
110
100
90
80
70
VoltagegainAVD(dB)
Power-supply voltage VCC, VEE (V)
Voltage Gain vs.
Power-Supply Voltage Characteristics
±9 ±18
RL ≥ 2 kΩ
No load
HA17741/PS
11
±3 ±6 ±12 ±15
20
16
12
8
4
0
Maximumoutputvoltageamplitude
±VOP-P(V)
Power-supply voltage VCC, VEE (V)
Maximum Output Voltage Amplitude vs.
Power-Supply Voltage Characteristics
±9 ±18 −20 0 20 40 60
5
4
3
2
1
0
InputoffsetvoltageVIO(mV)
Ambient temperature Ta (°C)
Input Offset Voltage vs.
Ambient Temperature Characteristics
80
VCC = +15 V
VEE = −15 V
RS ≤ 10 kΩ
RL ≥ 2 kΩ
−V
O
P-P
+V
O
P-P
−20 0 20 40 60
20
16
12
8
4
0
InputoffsetcurrentIIO(nA)
Ambient temperature Ta (°C)
Input Offset Current vs.
Ambient Temperature Characteristics
80 −20 0 20 40 60
120
100
80
60
40
20
0
InputbiascurrentIIB(nA)
Ambient temperature Ta (°C)
Input Bias Current vs.
Ambient Temperature Characteristics
80
VCC = +15 V
VEE = −15 V
VCC = +15 V
VEE = −15 V
HA17741/PS
12
−20 0 20 40 60
120
110
100
90
80
70
VoltagegainAVD(dB)
Ambient temperature Ta (°C)
Voltage Gain vs.
Ambient Temperature Characteristics
80−20 0 20 40 60
90
80
70
60
50
40
PowerdissipationPd(mW) Power Dissipation vs.
Ambient Temperature Characteristics
80
Ambient temperature Ta (°C)
VCC = +15 V
VEE = −15 V
No load
VCC = +15 V
VEE = −15 V
RL ≥ 2 kΩ
−20 0 20 40 60
20
16
12
8
4
0
OutputshortedcurrentIOS(mA)
Ambient temperature Ta (°C)
Output Shorted Current vs.
Ambient Temperature Characteristics
80−20 0 40 60
16
12
8
4
0
−4
−8
−12
Maximumoutputvoltageamplitude
VOP-P(V)
Maximum Output Voltage Amplitude vs.
Ambient Temperature Characteristics
20 80
Ambient temperature Ta (°C)
VO = VCC
VCC = +15 V
VEE = −15 V
VCC = +15 V
VEE = −15 V
RL = 10 kΩ
HA17741/PS
13
200 500 1 k 2 k 5 k
16
12
8
4
0
−4
−8
−12
Maximumoutputvoltageamplitude
VOP-P(V)
Maximumoutputvoltageamplitude
VOP-P(V)
Maximum Output Voltage Amplitude vs.
Load Resistance Characteristics
10 k
Load resistance RL (Ω)
0
1.6
1.2
0.8
0.4
0
−0.4
−0.8
−1.2
−1.6
OutputvoltageVout(V)
20 40 60 80 100
VCC = +15 V
VEE = −15 V
VCC = +15 V, VEE = −15 V
R1 = 51 Ω, R2 = 5.1 kΩ
See the voltage offset
adjustment circuit diagram.
Offset Adjustment
Characteristics
Resistor position a (%)
R = 10 kΩ
R = 5 kΩ
R = 20 kΩ
500 1 k 50 k 100 k
28
24
20
16
12
8
4
Frequency f (Hz)
Maximum Output Voltage Amplitude vs.
Frequency Characteristics
200 2 k 5 k 10 k 20 k 200 k 500 k 100 500 1 k 50 k 100 k
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
InputresistanceRin(MΩ)
Frequency f (Hz)
Input Resistance vs.
Frequency Characteristics
200 2 k 5 k 10 k 20 k 200 k 500 k 1 M
0
VCC = +15 V
VEE = −15 V
RL = 10 kΩ
100
HA17741/PS
14
50 200 1 k 50 k 100 k
40
0
−40
−80
−120
−160
−200
Phaseφ(deg.)
Frequency f (Hz)
Phase vs.
Frequency Characteristics
100 2 k 5 k 10 k 20 k 200 k 500 k
−240
500 1 M 2 M
10 50 200 10 k 20 k
120
100
80
60
40
20
0
−20
VoltagegainAVD(dB)
Frequency f (Hz)
Voltage Gain vs
Frequency Characteristics
20 500 1 k 2 k 5 k 50 k 100 k
40
100 500 k 2 M200 k 1 M
VCC = +15 V
VEE = −15 V
Open loop
VCC = +15 V
VEE = −15 V
Open loop
10 50 200 10 k 20 k
120
100
80
60
40
20
0
VoltagegainAVD(dB)
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (1)
20 500 1 k 2 k 5 k 50 k 100 k
−20
100 200 k 500 k 1 M 2 M
10 50 200 10 k 20 k
120
100
80
60
40
20
0
−20
VoltagegainAVD(dB)
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (2)
20 500 1 k 2 k 5 k 50 k 100 k
−40
100 200 k 500 k 1 M 2 M
VCC = +15 V
VEE = −15 V
Closed loop gain = 60 dB
VCC = +15 V
VEE = −15 V
Closed loop gain = 40 dB0
−60
−120
−180
0
−60
−120
−180
Phaseφ(deg.)
Phaseφ(deg.)
AVD
φ φ
AVD
HA17741/PS
15
10 50 200 10 k 20 k
120
100
80
60
40
20
0
−20
VoltagegainAVD(dB)
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (3)
20 500 1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M
0
−60
−120
−180
Phaseφ(deg.)
−40
VCC = +15 V
VEE = −15 V
Closed loop gain = 20 dB
AVD
φ
10 50 200 10 k 20 k
120
100
80
60
40
20
0
−20
VoltagegainAVD(dB)
Frequency f (Hz)
Voltage Gain and Phase vs.
Frequency Characteristics (4)
20 500 1 k 2 k 5 k 50 k 100 k100 200 k 500 k 1 M 2 M
0
−60
−120
−180
Phaseφ(deg.)
−40
VCC = +15 V
VEE = −15 V
Closed loop gain = 0 dB
AVD
φ
2
3
6
±3 ±6 ±9 ±12 ±15
0.8
0.6
0.4
0.2
0
Risetimetr(µs)
Power-supply voltage VCC, VEE (V)
Rise time vs.
Power-Supply Voltage Characteristics
±18
Impulse Response
Characteristics Test Circuit
Vout
RLCL
V2
90%
10%
Vout
tr
V1
Vout = × 100 (%)
V2
V1
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF
Vin
HA17741/PS
16
±3 ±6 ±9 ±12 ±15
40
30
20
10
0
OvershootVover(%)
Power-supply voltage VCC, VEE (V)
Overshoot vs.
Power-Supply Voltage Characteristics
±18 0 0.4 0.8 1.2
40
30
20
10
0
OutputvoltageVout(mV)
Time t (µs)
Impulse Response
Characteristics
1.6
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF
VCC = +15 V
VEE = −15 V
RL = 2 kΩ
CL = 100 pF
Vin = 20 mV
HA17741/PS
18
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan : http://www.hitachi.co.jp/Sicd/indx.htm
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HXHitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Europe GmbH
Electronic components Group
Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
For further information write to:
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.