O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Using R to Feed Google Analytics Data into BigQuery

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 29 Anúncio

Using R to Feed Google Analytics Data into BigQuery

Baixar para ler offline

A Semetrical presentation delivered by Danny Smith at MeasureFest in October 2022.
Danny shares an efficient and effective way of connecting Google Analytics and BigQuery using some basic R coding.
R is a programming language designed for data analysis and statistical computing. Discover how to use the Google Analytics API’s and simple R commands to connect and export your GA data out of the platform and into BigQuery for deeper analysis.

A Semetrical presentation delivered by Danny Smith at MeasureFest in October 2022.
Danny shares an efficient and effective way of connecting Google Analytics and BigQuery using some basic R coding.
R is a programming language designed for data analysis and statistical computing. Discover how to use the Google Analytics API’s and simple R commands to connect and export your GA data out of the platform and into BigQuery for deeper analysis.

Anúncio
Anúncio

Mais Conteúdo rRelacionado

Semelhante a Using R to Feed Google Analytics Data into BigQuery (20)

Anúncio

Mais recentes (20)

Using R to Feed Google Analytics Data into BigQuery

  1. 1. Using R to Feed Google Analytics Data into BigQuery Slides: https://bit.ly/3SNmp2y @DannySmAnalysis @Semetrical Danny Smith Semetrical
  2. 2. 1. The Google Analytics API 2. Why use R? 3. Accessing your GA data with R 4. Uploading your GA data to Big Query 5. Additional use cases What we’ll cover… #BrightonSEO @Semetrical
  3. 3. The Google Analytics API #BrightonSEO @Semetrical
  4. 4. • Automate reporting processes • Avoid sampling • Granular analysis • Send measurement protocol hits – not in reporting / data • Change configurations – not in reporting / data Some of the key uses of the APIs: #BrightonSEO @Semetrical
  5. 5. #BrightonSEO @Semetrical • Free • Quick analysis • No sampling • Avoids having to use SQL Why use the GA4 API?
  6. 6. Why Use R? #BrightonSEO @Semetrical
  7. 7. 10
  8. 8. 11
  9. 9. 12
  10. 10. 13
  11. 11. 14 • • • • •
  12. 12. Statistics, data visualization and user- friendly interface The Benefits of R #BrightonSEO @Semetrical
  13. 13. Accessing your Google Analytics data with R #BrightonSEO @Semetrical
  14. 14. 17
  15. 15. 18 Setting your 4 key conditions following the API schema. Filter between UA and GA4 accordingly.
  16. 16. 19 1. GA ID 2. Date range 3. Metrics 4. Dimensions 5. Dimension filters – optional 6. Segments - optional
  17. 17. Uploading data to BigQuery with R #BrightonSEO @Semetrical
  18. 18. Uploading data to BigQuery with R #BrightonSEO @Semetrical 3 variables required for uploading data into BigQuery: • Project name • Dataset name • Table name Locate your destination & upload to BigQuery
  19. 19. Summary & Additional Use Cases #BrightonSEO @Semetrical
  20. 20. Overlay your Google Analytics data with additional data points i.e. use Google Trends API www.semetrical.com/using-ga-google-trends-api-with-r/
  21. 21. • Statistical packages • Create visuals using Shiny or ggplot (i.e. boxplots)
  22. 22. Automate reporting of Google Analytics data using cronR
  23. 23. Pull data from BigQuery with SQL
  24. 24. Download the deck from our blog & grab your free R code cheat sheet to start having a play today: https://bit.ly/3SNmp2y ds@Semetrical.com @DannySmAnalysis Thank you! #BrightonSEO @Semetrical

×